Properties

Label 288.2.bc
Level $288$
Weight $2$
Character orbit 288.bc
Rep. character $\chi_{288}(13,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $368$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.bc (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 288 \)
Character field: \(\Q(\zeta_{24})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(288, [\chi])\).

Total New Old
Modular forms 400 400 0
Cusp forms 368 368 0
Eisenstein series 32 32 0

Trace form

\( 368 q - 4 q^{2} - 8 q^{3} - 4 q^{4} - 4 q^{5} - 8 q^{6} - 4 q^{7} - 16 q^{8} - 8 q^{9} - 16 q^{10} - 4 q^{11} - 8 q^{12} - 4 q^{13} - 4 q^{14} - 4 q^{16} - 8 q^{18} - 16 q^{19} - 4 q^{20} - 8 q^{21} - 4 q^{22}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(288, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
288.2.bc.a 288.bc 288.ac $368$ $2.300$ None 288.2.bc.a \(-4\) \(-8\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{24}]$