Properties

Label 288.2.r.a
Level $288$
Weight $2$
Character orbit 288.r
Analytic conductor $2.300$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.29969157821\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{3} + 2 \zeta_{12} q^{5} + 4 \zeta_{12}^{2} q^{7} + ( -3 + 3 \zeta_{12}^{2} ) q^{9} +O(q^{10})\) \( q + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{3} + 2 \zeta_{12} q^{5} + 4 \zeta_{12}^{2} q^{7} + ( -3 + 3 \zeta_{12}^{2} ) q^{9} + ( 3 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{11} -2 \zeta_{12} q^{13} + ( 2 - 4 \zeta_{12}^{2} ) q^{15} + 5 q^{17} -\zeta_{12}^{3} q^{19} + ( 4 \zeta_{12} - 8 \zeta_{12}^{3} ) q^{21} + ( 2 - 2 \zeta_{12}^{2} ) q^{23} -\zeta_{12}^{2} q^{25} + ( 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{27} + ( -4 + 4 \zeta_{12}^{2} ) q^{31} + ( -3 - 3 \zeta_{12}^{2} ) q^{33} + 8 \zeta_{12}^{3} q^{35} + 2 \zeta_{12}^{3} q^{37} + ( -2 + 4 \zeta_{12}^{2} ) q^{39} + ( 5 - 5 \zeta_{12}^{2} ) q^{41} + ( -11 \zeta_{12} + 11 \zeta_{12}^{3} ) q^{43} + ( -6 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{45} -6 \zeta_{12}^{2} q^{47} + ( -9 + 9 \zeta_{12}^{2} ) q^{49} + ( -5 \zeta_{12} - 5 \zeta_{12}^{3} ) q^{51} + 6 q^{55} + ( -2 + \zeta_{12}^{2} ) q^{57} -\zeta_{12} q^{59} + ( -12 \zeta_{12} + 12 \zeta_{12}^{3} ) q^{61} -12 q^{63} -4 \zeta_{12}^{2} q^{65} + 3 \zeta_{12} q^{67} + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{69} + 6 q^{71} + 9 q^{73} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{75} + 12 \zeta_{12} q^{77} -14 \zeta_{12}^{2} q^{79} -9 \zeta_{12}^{2} q^{81} + ( 4 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{83} + 10 \zeta_{12} q^{85} -14 q^{89} -8 \zeta_{12}^{3} q^{91} + ( 8 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{93} + ( 2 - 2 \zeta_{12}^{2} ) q^{95} -\zeta_{12}^{2} q^{97} + 9 \zeta_{12}^{3} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 8q^{7} - 6q^{9} + O(q^{10}) \) \( 4q + 8q^{7} - 6q^{9} + 20q^{17} + 4q^{23} - 2q^{25} - 8q^{31} - 18q^{33} + 10q^{41} - 12q^{47} - 18q^{49} + 24q^{55} - 6q^{57} - 48q^{63} - 8q^{65} + 24q^{71} + 36q^{73} - 28q^{79} - 18q^{81} - 56q^{89} + 4q^{95} - 2q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(-1\) \(-1 + \zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 −0.866025 1.50000i 0 1.73205 + 1.00000i 0 2.00000 + 3.46410i 0 −1.50000 + 2.59808i 0
49.2 0 0.866025 + 1.50000i 0 −1.73205 1.00000i 0 2.00000 + 3.46410i 0 −1.50000 + 2.59808i 0
241.1 0 −0.866025 + 1.50000i 0 1.73205 1.00000i 0 2.00000 3.46410i 0 −1.50000 2.59808i 0
241.2 0 0.866025 1.50000i 0 −1.73205 + 1.00000i 0 2.00000 3.46410i 0 −1.50000 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner
9.c even 3 1 inner
72.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 288.2.r.a 4
3.b odd 2 1 864.2.r.a 4
4.b odd 2 1 72.2.n.a 4
8.b even 2 1 inner 288.2.r.a 4
8.d odd 2 1 72.2.n.a 4
9.c even 3 1 inner 288.2.r.a 4
9.c even 3 1 2592.2.d.b 2
9.d odd 6 1 864.2.r.a 4
9.d odd 6 1 2592.2.d.a 2
12.b even 2 1 216.2.n.a 4
24.f even 2 1 216.2.n.a 4
24.h odd 2 1 864.2.r.a 4
36.f odd 6 1 72.2.n.a 4
36.f odd 6 1 648.2.d.d 2
36.h even 6 1 216.2.n.a 4
36.h even 6 1 648.2.d.a 2
72.j odd 6 1 864.2.r.a 4
72.j odd 6 1 2592.2.d.a 2
72.l even 6 1 216.2.n.a 4
72.l even 6 1 648.2.d.a 2
72.n even 6 1 inner 288.2.r.a 4
72.n even 6 1 2592.2.d.b 2
72.p odd 6 1 72.2.n.a 4
72.p odd 6 1 648.2.d.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.2.n.a 4 4.b odd 2 1
72.2.n.a 4 8.d odd 2 1
72.2.n.a 4 36.f odd 6 1
72.2.n.a 4 72.p odd 6 1
216.2.n.a 4 12.b even 2 1
216.2.n.a 4 24.f even 2 1
216.2.n.a 4 36.h even 6 1
216.2.n.a 4 72.l even 6 1
288.2.r.a 4 1.a even 1 1 trivial
288.2.r.a 4 8.b even 2 1 inner
288.2.r.a 4 9.c even 3 1 inner
288.2.r.a 4 72.n even 6 1 inner
648.2.d.a 2 36.h even 6 1
648.2.d.a 2 72.l even 6 1
648.2.d.d 2 36.f odd 6 1
648.2.d.d 2 72.p odd 6 1
864.2.r.a 4 3.b odd 2 1
864.2.r.a 4 9.d odd 6 1
864.2.r.a 4 24.h odd 2 1
864.2.r.a 4 72.j odd 6 1
2592.2.d.a 2 9.d odd 6 1
2592.2.d.a 2 72.j odd 6 1
2592.2.d.b 2 9.c even 3 1
2592.2.d.b 2 72.n even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 4 T_{5}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(288, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( 9 + 3 T^{2} + T^{4} \)
$5$ \( 16 - 4 T^{2} + T^{4} \)
$7$ \( ( 16 - 4 T + T^{2} )^{2} \)
$11$ \( 81 - 9 T^{2} + T^{4} \)
$13$ \( 16 - 4 T^{2} + T^{4} \)
$17$ \( ( -5 + T )^{4} \)
$19$ \( ( 1 + T^{2} )^{2} \)
$23$ \( ( 4 - 2 T + T^{2} )^{2} \)
$29$ \( T^{4} \)
$31$ \( ( 16 + 4 T + T^{2} )^{2} \)
$37$ \( ( 4 + T^{2} )^{2} \)
$41$ \( ( 25 - 5 T + T^{2} )^{2} \)
$43$ \( 14641 - 121 T^{2} + T^{4} \)
$47$ \( ( 36 + 6 T + T^{2} )^{2} \)
$53$ \( T^{4} \)
$59$ \( 1 - T^{2} + T^{4} \)
$61$ \( 20736 - 144 T^{2} + T^{4} \)
$67$ \( 81 - 9 T^{2} + T^{4} \)
$71$ \( ( -6 + T )^{4} \)
$73$ \( ( -9 + T )^{4} \)
$79$ \( ( 196 + 14 T + T^{2} )^{2} \)
$83$ \( 256 - 16 T^{2} + T^{4} \)
$89$ \( ( 14 + T )^{4} \)
$97$ \( ( 1 + T + T^{2} )^{2} \)
show more
show less