Properties

Label 2850.2.d.d.799.1
Level $2850$
Weight $2$
Character 2850.799
Analytic conductor $22.757$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2850.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.7573645761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 570)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2850.799
Dual form 2850.2.d.d.799.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +2.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +2.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +1.00000i q^{12} -2.00000i q^{13} +2.00000 q^{14} +1.00000 q^{16} +1.00000i q^{18} -1.00000 q^{19} +2.00000 q^{21} +1.00000 q^{24} -2.00000 q^{26} +1.00000i q^{27} -2.00000i q^{28} +6.00000 q^{29} +2.00000 q^{31} -1.00000i q^{32} +1.00000 q^{36} +2.00000i q^{37} +1.00000i q^{38} -2.00000 q^{39} -2.00000i q^{42} -8.00000i q^{43} -1.00000i q^{48} +3.00000 q^{49} +2.00000i q^{52} -6.00000i q^{53} +1.00000 q^{54} -2.00000 q^{56} +1.00000i q^{57} -6.00000i q^{58} +6.00000 q^{59} +2.00000 q^{61} -2.00000i q^{62} -2.00000i q^{63} -1.00000 q^{64} -4.00000i q^{67} -1.00000i q^{72} -14.0000i q^{73} +2.00000 q^{74} +1.00000 q^{76} +2.00000i q^{78} -2.00000 q^{79} +1.00000 q^{81} -6.00000i q^{83} -2.00000 q^{84} -8.00000 q^{86} -6.00000i q^{87} +12.0000 q^{89} +4.00000 q^{91} -2.00000i q^{93} -1.00000 q^{96} -10.0000i q^{97} -3.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} + 4 q^{14} + 2 q^{16} - 2 q^{19} + 4 q^{21} + 2 q^{24} - 4 q^{26} + 12 q^{29} + 4 q^{31} + 2 q^{36} - 4 q^{39} + 6 q^{49} + 2 q^{54} - 4 q^{56} + 12 q^{59} + 4 q^{61} - 2 q^{64} + 4 q^{74} + 2 q^{76} - 4 q^{79} + 2 q^{81} - 4 q^{84} - 16 q^{86} + 24 q^{89} + 8 q^{91} - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2850\mathbb{Z}\right)^\times\).

\(n\) \(1027\) \(1351\) \(1901\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000i 0.288675i
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 1.00000i 0.192450i
\(28\) − 2.00000i − 0.377964i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 1.00000i 0.162221i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) − 2.00000i − 0.308607i
\(43\) − 8.00000i − 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000i 0.277350i
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) 1.00000i 0.132453i
\(58\) − 6.00000i − 0.787839i
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) − 2.00000i − 0.254000i
\(63\) − 2.00000i − 0.251976i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) − 14.0000i − 1.63858i −0.573382 0.819288i \(-0.694369\pi\)
0.573382 0.819288i \(-0.305631\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) 0 0
\(78\) 2.00000i 0.226455i
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 6.00000i − 0.658586i −0.944228 0.329293i \(-0.893190\pi\)
0.944228 0.329293i \(-0.106810\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) − 6.00000i − 0.643268i
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) − 2.00000i − 0.207390i
\(94\) 0 0
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) − 10.0000i − 1.01535i −0.861550 0.507673i \(-0.830506\pi\)
0.861550 0.507673i \(-0.169494\pi\)
\(98\) − 3.00000i − 0.303046i
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) − 8.00000i − 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 2.00000i 0.188982i
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 1.00000 0.0936586
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 2.00000i 0.184900i
\(118\) − 6.00000i − 0.552345i
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) − 2.00000i − 0.181071i
\(123\) 0 0
\(124\) −2.00000 −0.179605
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) − 16.0000i − 1.41977i −0.704317 0.709885i \(-0.748747\pi\)
