Defining parameters
Level: | \( N \) | \(=\) | \( 288 = 2^{5} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 288.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(288, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 24 | 88 |
Cusp forms | 80 | 24 | 56 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(288, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
288.2.i.a | $2$ | $2.300$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-3\) | \(-4\) | \(-2\) | \(q+(-1-\zeta_{6})q^{3}-4\zeta_{6}q^{5}+(-2+2\zeta_{6})q^{7}+\cdots\) |
288.2.i.b | $2$ | $2.300$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(-4\) | \(2\) | \(q+(1+\zeta_{6})q^{3}-4\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+\cdots\) |
288.2.i.c | $4$ | $2.300$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(-4\) | \(2\) | \(2\) | \(q+(-1+\beta _{3})q^{3}+\beta _{2}q^{5}+(1-\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\) |
288.2.i.d | $4$ | $2.300$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q-\beta_{3} q^{3}+(-\beta_1+1)q^{5}+\beta_{2} q^{7}+\cdots\) |
288.2.i.e | $4$ | $2.300$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(4\) | \(2\) | \(-2\) | \(q+(1-\beta _{3})q^{3}+(1-\beta _{2})q^{5}+(-\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\) |
288.2.i.f | $8$ | $2.300$ | 8.0.170772624.1 | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+(-\beta _{1}+\beta _{5})q^{3}+(1-\beta _{4}+\beta _{7})q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(288, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(288, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)