Properties

Label 287.2.u.a
Level 287
Weight 2
Character orbit 287.u
Analytic conductor 2.292
Analytic rank 0
Dimension 160
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 287 = 7 \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 287.u (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(2.29170653801\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(20\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 160q - 4q^{3} + 36q^{4} - 28q^{6} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 160q - 4q^{3} + 36q^{4} - 28q^{6} - 48q^{10} + 8q^{11} - 16q^{12} - 16q^{13} - 32q^{15} - 28q^{16} - 20q^{17} + 12q^{18} - 40q^{19} - 4q^{22} - 36q^{23} - 108q^{24} + 40q^{25} + 20q^{26} + 20q^{27} + 12q^{29} - 4q^{30} + 20q^{31} - 32q^{34} - 4q^{35} + 140q^{36} - 44q^{38} + 80q^{39} - 64q^{40} + 4q^{41} - 72q^{42} - 8q^{44} + 8q^{45} + 40q^{46} - 56q^{47} + 120q^{48} + 24q^{51} + 16q^{52} + 12q^{53} - 52q^{54} - 72q^{55} + 48q^{57} + 36q^{58} - 48q^{59} - 52q^{60} + 8q^{63} - 96q^{64} - 96q^{65} + 24q^{66} + 20q^{67} - 80q^{68} - 68q^{69} + 8q^{70} + 60q^{71} + 100q^{72} - 40q^{74} - 120q^{75} + 4q^{76} - 12q^{78} + 12q^{79} + 200q^{80} - 56q^{81} - 68q^{82} - 40q^{83} + 132q^{85} + 80q^{86} - 16q^{88} + 8q^{89} + 140q^{92} + 64q^{93} + 128q^{94} - 68q^{96} + 4q^{98} + 96q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
8.1 −1.40231 + 1.93011i −1.46692 1.46692i −1.14082 3.51109i −2.49680 + 0.811260i 4.88839 0.774244i −0.987688 0.156434i 3.83861 + 1.24724i 1.30371i 1.93546 5.95673i
8.2 −1.35859 + 1.86993i −1.46234 1.46234i −1.03286 3.17882i 0.803450 0.261057i 4.72118 0.747761i 0.987688 + 0.156434i 2.95092 + 0.958814i 1.27685i −0.603397 + 1.85706i
8.3 −1.21144 + 1.66740i −0.0854640 0.0854640i −0.694607 2.13778i 1.91874 0.623438i 0.246037 0.0389684i 0.987688 + 0.156434i 0.485715 + 0.157818i 2.98539i −1.28492 + 3.95457i
8.4 −1.17054 + 1.61111i 1.85139 + 1.85139i −0.607480 1.86963i 3.26052 1.05941i −5.14992 + 0.815666i −0.987688 0.156434i −0.0646837 0.0210170i 3.85527i −2.10975 + 6.49315i
8.5 −0.950420 + 1.30814i 1.68439 + 1.68439i −0.189901 0.584454i −2.48593 + 0.807729i −3.80430 + 0.602541i 0.987688 + 0.156434i −2.13059 0.692271i 2.67433i 1.30606 4.01963i
8.6 −0.835728 + 1.15028i −2.24559 2.24559i −0.00667062 0.0205301i 3.16801 1.02935i 4.45975 0.706356i −0.987688 0.156434i −2.67528 0.869252i 7.08532i −1.46355 + 4.50436i
8.7 −0.657012 + 0.904299i −0.174416 0.174416i 0.231942 + 0.713843i −2.00897 + 0.652754i 0.272317 0.0431308i −0.987688 0.156434i −2.92405 0.950082i 2.93916i 0.729633 2.24558i
8.8 −0.540570 + 0.744030i −1.20050 1.20050i 0.356668 + 1.09771i −2.96817 + 0.964417i 1.54217 0.244255i 0.987688 + 0.156434i −2.75886 0.896407i 0.117584i 0.886947 2.72974i
8.9 −0.158161 + 0.217690i 1.91716 + 1.91716i 0.595660 + 1.83325i −0.605064 + 0.196597i −0.720570 + 0.114127i −0.987688 0.156434i −1.00511 0.326581i 4.35104i 0.0529004 0.162811i
8.10 −0.00319615 + 0.00439912i 1.15829 + 1.15829i 0.618025 + 1.90208i 2.71750 0.882970i −0.00879749 + 0.00139339i 0.987688 + 0.156434i −0.0206857 0.00672121i 0.316748i −0.00480125 + 0.0147767i
8.11 0.200055 0.275352i 0.707260 + 0.707260i 0.582237 + 1.79194i −1.14034 + 0.370520i 0.336236 0.0532545i 0.987688 + 0.156434i 1.25728 + 0.408516i 1.99957i −0.126108 + 0.388120i
8.12 0.335454 0.461712i −2.30133 2.30133i 0.517385 + 1.59235i −2.26795 + 0.736900i −1.83454 + 0.290563i −0.987688 0.156434i 1.99432 + 0.647992i 7.59224i −0.420555 + 1.29433i
8.13 0.531572 0.731646i −1.44322 1.44322i 0.365297 + 1.12427i 2.38170 0.773861i −1.82310 + 0.288751i 0.987688 + 0.156434i 2.73695 + 0.889289i 1.16578i 0.699852 2.15392i
8.14 0.754715 1.03878i −0.345510 0.345510i 0.108573 + 0.334152i −0.00591493 + 0.00192188i −0.619669 + 0.0981459i −0.987688 0.156434i 2.87136 + 0.932962i 2.76125i −0.00246769 + 0.00759477i
8.15 0.880705 1.21219i 1.40144 + 1.40144i −0.0757208 0.233045i 0.589683 0.191600i 2.93306 0.464551i −0.987688 0.156434i 2.50084 + 0.812572i 0.928067i 0.287082 0.883548i
8.16 1.09913 1.51282i 2.20211 + 2.20211i −0.462515 1.42347i −3.74866 + 1.21801i 5.75183 0.911000i 0.987688 + 0.156434i 0.895034 + 0.290814i 6.69862i −2.27763 + 7.00981i
8.17 1.28791 1.77266i −1.22984 1.22984i −0.865568 2.66394i 3.10142 1.00771i −3.76400 + 0.596159i −0.987688 0.156434i −1.66927 0.542379i 0.0249934i 2.20802 6.79560i
8.18 1.40653 1.93593i −2.19462 2.19462i −1.15144 3.54378i −0.741595 + 0.240959i −7.33543 + 1.16182i 0.987688 + 0.156434i −3.92839 1.27641i 6.63271i −0.576599 + 1.77459i
8.19 1.41470 1.94717i 0.651505 + 0.651505i −1.17206 3.60722i 0.379466 0.123296i 2.19028 0.346906i 0.987688 + 0.156434i −4.10391 1.33344i 2.15108i 0.296753 0.913312i
8.20 1.55275 2.13717i −0.217409 0.217409i −1.53845 4.73486i −2.92878 + 0.951619i −0.802220 + 0.127059i −0.987688 0.156434i −7.48325 2.43145i 2.90547i −2.51388 + 7.73693i
See next 80 embeddings (of 160 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 267.20
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Hecke kernels

There are no other newforms in \(S_{2}^{\mathrm{new}}(287, [\chi])\).