0.704317 0.709885i \(-0.251253\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) − 2.00000i − 0.173422i
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 0 0
\(137\) − 12.0000i − 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −14.0000 −1.15865
\(147\) − 3.00000i − 0.247436i
\(148\) − 2.00000i − 0.164399i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) − 1.00000i − 0.0811107i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) − 4.00000i − 0.319235i −0.987179 0.159617i \(-0.948974\pi\)
0.987179 0.159617i \(-0.0510260\pi\)
\(158\) 2.00000i 0.159111i
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) − 1.00000i − 0.0785674i
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −6.00000 −0.465690
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 2.00000i 0.154303i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 8.00000i 0.609994i
\(173\) 18.0000i 1.36851i 0.729241 + 0.684257i \(0.239873\pi\)
−0.729241 + 0.684257i \(0.760127\pi\)
\(174\) −6.00000 −0.454859
\(175\) 0 0
\(176\) 0 0
\(177\) − 6.00000i − 0.450988i
\(178\) − 12.0000i − 0.899438i
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) − 4.00000i − 0.296500i
\(183\) − 2.00000i − 0.147844i
\(184\) 0 0
\(185\) 0 0
\(186\) −2.00000 −0.146647
\(187\) 0 0
\(188\) 0 0
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) − 2.00000i − 0.143963i −0.997406 0.0719816i \(-0.977068\pi\)
0.997406 0.0719816i \(-0.0229323\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 6.00000i 0.422159i
\(203\) 12.0000i 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) − 2.00000i − 0.138675i
\(209\) 0 0
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 4.00000i 0.271538i
\(218\) − 16.0000i − 1.08366i
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) 0 0
\(222\) − 2.00000i − 0.134231i
\(223\) 4.00000i 0.267860i 0.990991 + 0.133930i \(0.0427597\pi\)
−0.990991 + 0.133930i \(0.957240\pi\)
\(224\) 2.00000 0.133631
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) − 1.00000i − 0.0662266i
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000i 0.393919i
\(233\) − 24.0000i − 1.57229i −0.618041 0.786146i \(-0.712073\pi\)
0.618041 0.786146i \(-0.287927\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) 2.00000i 0.129914i
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 11.0000i 0.707107i
\(243\) − 1.00000i − 0.0641500i
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) 2.00000i 0.127257i
\(248\) 2.00000i 0.127000i
\(249\) −6.00000 −0.380235
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 0 0
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000i 0.374270i 0.982334 + 0.187135i \(0.0599201\pi\)
−0.982334 + 0.187135i \(0.940080\pi\)
\(258\) 8.00000i 0.498058i
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 24.0000i 1.47990i 0.672660 + 0.739952i \(0.265152\pi\)
−0.672660 + 0.739952i \(0.734848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.00000 −0.122628
\(267\) − 12.0000i − 0.734388i
\(268\) 4.00000i 0.244339i
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) − 4.00000i − 0.242091i
\(274\) −12.0000 −0.724947
\(275\) 0 0
\(276\) 0 0
\(277\) − 28.0000i − 1.68236i −0.540758 0.841178i \(-0.681862\pi\)
0.540758 0.841178i \(-0.318138\pi\)
\(278\) − 4.00000i − 0.239904i
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) 0 0
\(283\) − 32.0000i − 1.90220i −0.308879 0.951101i \(-0.599954\pi\)
0.308879 0.951101i \(-0.400046\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000i 0.0589256i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 14.0000i 0.819288i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) − 6.00000i − 0.347571i
\(299\) 0 0
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 10.0000i 0.575435i
\(303\) 6.00000i 0.344691i
