Properties

Label 288.2.c
Level $288$
Weight $2$
Character orbit 288.c
Rep. character $\chi_{288}(287,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(288, [\chi])\).

Total New Old
Modular forms 64 4 60
Cusp forms 32 4 28
Eisenstein series 32 0 32

Trace form

\( 4q + O(q^{10}) \) \( 4q + 16q^{13} + 12q^{25} - 24q^{37} - 36q^{49} - 8q^{61} - 24q^{85} - 32q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(288, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
288.2.c.a \(4\) \(2.300\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{8}^{2}q^{5}+\zeta_{8}q^{7}+\zeta_{8}^{3}q^{11}+4q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(288, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(288, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)