Newspace parameters
| Level: | \( N \) | \(=\) | \( 288 = 2^{5} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 288.v (of order \(8\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(2.29969157821\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Relative dimension: | \(8\) over \(\Q(\zeta_{8})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 37.1 | −1.41364 | − | 0.0402136i | 0 | 1.99677 | + | 0.113695i | −1.51282 | − | 0.626632i | 0 | −1.32530 | − | 1.32530i | −2.81814 | − | 0.241022i | 0 | 2.11339 | + | 0.946670i | ||||||
| 37.2 | −1.06920 | + | 0.925636i | 0 | 0.286395 | − | 1.97939i | 3.41317 | + | 1.41378i | 0 | −1.42999 | − | 1.42999i | 1.52598 | + | 2.38147i | 0 | −4.95802 | + | 1.64773i | ||||||
| 37.3 | −0.835415 | − | 1.14109i | 0 | −0.604162 | + | 1.90656i | −0.823699 | − | 0.341187i | 0 | 0.760681 | + | 0.760681i | 2.68028 | − | 0.903371i | 0 | 0.298806 | + | 1.22495i | ||||||
| 37.4 | −0.716976 | + | 1.21899i | 0 | −0.971891 | − | 1.74798i | −2.42249 | − | 1.00343i | 0 | 3.40882 | + | 3.40882i | 2.82760 | + | 0.0685293i | 0 | 2.96004 | − | 2.23356i | ||||||
| 37.5 | 0.716976 | − | 1.21899i | 0 | −0.971891 | − | 1.74798i | 2.42249 | + | 1.00343i | 0 | 3.40882 | + | 3.40882i | −2.82760 | − | 0.0685293i | 0 | 2.96004 | − | 2.23356i | ||||||
| 37.6 | 0.835415 | + | 1.14109i | 0 | −0.604162 | + | 1.90656i | 0.823699 | + | 0.341187i | 0 | 0.760681 | + | 0.760681i | −2.68028 | + | 0.903371i | 0 | 0.298806 | + | 1.22495i | ||||||
| 37.7 | 1.06920 | − | 0.925636i | 0 | 0.286395 | − | 1.97939i | −3.41317 | − | 1.41378i | 0 | −1.42999 | − | 1.42999i | −1.52598 | − | 2.38147i | 0 | −4.95802 | + | 1.64773i | ||||||
| 37.8 | 1.41364 | + | 0.0402136i | 0 | 1.99677 | + | 0.113695i | 1.51282 | + | 0.626632i | 0 | −1.32530 | − | 1.32530i | 2.81814 | + | 0.241022i | 0 | 2.11339 | + | 0.946670i | ||||||
| 109.1 | −1.41364 | + | 0.0402136i | 0 | 1.99677 | − | 0.113695i | −1.51282 | + | 0.626632i | 0 | −1.32530 | + | 1.32530i | −2.81814 | + | 0.241022i | 0 | 2.11339 | − | 0.946670i | ||||||
| 109.2 | −1.06920 | − | 0.925636i | 0 | 0.286395 | + | 1.97939i | 3.41317 | − | 1.41378i | 0 | −1.42999 | + | 1.42999i | 1.52598 | − | 2.38147i | 0 | −4.95802 | − | 1.64773i | ||||||
| 109.3 | −0.835415 | + | 1.14109i | 0 | −0.604162 | − | 1.90656i | −0.823699 | + | 0.341187i | 0 | 0.760681 | − | 0.760681i | 2.68028 | + | 0.903371i | 0 | 0.298806 | − | 1.22495i | ||||||
| 109.4 | −0.716976 | − | 1.21899i | 0 | −0.971891 | + | 1.74798i | −2.42249 | + | 1.00343i | 0 | 3.40882 | − | 3.40882i | 2.82760 | − | 0.0685293i | 0 | 2.96004 | + | 2.23356i | ||||||