\(304\) −1.00000 −0.0573539
\(305\) 0 0
\(306\) 0 0
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) − 2.00000i − 0.113228i
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) − 30.0000i − 1.68497i −0.538721 0.842484i \(-0.681092\pi\)
0.538721 0.842484i \(-0.318908\pi\)
\(318\) 6.00000i 0.336463i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) − 16.0000i − 0.884802i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 6.00000i 0.329293i
\(333\) − 2.00000i − 0.109599i
\(334\) 0 0
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) 2.00000i 0.108947i 0.998515 + 0.0544735i \(0.0173480\pi\)
−0.998515 + 0.0544735i \(0.982652\pi\)
\(338\) − 9.00000i − 0.489535i
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) − 1.00000i − 0.0540738i
\(343\) 20.0000i 1.07990i
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) 18.0000i 0.966291i 0.875540 + 0.483145i \(0.160506\pi\)
−0.875540 + 0.483145i \(0.839494\pi\)
\(348\) 6.00000i 0.321634i
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) − 12.0000i − 0.638696i −0.947638 0.319348i \(-0.896536\pi\)
0.947638 0.319348i \(-0.103464\pi\)
\(354\) −6.00000 −0.318896
\(355\) 0 0
\(356\) −12.0000 −0.635999
\(357\) 0 0
\(358\) 6.00000i 0.317110i
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 16.0000i 0.840941i
\(363\) 11.0000i 0.577350i
\(364\) −4.00000 −0.209657
\(365\) 0 0
\(366\) −2.00000 −0.104542
\(367\) − 10.0000i − 0.521996i −0.965339 0.260998i \(-0.915948\pi\)
0.965339 0.260998i \(-0.0840516\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) 2.00000i 0.103695i
\(373\) − 14.0000i − 0.724893i −0.932005 0.362446i \(-0.881942\pi\)
0.932005 0.362446i \(-0.118058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 12.0000i − 0.618031i
\(378\) 2.00000i 0.102869i
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) 24.0000i 1.22634i 0.789950 + 0.613171i \(0.210106\pi\)
−0.789950 + 0.613171i \(0.789894\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) 8.00000i 0.406663i
\(388\) 10.0000i 0.507673i
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.00000i 0.151523i
\(393\) 0 0
\(394\) 18.0000 0.906827
\(395\) 0 0
\(396\) 0 0
\(397\) 8.00000i 0.401508i 0.979642 + 0.200754i \(0.0643393\pi\)
−0.979642 + 0.200754i \(0.935661\pi\)
\(398\) − 4.00000i − 0.200502i
\(399\) −2.00000 −0.100125
\(400\) 0 0
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) 4.00000i 0.199502i
\(403\) − 4.00000i − 0.199254i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 0 0
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 8.00000i 0.394132i
\(413\) 12.0000i 0.590481i
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) − 4.00000i − 0.195881i
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) − 8.00000i − 0.389434i
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) − 2.00000i − 0.0961139i −0.998845 0.0480569i \(-0.984697\pi\)
0.998845 0.0480569i \(-0.0153029\pi\)
\(434\) 4.00000 0.192006
\(435\) 0 0
\(436\) −16.0000 −0.766261
\(437\) 0 0
\(438\) 14.0000i 0.668946i
\(439\) 22.0000 1.05000 0.525001 0.851101i \(-0.324065\pi\)
0.525001 + 0.851101i \(0.324065\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 30.0000i 1.42534i 0.701498 + 0.712672i \(0.252515\pi\)
−0.701498 + 0.712672i \(0.747485\pi\)
\(444\) −2.00000 −0.0949158
\(445\) 0 0
\(446\) 4.00000 0.189405
\(447\) − 6.00000i − 0.283790i
\(448\) − 2.00000i − 0.0944911i
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) − 6.00000i − 0.282216i
\(453\) 10.0000i 0.469841i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) −1.00000 −0.0468293
\(457\) − 22.0000i − 1.02912i −0.857455 0.514558i \(-0.827956\pi\)
0.857455 0.514558i \(-0.172044\pi\)
\(458\) − 10.0000i − 0.467269i
