Properties

Label 2850.2.m
Level $2850$
Weight $2$
Character orbit 2850.m
Rep. character $\chi_{2850}(493,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $120$
Sturm bound $1200$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2850.m (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(i)\)
Sturm bound: \(1200\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2850, [\chi])\).

Total New Old
Modular forms 1248 120 1128
Cusp forms 1152 120 1032
Eisenstein series 96 0 96

Trace form

\( 120q + 8q^{7} + O(q^{10}) \) \( 120q + 8q^{7} + 32q^{11} - 120q^{16} + 8q^{17} - 40q^{23} - 32q^{26} + 8q^{28} + 120q^{36} + 16q^{38} - 40q^{43} + 40q^{47} - 8q^{57} + 16q^{61} + 32q^{62} - 8q^{63} + 8q^{68} + 24q^{73} - 8q^{76} - 64q^{77} - 120q^{81} + 32q^{82} + 40q^{83} - 16q^{87} + 40q^{92} + 16q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2850, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2850, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2850, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(570, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(950, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1425, [\chi])\)\(^{\oplus 2}\)