Properties

Label 288.2.v.a
Level 288
Weight 2
Character orbit 288.v
Analytic conductor 2.300
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 288.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.29969157821\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \zeta_{8} + \zeta_{8}^{3} ) q^{2} -2 q^{4} + ( 1 + \zeta_{8} + 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{5} + ( 1 + \zeta_{8}^{2} ) q^{7} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{8} +O(q^{10})\) \( q + ( \zeta_{8} + \zeta_{8}^{3} ) q^{2} -2 q^{4} + ( 1 + \zeta_{8} + 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{5} + ( 1 + \zeta_{8}^{2} ) q^{7} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{8} + ( 1 - \zeta_{8} + 3 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{10} + ( 2 - 2 \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{11} + ( 1 - \zeta_{8}^{3} ) q^{13} + 2 \zeta_{8}^{3} q^{14} + 4 q^{16} + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{17} + ( -2 - 3 \zeta_{8} + 3 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{19} + ( -2 - 2 \zeta_{8} - 4 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{20} + ( 1 + \zeta_{8} - 3 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{22} + ( -3 + 3 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{23} + ( 1 + 5 \zeta_{8} + \zeta_{8}^{2} ) q^{25} + ( 1 + \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{26} + ( -2 - 2 \zeta_{8}^{2} ) q^{28} + ( 1 - 2 \zeta_{8} - 2 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{29} -4 q^{31} + ( 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{32} -4 q^{34} + ( -1 + 3 \zeta_{8} + 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{35} + ( 1 + \zeta_{8} ) q^{37} + ( 1 - 5 \zeta_{8} - 5 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{38} + ( -2 + 2 \zeta_{8} - 6 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{40} + ( 3 - 3 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{41} + ( 4 - 4 \zeta_{8} - 3 \zeta_{8}^{2} - 3 \zeta_{8}^{3} ) q^{43} + ( -4 + 4 \zeta_{8} - 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{44} + ( 4 - 6 \zeta_{8} + 4 \zeta_{8}^{2} ) q^{46} + ( -4 \zeta_{8} - 6 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{47} -5 \zeta_{8}^{2} q^{49} + ( -5 + 5 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{50} + ( -2 + 2 \zeta_{8}^{3} ) q^{52} + ( -1 + \zeta_{8} + 4 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{53} + ( -5 + 5 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{55} -4 \zeta_{8}^{3} q^{56} + ( 1 + 3 \zeta_{8} - 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{58} + ( 4 + 4 \zeta_{8} - \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{59} + ( 1 + \zeta_{8}^{3} ) q^{61} + ( -4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{62} -8 q^{64} + ( 2 + 3 \zeta_{8} - 3 \zeta_{8}^{3} ) q^{65} + ( -2 + 3 \zeta_{8} + 3 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{67} + ( -4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{68} + ( -2 - 4 \zeta_{8} + 4 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{70} + ( 3 - 4 \zeta_{8} + 3 \zeta_{8}^{2} ) q^{71} + ( 