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) − 26.0000i − 1.20832i −0.796862 0.604161i \(-0.793508\pi\)
0.796862 0.604161i \(-0.206492\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) −24.0000 −1.11178
\(467\) 6.00000i 0.277647i 0.990317 + 0.138823i \(0.0443321\pi\)
−0.990317 + 0.138823i \(0.955668\pi\)
\(468\) − 2.00000i − 0.0924500i
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) −4.00000 −0.184310
\(472\) 6.00000i 0.276172i
\(473\) 0 0
\(474\) 2.00000 0.0918630
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 24.0000i 1.09773i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 22.0000i 1.00207i
\(483\) 0 0
\(484\) 11.0000 0.500000
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) − 16.0000i − 0.725029i −0.931978 0.362515i \(-0.881918\pi\)
0.931978 0.362515i \(-0.118082\pi\)
\(488\) 2.00000i 0.0905357i
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 0 0
\(498\) 6.00000i 0.268866i
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 12.0000i − 0.535586i
\(503\) 12.0000i 0.535054i 0.963550 + 0.267527i \(0.0862064\pi\)
−0.963550 + 0.267527i \(0.913794\pi\)
\(504\) 2.00000 0.0890871
\(505\) 0 0
\(506\) 0 0
\(507\) − 9.00000i − 0.399704i
\(508\) 16.0000i 0.709885i
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) − 1.00000i − 0.0441942i
\(513\) − 1.00000i − 0.0441511i
\(514\) 6.00000 0.264649
\(515\) 0 0
\(516\) 8.00000 0.352180
\(517\) 0 0
\(518\) 4.00000i 0.175750i
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 6.00000i 0.262613i
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 2.00000i 0.0867110i
\(533\) 0 0
\(534\) −12.0000 −0.519291
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 6.00000i 0.258919i
\(538\) 18.0000i 0.776035i
\(539\) 0 0
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) − 20.0000i − 0.859074i
\(543\) 16.0000i 0.686626i
\(544\) 0 0
\(545\) 0 0
\(546\) −4.00000 −0.171184
\(547\) − 4.00000i − 0.171028i −0.996337 0.0855138i \(-0.972747\pi\)
0.996337 0.0855138i \(-0.0272532\pi\)
\(548\) 12.0000i 0.512615i
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) − 4.00000i − 0.170097i
\(554\) −28.0000 −1.18961
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 6.00000i 0.254228i 0.991888 + 0.127114i \(0.0405714\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(558\) 2.00000i 0.0846668i
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) − 24.0000i − 1.01238i
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −32.0000 −1.34506
\(567\) 2.00000i 0.0839921i
\(568\) 0 0
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 2.00000i 0.0832611i 0.999133 + 0.0416305i \(0.0132552\pi\)
−0.999133 + 0.0416305i \(0.986745\pi\)
\(578\) − 17.0000i − 0.707107i
\(579\) −2.00000 −0.0831172
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 10.0000i 0.414513i
\(583\) 0 0
\(584\) 14.0000 0.579324
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 18.0000i 0.742940i 0.928445 + 0.371470i \(0.121146\pi\)
−0.928445 + 0.371470i \(0.878854\pi\)
\(588\) 3.00000i 0.123718i
\(589\) −2.00000 −0.0824086
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) 2.00000i 0.0821995i
\(593\) − 36.0000i − 1.47834i −0.673517 0.739171i \(-0.735217\pi\)
0.673517 0.739171i \(-0.264783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) − 4.00000i − 0.163709i
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) − 16.0000i − 0.652111i
\(603\) 4.00000i 0.162893i
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 6.00000 0.243733
\(607\) 32.0000i 1.29884i 0.760430 + 0.649420i \(0.224988\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(608\) 1.00000i 0.0405554i
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 16.0000i 0.646234i 0.946359 + 0.323117i \(0.104731\pi\)
−0.946359 + 0.323117i \(0.895269\pi\)
