Properties

Label 287.2.e.c
Level 287
Weight 2
Character orbit 287.e
Analytic conductor 2.292
Analytic rank 0
Dimension 10
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 287 = 7 \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 287.e (of order \(3\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(2.29170653801\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{7} q^{2} + \beta_{8} q^{3} + ( \beta_{1} - \beta_{2} - \beta_{6} ) q^{4} + ( -\beta_{5} + \beta_{8} ) q^{5} + ( \beta_{2} - \beta_{4} ) q^{6} + ( 1 - \beta_{3} + \beta_{4} - \beta_{7} + \beta_{9} ) q^{7} + ( -\beta_{2} - \beta_{4} - \beta_{5} ) q^{8} + ( -1 + 2 \beta_{1} + \beta_{6} + \beta_{7} ) q^{9} +O(q^{10})\) \( q -\beta_{7} q^{2} + \beta_{8} q^{3} + ( \beta_{1} - \beta_{2} - \beta_{6} ) q^{4} + ( -\beta_{5} + \beta_{8} ) q^{5} + ( \beta_{2} - \beta_{4} ) q^{6} + ( 1 - \beta_{3} + \beta_{4} - \beta_{7} + \beta_{9} ) q^{7} + ( -\beta_{2} - \beta_{4} - \beta_{5} ) q^{8} + ( -1 + 2 \beta_{1} + \beta_{6} + \beta_{7} ) q^{9} + ( -\beta_{1} + \beta_{2} + \beta_{9} ) q^{10} + ( -\beta_{3} + 2 \beta_{6} - \beta_{7} - \beta_{8} ) q^{11} + ( 1 - \beta_{6} - \beta_{7} ) q^{12} + \beta_{5} q^{13} + ( -3 + \beta_{1} - 2 \beta_{2} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} ) q^{14} + ( -4 + 2 \beta_{2} - \beta_{3} ) q^{15} + ( 3 - \beta_{1} - \beta_{4} - 3 \beta_{6} + \beta_{7} - \beta_{9} ) q^{16} + ( -2 \beta_{1} + 2 \beta_{2} - \beta_{3} + \beta_{6} - \beta_{7} - \beta_{8} + \beta_{9} ) q^{17} + ( \beta_{1} - \beta_{2} - \beta_{3} + 3 \beta_{6} - \beta_{7} - 2 \beta_{8} + 2 \beta_{9} ) q^{18} + ( -2 - \beta_{1} + 2 \beta_{5} + 2 \beta_{6} - 2 \beta_{8} ) q^{19} + ( 1 + \beta_{3} ) q^{20} + ( -2 + \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} + \beta_{8} - \beta_{9} ) q^{21} + ( -3 - 2 \beta_{2} + 2 \beta_{3} + \beta_{4} ) q^{22} + ( -2 \beta_{1} - \beta_{4} + \beta_{5} - \beta_{8} - \beta_{9} ) q^{23} + ( -\beta_{1} + \beta_{2} - \beta_{3} - 3 \beta_{6} - \beta_{7} + 2 \beta_{9} ) q^{24} + ( -2 \beta_{1} + 2 \beta_{2} - \beta_{3} + \beta_{6} - \beta_{7} ) q^{25} + ( \beta_{1} - \beta_{4} - \beta_{9} ) q^{26} + ( 2 - \beta_{2} + 2 \beta_{3} + \beta_{4} ) q^{27} + ( 1 - 2 \beta_{2} - 2 \beta_{4} - \beta_{5} - \beta_{6} + 2 \beta_{7} + \beta_{8} - \beta_{9} ) q^{28} + ( -2 + \beta_{3} + \beta_{4} - \beta_{5} ) q^{29} + ( -3 + \beta_{1} + 2 \beta_{4} + 2 \beta_{5} + 3 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} + 