| 109.5 | 0.716976 | + | 1.21899i | 0 | −0.971891 | + | 1.74798i | 2.42249 | − | 1.00343i | 0 | 3.40882 | − | 3.40882i | −2.82760 | + | 0.0685293i | 0 | 2.96004 | + | 2.23356i | ||||||
| 109.6 | 0.835415 | − | 1.14109i | 0 | −0.604162 | − | 1.90656i | 0.823699 | − | 0.341187i | 0 | 0.760681 | − | 0.760681i | −2.68028 | − | 0.903371i | 0 | 0.298806 | − | 1.22495i | ||||||
| 109.7 | 1.06920 | + | 0.925636i | 0 | 0.286395 | + | 1.97939i | −3.41317 | + | 1.41378i | 0 | −1.42999 | + | 1.42999i | −1.52598 | + | 2.38147i | 0 | −4.95802 | − | 1.64773i | ||||||
| 109.8 | 1.41364 | − | 0.0402136i | 0 | 1.99677 | − | 0.113695i | 1.51282 | − | 0.626632i | 0 | −1.32530 | + | 1.32530i | 2.81814 | − | 0.241022i | 0 | 2.11339 | − | 0.946670i | ||||||
| 181.1 | −1.39967 | − | 0.202304i | 0 | 1.91815 | + | 0.566318i | 1.53803 | − | 3.71314i | 0 | −1.56292 | − | 1.56292i | −2.57020 | − | 1.18071i | 0 | −2.90392 | + | 4.88602i | ||||||
| 181.2 | −1.14926 | + | 0.824131i | 0 | 0.641617 | − | 1.89429i | −0.549515 | + | 1.32665i | 0 | 0.197478 | + | 0.197478i | 0.823754 | + | 2.70581i | 0 | −0.461792 | − | 1.97754i | ||||||
| 181.3 | −0.582293 | − | 1.28877i | 0 | −1.32187 | + | 1.50089i | 0.445570 | − | 1.07570i | 0 | 2.57533 | + | 2.57533i | 2.70402 | + | 0.829636i | 0 | −1.64578 | + | 0.0521344i | ||||||
| 181.4 | −0.165832 | + | 1.40446i | 0 | −1.94500 | − | 0.465809i | 0.805403 | − | 1.94441i | 0 | −2.62411 | − | 2.62411i | 0.976752 | − | 2.65442i | 0 | 2.59728 | + | 1.45360i | ||||||
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 32.g | even | 8 | 1 | inner |
| 96.p | odd | 8 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 288.2.v.c | ✓ | 32 |
| 3.b | odd | 2 | 1 | inner | 288.2.v.c | ✓ | 32 |
| 4.b | odd | 2 | 1 | 1152.2.v.d | 32 | ||
| 12.b | even | 2 | 1 | 1152.2.v.d | 32 | ||
| 32.g | even | 8 | 1 | inner | 288.2.v.c | ✓ | 32 |
| 32.h | odd | 8 | 1 | 1152.2.v.d | 32 | ||
| 96.o | even | 8 | 1 | 1152.2.v.d | 32 | ||
| 96.p | odd | 8 | 1 | inner | 288.2.v.c | ✓ | 32 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 288.2.v.c | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
| 288.2.v.c | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
| 288.2.v.c | ✓ | 32 | 32.g | even | 8 | 1 | inner |
| 288.2.v.c | ✓ | 32 | 96.p | odd | 8 | 1 | inner |
| 1152.2.v.d | 32 | 4.b | odd | 2 | 1 | ||
| 1152.2.v.d | 32 | 12.b | even | 2 | 1 | ||
| 1152.2.v.d | 32 | 32.h | odd | 8 | 1 | ||
| 1152.2.v.d | 32 | 96.o | even | 8 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{32} - 672 T_{5}^{26} + 52736 T_{5}^{24} - 173184 T_{5}^{22} + 225792 T_{5}^{20} + \cdots + 1600000000 \)
acting on \(S_{2}^{\mathrm{new}}(288, [\chi])\).