Properties

Label 2850.2.d
Level $2850$
Weight $2$
Character orbit 2850.d
Rep. character $\chi_{2850}(799,\cdot)$
Character field $\Q$
Dimension $56$
Newform subspaces $24$
Sturm bound $1200$
Trace bound $26$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2850.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 24 \)
Sturm bound: \(1200\)
Trace bound: \(26\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2850, [\chi])\).

Total New Old
Modular forms 624 56 568
Cusp forms 576 56 520
Eisenstein series 48 0 48

Trace form

\( 56 q - 56 q^{4} + 4 q^{6} - 56 q^{9} + 8 q^{11} + 56 q^{16} - 4 q^{19} - 4 q^{24} + 24 q^{26} + 8 q^{29} - 40 q^{31} - 8 q^{34} + 56 q^{36} + 16 q^{39} + 40 q^{41} - 8 q^{44} - 16 q^{46} - 24 q^{49} - 32 q^{51}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2850, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2850.2.d.a 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}-q^{4}-q^{6}+4 i q^{7}+\cdots\)
2850.2.d.b 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 114.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-i q^{3}-q^{4}-q^{6}+i q^{8}+\cdots\)
2850.2.d.c 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}-q^{4}-q^{6}+4 i q^{7}+\cdots\)
2850.2.d.d 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-i q^{3}-q^{4}-q^{6}+2 i q^{7}+\cdots\)
2850.2.d.e 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-i q^{3}-q^{4}-q^{6}+2 i q^{7}+\cdots\)
2850.2.d.f 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-i q^{3}-q^{4}-q^{6}+4 i q^{7}+\cdots\)
2850.2.d.g 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 2850.2.a.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}-q^{4}-q^{6}-i q^{8}+\cdots\)
2850.2.d.h 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 2850.2.a.o \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-i q^{3}-q^{4}-q^{6}+2 i q^{7}+\cdots\)
2850.2.d.i 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}-i q^{3}-q^{4}-q^{6}+i q^{8}+\cdots\)
2850.2.d.j 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+i q^{3}-q^{4}+q^{6}+2 i q^{7}+\cdots\)
2850.2.d.k 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.m \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}-q^{4}+q^{6}+4 i q^{7}+\cdots\)
2850.2.d.l 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}-q^{4}+q^{6}+2 i q^{7}+\cdots\)
2850.2.d.m 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 2850.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+i q^{3}-q^{4}+q^{6}+2 i q^{7}+\cdots\)
2850.2.d.n 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}-q^{4}+q^{6}+2 i q^{7}+\cdots\)
2850.2.d.o 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 2850.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+i q^{3}-q^{4}+q^{6}+4 i q^{7}+\cdots\)
2850.2.d.p 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 114.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+i q^{3}-q^{4}+q^{6}+4 i q^{7}+\cdots\)
2850.2.d.q 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+i q^{3}-q^{4}+q^{6}+2 i q^{7}+\cdots\)
2850.2.d.r 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}-q^{4}+q^{6}+2 i q^{7}+\cdots\)
2850.2.d.s 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 114.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+i q^{3}-q^{4}+q^{6}+4 i q^{7}+\cdots\)
2850.2.d.t 2850.d 5.b $2$ $22.757$ \(\Q(\sqrt{-1}) \) None 570.2.a.k \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}-q^{4}+q^{6}+2 i q^{7}+\cdots\)
2850.2.d.u 2850.d 5.b $4$ $22.757$ \(\Q(\zeta_{12})\) None 2850.2.a.be \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{2}+\beta_1 q^{3}-q^{4}-q^{6}+(-\beta_{2}+\beta_1)q^{7}+\cdots\)
2850.2.d.v 2850.d 5.b $4$ $22.757$ \(\Q(i, \sqrt{10})\) None 2850.2.a.bf \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{1}q^{3}-q^{4}-q^{6}+\beta _{2}q^{7}+\cdots\)
2850.2.d.w 2850.d 5.b $4$ $22.757$ \(\Q(i, \sqrt{6})\) None 2850.2.a.bc \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{1}q^{3}-q^{4}+q^{6}+(2\beta _{1}+\cdots)q^{7}+\cdots\)
2850.2.d.x 2850.d 5.b $4$ $22.757$ \(\Q(\zeta_{12})\) None 2850.2.a.bd \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{2}-\beta_1 q^{3}-q^{4}+q^{6}+(-\beta_{2}+\beta_1)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2850, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2850, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(570, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(950, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1425, [\chi])\)\(^{\oplus 2}\)