2 \beta_{9} ) q^{30} + ( 3 \beta_{3} + 3 \beta_{7} - 2 \beta_{9} ) q^{31} + ( -\beta_{1} + \beta_{2} - 2 \beta_{3} + 2 \beta_{6} - 2 \beta_{7} - 2 \beta_{8} ) q^{32} + ( 4 - \beta_{1} - \beta_{4} - 2 \beta_{5} - 4 \beta_{6} - \beta_{7} + 2 \beta_{8} - \beta_{9} ) q^{33} + ( -2 - \beta_{2} + 3 \beta_{3} + 2 \beta_{4} + 3 \beta_{5} ) q^{34} + ( -\beta_{1} + 2 \beta_{2} - \beta_{3} - \beta_{4} - \beta_{5} - 2 \beta_{6} - \beta_{7} + 2 \beta_{8} - 2 \beta_{9} ) q^{35} + ( -3 - 2 \beta_{2} - \beta_{4} + \beta_{5} ) q^{36} + ( 5 + \beta_{1} - \beta_{4} - 3 \beta_{5} - 5 \beta_{6} + \beta_{7} + 3 \beta_{8} - \beta_{9} ) q^{37} + ( \beta_{1} - \beta_{2} + 3 \beta_{3} + 3 \beta_{7} + \beta_{8} - 3 \beta_{9} ) q^{38} + ( 2 \beta_{1} - 2 \beta_{2} + \beta_{3} + 4 \beta_{6} + \beta_{7} ) q^{39} + ( 3 - \beta_{1} + 2 \beta_{4} - 3 \beta_{6} - \beta_{7} + 2 \beta_{9} ) q^{40} - q^{41} + ( -5 + 3 \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} + 4 \beta_{6} - \beta_{8} + 2 \beta_{9} ) q^{42} + ( -1 + 3 \beta_{2} - 3 \beta_{3} - 3 \beta_{4} - 3 \beta_{5} ) q^{43} + ( 1 + \beta_{1} - \beta_{4} - \beta_{5} - \beta_{6} + 3 \beta_{7} + \beta_{8} - \beta_{9} ) q^{44} + ( \beta_{1} - \beta_{2} + 2 \beta_{3} + 2 \beta_{6} + 2 \beta_{7} - 3 \beta_{8} - \beta_{9} ) q^{45} + ( -2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - \beta_{6} + 2 \beta_{7} + \beta_{8} - 4 \beta_{9} ) q^{46} + ( -2 - 3 \beta_{1} + \beta_{4} + 3 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} - 3 \beta_{8} + \beta_{9} ) q^{47} + ( 1 - 2 \beta_{2} - \beta_{4} + 3 \beta_{5} ) q^{48} + ( -3 \beta_{1} - 3 \beta_{3} + 2 \beta_{5} - \beta_{6} - 3 \beta_{7} - \beta_{8} ) q^{49} + ( -3 + \beta_{2} + 3 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} ) q^{50} + ( \beta_{4} + 2 \beta_{5} + 2 \beta_{7} - 2 \beta_{8} + \beta_{9} ) q^{51} + ( -\beta_{3} - \beta_{6} - \beta_{7} ) q^{52} + ( -2 \beta_{1} + 2 \beta_{2} + \beta_{6} + \beta_{8} - 4 \beta_{9} ) q^{53} + ( 5 + 2 \beta_{1} - 2 \beta_{5} - 5 \beta_{6} - \beta_{7} + 2 \beta_{8} ) q^{54} + ( 4 - \beta_{2} + \beta_{3} - \beta_{4} - 2 \beta_{5} ) q^{55} + ( -1 - 3 \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{4} - 3 \beta_{5} + \beta_{7} + 2 \beta_{8} - \beta_{9} ) q^{56} + ( 7 - 4 \beta_{2} + \beta_{3} - \beta_{5} ) q^{57} + ( 2 + \beta_{1} + 2 \beta_{4} - \beta_{5} - 2 \beta_{6} + 2 \beta_{7} + \beta_{8} + 2 \beta_{9} ) q^{58} + ( 5 \beta_{1} - 5 \beta_{2} + 2 \beta_{3} + 4 \beta_{6} + 2 \beta_{7} + \beta_{9} ) q^{59} + ( -\beta_{1} + \beta_{2} + \beta_{8} + \beta_{9} ) q^{60} + ( 7 + 2 \beta_{1} - \beta_{4} - 5 \beta_{5} - 7 \beta_{6} + 2 \beta_{7} + 5 \beta_{8} - \beta_{9} ) q^{61} + ( 7 + 5 \beta_{2} + 2 \beta_{4} - 2 \beta_{5} ) q^{62} + ( 2 + 3 \beta_{1} - 2 \beta_{2} - \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} + \beta_{7} - \beta_{8} - 2 \beta_{9} ) q^{63} + ( -5 \beta_{2} + \beta_{3} + \beta_{4} + \beta_{5} ) q^{64} + ( -4 + 2 \beta_{1} + 4 \beta_{6} + \beta_{7} ) q^{65} + ( -3 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} - 4 \beta_{6} - 3 \beta_{7} ) q^{66} + ( \beta_{1} - \beta_{2} - 2 \beta_{3} + 2 \beta_{6} - 2 \beta_{7} + 3 \beta_{8} + 2 \beta_{9} ) q^{67} + ( 5 + 3 \beta_{1} - \beta_{5} - 5 \beta_{6} + \beta_{7} + \beta_{8} ) q^{68} + ( 4 - 3 \beta_{2} - 2 \beta_{4} + \beta_{5} ) q^{69} + ( -4 - \beta_{1} + 4 \beta_{2} - \beta_{3} + 2 \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} - 2 \beta_{8} + \beta_{9} ) q^{70} + ( 2 \beta_{2} - 3 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} ) q^{71} + ( -5 + 3 \beta_{5} + 5 \beta_{6} + 3 \beta_{7} - 3 \beta_{8} ) q^{72} + ( 4 \beta_{1} - 4 \beta_{2} - \beta_{6} - 2 \beta_{8} ) q^{73} + ( -4 \beta_{1} + 4 \beta_{2} - 6 \beta_{3} + 2 \beta_{6} - 6 \beta_{7} - 2 \beta_{8} + 3 \beta_{9} ) q^{74} + ( -2 + \beta_{1} - \beta_{4} + \beta_{5} + 2 \beta_{6} + 2 \beta_{7} - \beta_{8} - \beta_{9} ) q^{75} + ( 2 + 4 \beta_{2} - \beta_{3} + \beta_{4} ) q^{76} + ( -2 \beta_{1} - 2 \beta_{2} + 5 \beta_{6} - 3 \beta_{7} - \beta_{8} + \beta_{9} ) q^{77} + ( 3 - \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{78} + ( 8 + \beta_{1} + 3 \beta_{4} - \beta_{5} - 8 \beta_{6} - \beta_{7} + \beta_{8} + 3 \beta_{9} ) q^{79} + ( 2 \beta_{1} - 2 \beta_{2} + \beta_{6} + 3 \beta_{8} + \beta_{9} ) q^{80} + ( 3 \beta_{1} - 3 \beta_{2} + \beta_{3} + \beta_{7} + 4 \beta_{8} ) q^{81} + \beta_{7} q^{82} + ( 1 + \beta_{2} - 2 \beta_{3} - 3 \beta_{4} - 2 \beta_{5} ) q^{83} + ( -2 + \beta_{1} - 2 \beta_{2} - \beta_{3} - \beta_{7} + \beta_{8} + 2 \beta_{9} ) q^{84} + ( -2 \beta_{3} + \beta_{4} + 2 \beta_{5} ) q^{85} + ( -6 - 6 \beta_{1} + 3 \beta_{4} + 6 \beta_{5} + 6 \beta_{6} - 2 \beta_{7} - 6 \beta_{8} + 3 \beta_{9} ) q^{86} + ( -4 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - 6 \beta_{6} - 2 \beta_{7} - \beta_{8} - \beta_{9} ) q^{87} + ( 2 \beta_{3} + 