Properties

Label 2850.2.cj
Level $2850$
Weight $2$
Character orbit 2850.cj
Rep. character $\chi_{2850}(41,\cdot)$
Character field $\Q(\zeta_{90})$
Dimension $4800$
Sturm bound $1200$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2850.cj (of order \(90\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1425 \)
Character field: \(\Q(\zeta_{90})\)
Sturm bound: \(1200\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2850, [\chi])\).

Total New Old
Modular forms 14592 4800 9792
Cusp forms 14208 4800 9408
Eisenstein series 384 0 384

Trace form

\( 4800q + O(q^{10}) \) \( 4800q + 66q^{15} - 36q^{22} - 84q^{25} + 72q^{33} - 24q^{43} - 90q^{45} + 108q^{46} - 2496q^{49} - 120q^{51} - 36q^{54} - 60q^{55} - 132q^{57} - 42q^{60} + 144q^{61} - 36q^{63} + 600q^{64} - 96q^{66} + 48q^{67} - 48q^{70} + 48q^{78} - 96q^{81} - 162q^{84} - 120q^{85} + 96q^{87} + 36q^{90} + 300q^{93} + 48q^{97} + 192q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2850, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2850, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2850, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(1425, [\chi])\)\(^{\oplus 2}\)