\(614\) 20.0000 0.807134
\(615\) 0 0
\(616\) 0 0
\(617\) 12.0000i 0.483102i 0.970388 + 0.241551i \(0.0776561\pi\)
−0.970388 + 0.241551i \(0.922344\pi\)
\(618\) 8.00000i 0.321807i
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 24.0000i 0.961540i
\(624\) −2.00000 −0.0800641
\(625\) 0 0
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) 4.00000i 0.159617i
\(629\) 0 0
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) − 2.00000i − 0.0795557i
\(633\) − 8.00000i − 0.317971i
\(634\) −30.0000 −1.19145
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) − 6.00000i − 0.237729i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 0 0
\(643\) − 32.0000i − 1.26196i −0.775800 0.630978i \(-0.782654\pi\)
0.775800 0.630978i \(-0.217346\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000i 0.471769i 0.971781 + 0.235884i \(0.0757987\pi\)
−0.971781 + 0.235884i \(0.924201\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 0 0
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) − 4.00000i − 0.156652i
\(653\) 18.0000i 0.704394i 0.935926 + 0.352197i \(0.114565\pi\)
−0.935926 + 0.352197i \(0.885435\pi\)
\(654\) −16.0000 −0.625650
\(655\) 0 0
\(656\) 0 0
\(657\) 14.0000i 0.546192i
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 32.0000 1.24466 0.622328 0.782757i \(-0.286187\pi\)
0.622328 + 0.782757i \(0.286187\pi\)
\(662\) − 20.0000i − 0.777322i
\(663\) 0 0
\(664\) 6.00000 0.232845
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 0 0
\(668\) 0 0
\(669\) 4.00000 0.154649
\(670\) 0 0
\(671\) 0 0
\(672\) − 2.00000i − 0.0771517i
\(673\) − 14.0000i − 0.539660i −0.962908 0.269830i \(-0.913032\pi\)
0.962908 0.269830i \(-0.0869676\pi\)
\(674\) 2.00000 0.0770371
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) − 30.0000i − 1.15299i −0.817099 0.576497i \(-0.804419\pi\)
0.817099 0.576497i \(-0.195581\pi\)
\(678\) − 6.00000i − 0.230429i
\(679\) 20.0000 0.767530
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) −1.00000 −0.0382360
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) − 10.0000i − 0.381524i
\(688\) − 8.00000i − 0.304997i
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) − 18.0000i − 0.684257i
\(693\) 0 0
\(694\) 18.0000 0.683271
\(695\) 0 0
\(696\) 6.00000 0.227429
\(697\) 0 0
\(698\) − 10.0000i − 0.378506i
\(699\) −24.0000 −0.907763
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) − 2.00000i − 0.0754851i
\(703\) − 2.00000i − 0.0754314i
\(704\) 0 0
\(705\) 0 0
\(706\) −12.0000 −0.451626
\(707\) − 12.0000i − 0.451306i
\(708\) 6.00000i 0.225494i
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 2.00000 0.0750059
\(712\) 12.0000i 0.449719i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 6.00000 0.224231
\(717\) 24.0000i 0.896296i
\(718\) 24.0000i 0.895672i
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) − 1.00000i − 0.0372161i
\(723\) 22.0000i 0.818189i
\(724\) 16.0000 0.594635
\(725\) 0 0
\(726\) 11.0000 0.408248
\(727\) − 34.0000i − 1.26099i −0.776193 0.630495i \(-0.782852\pi\)
0.776193 0.630495i \(-0.217148\pi\)
\(728\) 4.00000i 0.148250i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 2.00000i 0.0739221i
\(733\) − 32.0000i − 1.18195i −0.806691 0.590973i \(-0.798744\pi\)
0.806691 0.590973i \(-0.201256\pi\)
\(734\) −10.0000 −0.369107
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −44.0000 −1.61857 −0.809283 0.587419i \(-0.800144\pi\)
−0.809283 + 0.587419i \(0.800144\pi\)
\(740\) 0 0
\(741\) 2.00000 0.0734718
\(742\) − 12.0000i − 0.440534i
\(743\) 48.0000i 1.76095i 0.474093 + 0.880475i \(0.342776\pi\)
−0.474093 + 0.880475i \(0.657224\pi\)
\(744\) 2.00000 0.0733236
\(745\) 0 0
\(746\) −14.0000 −0.512576
\(747\) 6.00000i 0.219529i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −22.0000 −0.802791 −0.401396 0.915905i \(-0.631475\pi\)