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - \beta_{9} ) q^{88} + ( -3 + \beta_{1} + 3 \beta_{4} + 4 \beta_{5} + 3 \beta_{6} + 4 \beta_{7} - 4 \beta_{8} + 3 \beta_{9} ) q^{89} + ( 5 - \beta_{2} + \beta_{3} + 3 \beta_{4} - 2 \beta_{5} ) q^{90} + ( -2 + 2 \beta_{1} - \beta_{2} + 2 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{91} + ( 2 + 5 \beta_{2} + \beta_{3} + 3 \beta_{4} ) q^{92} + ( 4 - 5 \beta_{1} - \beta_{4} - 2 \beta_{5} - 4 \beta_{6} - 2 \beta_{7} + 2 \beta_{8} - \beta_{9} ) q^{93} + ( 3 \beta_{1} - 3 \beta_{2} + 5 \beta_{3} - 5 \beta_{6} + 5 \beta_{7} + 4 \beta_{8} - 5 \beta_{9} ) q^{94} + ( 4 \beta_{1} - 4 \beta_{2} + \beta_{3} + 7 \beta_{6} + \beta_{7} - \beta_{8} ) q^{95} + ( 7 - 2 \beta_{1} - 2 \beta_{4} - \beta_{5} - 7 \beta_{6} - \beta_{7} + \beta_{8} - 2 \beta_{9} ) q^{96} + ( -9 + 2 \beta_{2} + 5 \beta_{3} + 5 \beta_{4} + 3 \beta_{5} ) q^{97} + ( -9 - \beta_{1} - \beta_{2} + 2 \beta_{3} - \beta_{4} + 3 \beta_{7} + 3 \beta_{8} - 5 \beta_{9} ) q^{98} + ( -1 + 4 \beta_{2} - 5 \beta_{3} - 3 \beta_{4} + \beta_{5} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 2q^{2} + 2q^{3} - 6q^{4} - 2q^{5} + 2q^{6} + 8q^{7} - 6q^{8} - 5q^{9} + O(q^{10}) \) \( 10q + 2q^{2} + 2q^{3} - 6q^{4} - 2q^{5} + 2q^{6} + 8q^{7} - 6q^{8} - 5q^{9} + q^{10} + 6q^{11} + 7q^{12} + 4q^{13} - 24q^{14} - 40q^{15} + 12q^{16} + 3q^{17} + 8q^{18} - 7q^{19} + 14q^{20} - 15q^{21} - 26q^{22} - 16q^{24} + 5q^{25} + q^{26} + 26q^{27} - 5q^{28} - 20q^{29} - 14q^{30} + 6q^{31} + 3q^{32} + 17q^{33} + 2q^{34} - 9q^{35} - 30q^{36} + 18q^{37} + 7q^{38} + 20q^{39} + 16q^{40} - 10q^{41} - 35q^{42} - 28q^{43} - 2q^{44} + 7q^{45} + 3q^{46} - 3q^{47} + 18q^{48} - 8q^{49} - 8q^{50} - 7q^{52} + 9q^{53} + 25q^{54} + 34q^{55} - 15q^{56} + 62q^{57} + 5q^{58} + 19q^{59} + 3q^{60} + 23q^{61} + 72q^{62} + 13q^{63} - 2q^{64} - 20q^{65} - 23q^{66} + 11q^{67} + 24q^{68} + 38q^{69} - 40q^{70} - 25q^{72} - 13q^{73} - 2q^{74} - 11q^{75} + 24q^{76} + 23q^{77} + 28q^{78} + 41q^{79} + 9q^{80} + 7q^{81} - 2q^{82} - 4q^{83} - 23q^{84} - 20q^{86} - 32q^{87} + 10q^{88} - 14q^{89} + 44q^{90} - 6q^{91} + 34q^{92} + 15q^{93} - 10q^{94} + 31q^{95} + 33q^{96} - 54q^{97} - 85q^{98} - 18q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{10} - x^{9} + 7 x^{8} + 4 x^{7} + 32 x^{6} + 3 x^{5} + 30 x^{4} - 7 x^{3} + 26 x^{2} - 5 x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( 911 \nu^{9} + 318 \nu^{8} - 583 \nu^{7} + 16404 \nu^{6} - 265 \nu^{5} + 8533 \nu^{4} - 159430 \nu^{3} + 8480 \nu^{2} - 1643 \nu + 31405 \)\()/160271\)
