Defining parameters
Level: | \( N \) | \(=\) | \( 288 = 2^{5} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 288.p (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(288, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 28 | 84 |
Cusp forms | 80 | 20 | 60 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(288, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
288.2.p.a | $4$ | $2.300$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+(\beta _{1}-\beta _{2}-\beta _{3})q^{3}+(1-2\beta _{1}-\beta _{2}+\cdots)q^{9}+\cdots\) |
288.2.p.b | $16$ | $2.300$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(6\) | \(0\) | \(0\) | \(q+(-\beta _{1}+\beta _{3}-\beta _{8})q^{3}-\beta _{9}q^{5}-\beta _{4}q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(288, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(288, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)