−0.401396 + 0.915905i \(0.631475\pi\)
\(752\) 0 0
\(753\) − 12.0000i − 0.437304i
\(754\) −12.0000 −0.437014
\(755\) 0 0
\(756\) 2.00000 0.0727393
\(757\) 32.0000i 1.16306i 0.813525 + 0.581530i \(0.197546\pi\)
−0.813525 + 0.581530i \(0.802454\pi\)
\(758\) 8.00000i 0.290573i
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 16.0000i 0.579619i
\(763\) 32.0000i 1.15848i
\(764\) 0 0
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) − 12.0000i − 0.433295i
\(768\) − 1.00000i − 0.0360844i
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 2.00000i 0.0719816i
\(773\) 18.0000i 0.647415i 0.946157 + 0.323708i \(0.104929\pi\)
−0.946157 + 0.323708i \(0.895071\pi\)
\(774\) 8.00000 0.287554
\(775\) 0 0
\(776\) 10.0000 0.358979
\(777\) 4.00000i 0.143499i
\(778\) − 30.0000i − 1.07555i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 6.00000i 0.214423i
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) 44.0000i 1.56843i 0.620489 + 0.784215i \(0.286934\pi\)
−0.620489 + 0.784215i \(0.713066\pi\)
\(788\) − 18.0000i − 0.641223i
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) − 4.00000i − 0.142044i
\(794\) 8.00000 0.283909
\(795\) 0 0
\(796\) −4.00000 −0.141776
\(797\) 42.0000i 1.48772i 0.668338 + 0.743858i \(0.267006\pi\)
−0.668338 + 0.743858i \(0.732994\pi\)
\(798\) 2.00000i 0.0707992i
\(799\) 0 0
\(800\) 0 0
\(801\) −12.0000 −0.423999
\(802\) − 12.0000i − 0.423735i
\(803\) 0 0
\(804\) 4.00000 0.141069
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) 18.0000i 0.633630i
\(808\) − 6.00000i − 0.211079i
\(809\) −54.0000 −1.89854 −0.949269 0.314464i \(-0.898175\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) − 12.0000i − 0.421117i
\(813\) − 20.0000i − 0.701431i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) − 22.0000i − 0.769212i
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 12.0000i 0.418548i
\(823\) 22.0000i 0.766872i 0.923567 + 0.383436i \(0.125259\pi\)
−0.923567 + 0.383436i \(0.874741\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) 48.0000i 1.66912i 0.550914 + 0.834562i \(0.314279\pi\)
−0.550914 + 0.834562i \(0.685721\pi\)
\(828\) 0 0
\(829\) −8.00000 −0.277851 −0.138926 0.990303i \(-0.544365\pi\)
−0.138926 + 0.990303i \(0.544365\pi\)
\(830\) 0 0
\(831\) −28.0000 −0.971309
\(832\) 2.00000i 0.0693375i
\(833\) 0 0
\(834\) −4.00000 −0.138509
\(835\) 0 0
\(836\) 0 0
\(837\) 2.00000i 0.0691301i
\(838\) 12.0000i 0.414533i
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) − 8.00000i − 0.275698i
\(843\) − 24.0000i − 0.826604i
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) 0 0
\(847\) − 22.0000i − 0.755929i
\(848\) − 6.00000i − 0.206041i
\(849\) −32.0000 −1.09824
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 44.0000i − 1.50653i −0.657716 0.753266i \(-0.728477\pi\)
0.657716 0.753266i \(-0.271523\pi\)
\(854\) 4.00000 0.136877
\(855\) 0 0
\(856\) 0 0
\(857\) − 18.0000i − 0.614868i −0.951569 0.307434i \(-0.900530\pi\)
0.951569 0.307434i \(-0.0994704\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 24.0000i 0.817443i
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −2.00000 −0.0679628
\(867\) − 17.0000i − 0.577350i
\(868\) − 4.00000i − 0.135769i
\(869\) 0 0
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 16.0000i 0.541828i
\(873\) 10.0000i 0.338449i
\(874\) 0 0
\(875\) 0 0
\(876\) 14.0000 0.473016
\(877\) 38.0000i 1.28317i 0.767052 + 0.641584i \(0.221723\pi\)
−0.767052 + 0.641584i \(0.778277\pi\)
\(878\) − 22.0000i − 0.742464i
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 3.00000i 0.101015i
\(883\) 16.0000i 0.538443i 0.963078 + 0.269221i \(0.0867663\pi\)
−0.963078 + 0.269221i \(0.913234\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 30.0000 1.00787