\(\beta_{3}\)\(=\)\((\)\( -4571 \nu^{9} + 29016 \nu^{8} - 53196 \nu^{7} + 154140 \nu^{6} - 24180 \nu^{5} + 778596 \nu^{4} + 122097 \nu^{3} + 773760 \nu^{2} - 149916 \nu + 319366 \)\()/160271\)
\(\beta_{4}\)\(=\)\((\)\( 4889 \nu^{9} - 36294 \nu^{8} + 66539 \nu^{7} - 199961 \nu^{6} + 30245 \nu^{5} - 973889 \nu^{4} + 52190 \nu^{3} - 967840 \nu^{2} + 187519 \nu - 672224 \)\()/160271\)
\(\beta_{5}\)\(=\)\((\)\( -5191 \nu^{9} + 12966 \nu^{8} - 23771 \nu^{7} + 9622 \nu^{6} - 10805 \nu^{5} + 347921 \nu^{4} + 288305 \nu^{3} + 345760 \nu^{2} - 66991 \nu + 388420 \)\()/160271\)
\(\beta_{6}\)\(=\)\((\)\( -31405 \nu^{9} + 32316 \nu^{8} - 219517 \nu^{7} - 126203 \nu^{6} - 988556 \nu^{5} - 94480 \nu^{4} - 933617 \nu^{3} + 60405 \nu^{2} - 808050 \nu + 155382 \)\()/160271\)
\(\beta_{7}\)\(=\)\((\)\( -62396 \nu^{9} + 33989 \nu^{8} - 409567 \nu^{7} - 433019 \nu^{6} - 2138559 \nu^{5} - 984502 \nu^{4} - 1969946 \nu^{3} - 1829 \nu^{2} - 1431066 \nu - 15562 \)\()/160271\)
\(\beta_{8}\)\(=\)\((\)\( -91217 \nu^{9} + 91837 \nu^{8} - 622469 \nu^{7} - 394293 \nu^{6} - 2774426 \nu^{5} - 287026 \nu^{4} - 2305835 \nu^{3} + 472311 \nu^{2} - 1943642 \nu + 373160 \)\()/160271\)
\(\beta_{9}\)\(=\)\((\)\( -128866 \nu^{9} + 127955 \nu^{8} - 902380 \nu^{7} - 514881 \nu^{6} - 4140116 \nu^{5} - 386333 \nu^{4} - 3874513 \nu^{3} + 1061492 \nu^{2} - 3358996 \nu + 645973 \)\()/160271\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{9} - \beta_{7} - 2 \beta_{6} - \beta_{3} - \beta_{2} + \beta_{1}\)
\(\nu^{3}\)\(=\)\(-\beta_{5} - 2 \beta_{4} - 2 \beta_{3} - 5 \beta_{2} - 1\)
\(\nu^{4}\)\(=\)\(-7 \beta_{9} + \beta_{8} + 8 \beta_{7} + 9 \beta_{6} - \beta_{5} - 7 \beta_{4} - 10 \beta_{1} - 9\)
\(\nu^{5}\)\(=\)\(-18 \beta_{9} + 7 \beta_{8} + 19 \beta_{7} + 14 \beta_{6} + 19 \beta_{3} + 34 \beta_{2} - 34 \beta_{1}\)
\(\nu^{6}\)\(=\)\(12 \beta_{5} + 53 \beta_{4} + 60 \beta_{3} + 85 \beta_{2} + 57\)
\(\nu^{7}\)\(=\)\(145 \beta_{9} - 48 \beta_{8} - 157 \beta_{7} - 129 \beta_{6} + 48 \beta_{5} + 145 \beta_{4} + 255 \beta_{1} + 129\)
\(\nu^{8}\)\(=\)\(412 \beta_{9} - 109 \beta_{8} - 460 \beta_{7} - 413 \beta_{6} - 460 \beta_{3} - 686 \beta_{2} + 686 \beta_{1}\)
\(\nu^{9}\)\(=\)\(-351 \beta_{5} - 1146 \beta_{4} - 1255 \beta_{3} - 1971 \beta_{2} - 1069\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/287\mathbb{Z}\right)^\times\).

