# Properties

 Label 286.2 Level 286 Weight 2 Dimension 819 Nonzero newspaces 12 Newform subspaces 34 Sturm bound 10080 Trace bound 4

## Defining parameters

 Level: $$N$$ = $$286 = 2 \cdot 11 \cdot 13$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$12$$ Newform subspaces: $$34$$ Sturm bound: $$10080$$ Trace bound: $$4$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(286))$$.

Total New Old
Modular forms 2760 819 1941
Cusp forms 2281 819 1462
Eisenstein series 479 0 479

## Trace form

 $$819q + 3q^{2} + 12q^{3} + 3q^{4} + 18q^{5} + 2q^{6} - 4q^{7} - 3q^{8} - 33q^{9} + O(q^{10})$$ $$819q + 3q^{2} + 12q^{3} + 3q^{4} + 18q^{5} + 2q^{6} - 4q^{7} - 3q^{8} - 33q^{9} - 32q^{10} - 9q^{11} - 16q^{12} - 31q^{13} - 20q^{14} - 36q^{15} - 5q^{16} - 16q^{17} - q^{18} - 26q^{19} + 12q^{20} + 23q^{22} + 8q^{23} + 2q^{24} - 17q^{25} + 7q^{26} - 42q^{27} - 4q^{28} - 68q^{29} - 36q^{30} - 44q^{31} - 7q^{32} - 78q^{33} - 34q^{34} - 120q^{35} - 19q^{36} + 12q^{37} - 72q^{38} - 46q^{39} - 2q^{40} - 56q^{41} - 36q^{42} - 56q^{43} - 31q^{44} - 16q^{45} - 16q^{46} - 32q^{47} + 12q^{48} - 13q^{49} - q^{50} - 58q^{51} - 7q^{52} - 10q^{53} - 32q^{54} - 62q^{55} - 58q^{57} - 44q^{58} - 46q^{59} - 16q^{60} - 32q^{61} - 36q^{62} - 176q^{63} - 3q^{64} - 112q^{65} - 76q^{66} - 128q^{67} + 8q^{68} - 172q^{69} - 8q^{70} - 88q^{71} - 49q^{72} - 74q^{73} - 4q^{74} - 154q^{75} - 16q^{76} - 96q^{77} - 52q^{78} - 52q^{79} - 8q^{80} - 155q^{81} - 46q^{82} - 70q^{83} - 40q^{84} - 142q^{85} - 46q^{86} - 80q^{87} + 3q^{88} - 82q^{89} - 66q^{90} - 36q^{91} - 36q^{92} - 100q^{93} - 96q^{94} - 4q^{95} + 12q^{96} - 96q^{97} - 15q^{98} - 69q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(286))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
286.2.a $$\chi_{286}(1, \cdot)$$ 286.2.a.a 1 1
286.2.a.b 1
286.2.a.c 1
286.2.a.d 1
286.2.a.e 1
286.2.a.f 1
286.2.a.g 3
286.2.b $$\chi_{286}(155, \cdot)$$ 286.2.b.a 2 1
286.2.b.b 2
286.2.b.c 2
286.2.b.d 4
286.2.e $$\chi_{286}(133, \cdot)$$ 286.2.e.a 2 2
286.2.e.b 2
286.2.e.c 2
286.2.e.d 2
286.2.e.e 4
286.2.e.f 6
286.2.e.g 6
286.2.g $$\chi_{286}(21, \cdot)$$ 286.2.g.a 28 2
286.2.h $$\chi_{286}(27, \cdot)$$ 286.2.h.a 4 4
286.2.h.b 8
286.2.h.c 12
286.2.h.d 12
286.2.h.e 12
286.2.j $$\chi_{286}(23, \cdot)$$ 286.2.j.a 12 2
286.2.j.b 16
286.2.n $$\chi_{286}(25, \cdot)$$ 286.2.n.a 8 4
286.2.n.b 48
286.2.o $$\chi_{286}(175, \cdot)$$ 286.2.o.a 56 4
286.2.q $$\chi_{286}(3, \cdot)$$ 286.2.q.a 56 8
286.2.q.b 56
286.2.r $$\chi_{286}(57, \cdot)$$ 286.2.r.a 112 8
286.2.u $$\chi_{286}(49, \cdot)$$ 286.2.u.a 112 8
286.2.x $$\chi_{286}(7, \cdot)$$ 286.2.x.a 224 16

## Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(286))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(286)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(11))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(13))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(22))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(26))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(143))$$$$^{\oplus 2}$$