7 - 7 \zeta_{8}^{2} ) q^{73} + ( -1 + \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{74} + ( 4 + 6 \zeta_{8} - 6 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{76} + ( 1 - 3 \zeta_{8} + 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{77} -6 \zeta_{8}^{2} q^{79} + ( 4 + 4 \zeta_{8} + 8 \zeta_{8}^{2} - 8 \zeta_{8}^{3} ) q^{80} + ( 4 + 6 \zeta_{8} + 4 \zeta_{8}^{2} ) q^{82} + ( -4 + \zeta_{8} - \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{83} + ( 2 - 2 \zeta_{8} + 6 \zeta_{8}^{2} + 6 \zeta_{8}^{3} ) q^{85} + ( 7 + 7 \zeta_{8} - \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{86} + ( -2 - 2 \zeta_{8} + 6 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{88} + ( -3 + 8 \zeta_{8} - 3 \zeta_{8}^{2} ) q^{89} + ( 1 + \zeta_{8} + \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{91} + ( 6 - 6 \zeta_{8}^{2} + 8 \zeta_{8}^{3} ) q^{92} + ( 8 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{94} + ( -16 - 3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{95} + ( -10 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{97} + ( 5 \zeta_{8} - 5 \zeta_{8}^{3} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 8q^{4} + 4q^{5} + 4q^{7} + O(q^{10}) \) \( 4q - 8q^{4} + 4q^{5} + 4q^{7} + 4q^{10} + 8q^{11} + 4q^{13} + 16q^{16} - 8q^{19} - 8q^{20} + 4q^{22} - 12q^{23} + 4q^{25} + 4q^{26} - 8q^{28} + 4q^{29} - 16q^{31} - 16q^{34} - 4q^{35} + 4q^{37} + 4q^{38} - 8q^{40} + 12q^{41} + 16q^{43} - 16q^{44} + 16q^{46} - 20q^{50} - 8q^{52} - 4q^{53} - 20q^{55} + 4q^{58} + 16q^{59} + 4q^{61} - 32q^{64} + 8q^{65} - 8q^{67} - 8q^{70} + 12q^{71} + 28q^{73} - 4q^{74} + 16q^{76} + 4q^{77} + 16q^{80} + 16q^{82} - 16q^{83} + 8q^{85} + 28q^{86} - 8q^{88} - 12q^{89} + 4q^{91} + 24q^{92} + 32q^{94} - 64q^{95} - 40q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(\zeta_{8}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
1.41421i 0 −2.00000 3.12132 + 1.29289i 0 1.00000 + 1.00000i 2.82843i 0 −1.82843 + 4.41421i
109.1 1.41421i 0 −2.00000 3.12132 1.29289i 0 1.00000 1.00000i 2.82843i 0 −1.82843 4.41421i
181.1 1.41421i 0 −2.00000 −1.12132 + 2.70711i 0 1.00000 + 1.00000i 2.82843i 0 3.82843 + 1.58579i
253.1 1.41421i 0 −2.00000 −1.12132 2.70711i 0 1.00000 1.00000i 2.82843i 0 3.82843 1.58579i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
32.g even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 288.2.v.a 4
3.b odd 2 1 32.2.g.a 4
4.b odd 2 1 1152.2.v.a 4
12.b even 2 1 128.2.g.a 4
15.d odd 2 1 800.2.y.a 4
15.e even 4 1 800.2.ba.a 4
15.e even 4 1 800.2.ba.b 4
24.f even 2 1 256.2.g.a 4
24.h odd 2 1 256.2.g.b 4
32.g even 8 1 inner 288.2.v.a 4
32.h odd 8 1 1152.2.v.a 4
48.i odd 4 1 512.2.g.a 4
48.i odd 4 1 512.2.g.d 4
48.k even 4 1 512.2.g.b 4
48.k even 4 1 512.2.g.c 4
96.o even 8 1 128.2.g.a 4
96.o even 8 1 256.2.g.a 4
96.o even 8 1 512.2.g.b 4
96.o even 8 1 512.2.g.c 4
96.p odd 8 1 32.2.g.a 4
96.p odd 8 1 256.2.g.b 4
96.p odd 8 1 512.2.g.a 4
96.p odd 8 1 512.2.g.d 4
192.q odd 16 2 4096.2.a.e 4
192.s even 16 2 4096.2.a.f 4
480.br even 8 1 800.2.ba.b 4
480.bu odd 8 1 800.2.y.a 4
480.cb even 8 1 800.2.ba.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.2.g.a 4 3.b odd 2 1