\(887\) − 48.0000i − 1.61168i −0.592132 0.805841i \(-0.701714\pi\)
0.592132 0.805841i \(-0.298286\pi\)
\(888\) 2.00000i 0.0671156i
\(889\) 32.0000 1.07325
\(890\) 0 0
\(891\) 0 0
\(892\) − 4.00000i − 0.133930i
\(893\) 0 0
\(894\) −6.00000 −0.200670
\(895\) 0 0
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) 24.0000i 0.800890i
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) − 16.0000i − 0.532447i
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) 10.0000 0.332228
\(907\) 44.0000i 1.46100i 0.682915 + 0.730498i \(0.260712\pi\)
−0.682915 + 0.730498i \(0.739288\pi\)
\(908\) − 12.0000i − 0.398234i
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 60.0000 1.98789 0.993944 0.109885i \(-0.0350482\pi\)
0.993944 + 0.109885i \(0.0350482\pi\)
\(912\) 1.00000i 0.0331133i
\(913\) 0 0
\(914\) −22.0000 −0.727695
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) 0 0
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 0 0
\(921\) 20.0000 0.659022
\(922\) − 30.0000i − 0.987997i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −26.0000 −0.854413
\(927\) 8.00000i 0.262754i
\(928\) − 6.00000i − 0.196960i
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) −3.00000 −0.0983210
\(932\) 24.0000i 0.786146i
\(933\) 0 0
\(934\) 6.00000 0.196326
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) 26.0000i 0.849383i 0.905338 + 0.424691i \(0.139617\pi\)
−0.905338 + 0.424691i \(0.860383\pi\)
\(938\) − 8.00000i − 0.261209i
\(939\) 10.0000 0.326338
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 4.00000i 0.130327i
\(943\) 0 0
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 0 0
\(947\) − 18.0000i − 0.584921i −0.956278 0.292461i \(-0.905526\pi\)
0.956278 0.292461i \(-0.0944741\pi\)
\(948\) − 2.00000i − 0.0649570i
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) −30.0000 −0.972817
\(952\) 0 0
\(953\) − 30.0000i − 0.971795i −0.874016 0.485898i \(-0.838493\pi\)
0.874016 0.485898i \(-0.161507\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) 24.0000 0.776215
\(957\) 0 0
\(958\) 0 0
\(959\) 24.0000 0.775000
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) − 4.00000i − 0.128965i
\(963\) 0 0
\(964\) 22.0000 0.708572
\(965\) 0 0
\(966\) 0 0
\(967\) 26.0000i 0.836104i 0.908423 + 0.418052i \(0.137287\pi\)
−0.908423 + 0.418052i \(0.862713\pi\)
\(968\) − 11.0000i − 0.353553i
\(969\) 0 0
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) 8.00000i 0.256468i
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) − 42.0000i − 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) − 4.00000i − 0.127906i
\(979\) 0 0
\(980\) 0 0
\(981\) −16.0000 −0.510841
\(982\) 0 0
\(983\) − 24.0000i − 0.765481i −0.923856 0.382741i \(-0.874980\pi\)
0.923856 0.382741i \(-0.125020\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) − 2.00000i − 0.0636285i
\(989\) 0 0
\(990\) 0 0
\(991\) −58.0000 −1.84243 −0.921215 0.389053i \(-0.872802\pi\)
−0.921215 + 0.389053i \(0.872802\pi\)
\(992\) − 2.00000i − 0.0635001i
\(993\) − 20.0000i − 0.634681i
\(994\) 0 0
\(995\) 0 0
\(996\) 6.00000 0.190117
\(997\) 44.0000i 1.39349i 0.717317 + 0.696747i \(0.245370\pi\)
−0.717317 + 0.696747i \(0.754630\pi\)
\(998\) 20.0000i 0.633089i
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2850.2.d.d.799.1 2
5.2 odd 4 2850.2.a.q.1.1 1
5.3 odd 4 570.2.a.f.1.1 1
5.4 even 2 inner 2850.2.d.d.799.2 2
15.2 even 4 8550.2.a.e.1.1 1
15.8 even 4 1710.2.a.o.1.1 1
20.3 even 4 4560.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
570.2.a.f.1.1 1 5.3 odd 4
1710.2.a.o.1.1 1 15.8 even 4
2850.2.a.q.1.1 1 5.2 odd 4
2850.2.d.d.799.1 2 1.1 even 1 trivial
2850.2.d.d.799.2 2 5.4 even 2 inner
4560.2.a.m.1.1 1 20.3 even 4
8550.2.a.e.1.1 1 15.2 even 4