\(n\) \(206\) \(211\)
\(\chi(n)\) \(-1 + \beta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
165.1
0.440981 + 0.763802i
−0.580000 1.00459i
−0.863288 1.49526i
0.100998 + 0.174933i
1.40131 + 2.42714i
0.440981 0.763802i
−0.580000 + 1.00459i
−0.863288 + 1.49526i
0.100998 0.174933i
1.40131 2.42714i
−0.985135 1.70630i −0.257781 + 0.446490i −0.940981 + 1.62983i 0.257781 + 0.446490i 1.01580 1.91822 1.82221i −0.232565 1.36710 + 2.36788i 0.507899 0.879706i
165.2 −0.678233 1.17473i 1.11395 1.92942i 0.0800004 0.138565i −1.11395 1.92942i −3.02207 2.60927 + 0.437865i −2.92997 −0.981768 1.70047i −1.51103 + 2.61719i
165.3 0.564230 + 0.977276i −1.46472 + 2.53697i 0.363288 0.629233i 1.46472 + 2.53697i −3.30576 1.22536 + 2.34489i 3.07683 −2.79081 4.83382i −1.65288 + 2.86287i
165.4 0.894706 + 1.54968i 1.16033 2.00974i −0.600998 + 1.04096i −1.16033 2.00974i 4.15260 −1.87001 1.87165i 1.42796 −1.19271 2.06584i 2.07630 3.59626i
165.5 1.20443 + 2.08614i 0.448226 0.776350i −1.90131 + 3.29316i −0.448226 0.776350i 2.15943 0.117164 + 2.64316i −4.34226 1.09819 + 1.90212i 1.07971 1.87012i
247.1 −0.985135 + 1.70630i −0.257781 0.446490i −0.940981 1.62983i 0.257781 0.446490i 1.01580 1.91822 + 1.82221i −0.232565 1.36710 2.36788i 0.507899 + 0.879706i
247.2 −0.678233 + 1.17473i 1.11395 + 1.92942i 0.0800004 + 0.138565i −1.11395 + 1.92942i −3.02207 2.60927 0.437865i −2.92997 −0.981768 + 1.70047i −1.51103 2.61719i
247.3 0.564230 0.977276i −1.46472 2.53697i 0.363288 + 0.629233i 1.46472 2.53697i −3.30576 1.22536 2.34489i 3.07683 −2.79081 + 4.83382i −1.65288 2.86287i
247.4 0.894706 1.54968i 1.16033 + 2.00974i −0.600998 1.04096i −1.16033 + 2.00974i 4.15260 −1.87001 + 1.87165i 1.42796 −1.19271 + 2.06584i 2.07630 + 3.59626i
247.5 1.20443 2.08614i 0.448226 + 0.776350i −1.90131 3.29316i −0.448226 + 0.776350i 2.15943 0.117164 2.64316i −4.34226 1.09819 1.90212i 1.07971 + 1.87012i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 247.5
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
7.c Even 1 yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{2}^{10} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(287, [\chi])\).