32.2.g.a 4 96.p odd 8 1
128.2.g.a 4 12.b even 2 1
128.2.g.a 4 96.o even 8 1
256.2.g.a 4 24.f even 2 1
256.2.g.a 4 96.o even 8 1
256.2.g.b 4 24.h odd 2 1
256.2.g.b 4 96.p odd 8 1
288.2.v.a 4 1.a even 1 1 trivial
288.2.v.a 4 32.g even 8 1 inner
512.2.g.a 4 48.i odd 4 1
512.2.g.a 4 96.p odd 8 1
512.2.g.b 4 48.k even 4 1
512.2.g.b 4 96.o even 8 1
512.2.g.c 4 48.k even 4 1
512.2.g.c 4 96.o even 8 1
512.2.g.d 4 48.i odd 4 1
512.2.g.d 4 96.p odd 8 1
800.2.y.a 4 15.d odd 2 1
800.2.y.a 4 480.bu odd 8 1
800.2.ba.a 4 15.e even 4 1
800.2.ba.a 4 480.cb even 8 1
800.2.ba.b 4 15.e even 4 1
800.2.ba.b 4 480.br even 8 1
1152.2.v.a 4 4.b odd 2 1
1152.2.v.a 4 32.h odd 8 1
4096.2.a.e 4 192.q odd 16 2
4096.2.a.f 4 192.s even 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 4 T_{5}^{3} + 6 T_{5}^{2} - 28 T_{5} + 98 \) acting on \(S_{2}^{\mathrm{new}}(288, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + 2 T^{2} )^{2} \)
$3$ \( \)
$5$ \( ( 1 - 2 T + 5 T^{2} )^{2}( 1 - 8 T^{2} + 25 T^{4} ) \)
$7$ \( ( 1 - 2 T + 2 T^{2} - 14 T^{3} + 49 T^{4} )^{2} \)
$11$ \( ( 1 - 6 T + 11 T^{2} )^{2}( 1 + 4 T + 8 T^{2} + 44 T^{3} + 121 T^{4} ) \)
$13$ \( 1 - 4 T + 6 T^{2} - 4 T^{3} + 2 T^{4} - 52 T^{5} + 1014 T^{6} - 8788 T^{7} + 28561 T^{8} \)
$17$ \( ( 1 - 26 T^{2} + 289 T^{4} )^{2} \)
$19$ \( 1 + 8 T + 18 T^{2} - 160 T^{3} - 1246 T^{4} - 3040 T^{5} + 6498 T^{6} + 54872 T^{7} + 130321 T^{8} \)
$23$ \( 1 + 12 T + 72 T^{2} + 300 T^{3} + 1246 T^{4} + 6900 T^{5} + 38088 T^{6} + 146004 T^{7} + 279841 T^{8} \)
$29$ \( 1 - 4 T + 6 T^{2} + 204 T^{3} - 830 T^{4} + 5916 T^{5} + 5046 T^{6} - 97556 T^{7} + 707281 T^{8} \)
$31$ \( ( 1 + 4 T + 31 T^{2} )^{4} \)
$37$ \( 1 - 4 T + 6 T^{2} - 4 T^{3} + 2 T^{4} - 148 T^{5} + 8214 T^{6} - 202612 T^{7} + 1874161 T^{8} \)
$41$ \( 1 - 12 T + 72 T^{2} - 516 T^{3} + 3694 T^{4} - 21156 T^{5} + 121032 T^{6} - 827052 T^{7} + 2825761 T^{8} \)
$43$ \( 1 - 16 T + 162 T^{2} - 1384 T^{3} + 10178 T^{4} - 59512 T^{5} + 299538 T^{6} - 1272112 T^{7} + 3418801 T^{8} \)
$47$ \( 1 - 52 T^{2} + 486 T^{4} - 114868 T^{6} + 4879681 T^{8} \)
$53$ \( 1 + 4 T + 54 T^{2} + 708 T^{3} + 3490 T^{4} + 37524 T^{5} + 151686 T^{6} + 595508 T^{7} + 7890481 T^{8} \)
$59$ \( 1 - 16 T + 114 T^{2} - 696 T^{3} + 4834 T^{4} - 41064 T^{5} + 396834 T^{6} - 3286064 T^{7} + 12117361 T^{8} \)
$61$ \( 1 - 4 T + 6 T^{2} - 4 T^{3} + 2 T^{4} - 244 T^{5} + 22326 T^{6} - 907924 T^{7} + 13845841 T^{8} \)
$67$ \( 1 + 8 T + 18 T^{2} - 736 T^{3} - 5854 T^{4} - 49312 T^{5} + 80802 T^{6} + 2406104 T^{7} + 20151121 T^{8} \)
$71$ \( 1 - 12 T + 72 T^{2} - 876 T^{3} + 10654 T^{4} - 62196 T^{5} + 362952 T^{6} - 4294932 T^{7} + 25411681 T^{8} \)
$73$ \( ( 1 - 14 T + 98 T^{2} - 1022 T^{3} + 5329 T^{4} )^{2} \)
$79$ \( ( 1 - 122 T^{2} + 6241 T^{4} )^{2} \)
$83$ \( 1 + 16 T + 114 T^{2} + 792 T^{3} + 6370 T^{4} + 65736 T^{5} + 785346 T^{6} + 9148592 T^{7} + 47458321 T^{8} \)
$89$ \( 1 + 12 T + 72 T^{2} + 516 T^{3} + 1582 T^{4} + 45924 T^{5} + 570312 T^{6} + 8459628 T^{7} + 62742241 T^{8} \)
$97$ \( ( 1 + 20 T + 222 T^{2} + 1940 T^{3} + 9409 T^{4} )^{2} \)
show more
show less