Properties

Label 2850.2.bh
Level $2850$
Weight $2$
Character orbit 2850.bh
Rep. character $\chi_{2850}(121,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $800$
Sturm bound $1200$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2850.bh (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 475 \)
Character field: \(\Q(\zeta_{15})\)
Sturm bound: \(1200\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2850, [\chi])\).

Total New Old
Modular forms 4864 800 4064
Cusp forms 4736 800 3936
Eisenstein series 128 0 128

Trace form

\( 800q + 100q^{4} - 4q^{5} + 16q^{7} + 100q^{9} + O(q^{10}) \) \( 800q + 100q^{4} - 4q^{5} + 16q^{7} + 100q^{9} - 24q^{11} - 16q^{13} + 4q^{15} + 100q^{16} + 12q^{17} + 12q^{19} + 8q^{20} - 8q^{21} - 12q^{22} - 12q^{23} - 8q^{25} - 8q^{28} - 24q^{29} + 32q^{30} - 12q^{33} - 16q^{34} + 28q^{35} + 100q^{36} - 16q^{37} - 16q^{38} - 96q^{43} - 8q^{44} + 8q^{45} - 16q^{46} - 32q^{47} + 816q^{49} - 32q^{50} + 32q^{51} - 16q^{52} + 72q^{53} + 12q^{55} - 72q^{59} + 4q^{60} - 32q^{61} + 16q^{62} + 12q^{63} - 200q^{64} - 72q^{65} + 88q^{67} + 16q^{68} + 16q^{69} + 20q^{70} + 8q^{71} + 64q^{73} - 16q^{75} - 8q^{76} + 128q^{77} + 16q^{78} + 16q^{79} - 4q^{80} + 100q^{81} + 16q^{82} + 112q^{83} + 16q^{84} - 20q^{85} - 48q^{87} - 16q^{88} + 24q^{89} - 16q^{91} + 8q^{92} + 64q^{93} + 32q^{94} + 108q^{95} - 20q^{97} - 80q^{98} - 8q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2850, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2850, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2850, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(950, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1425, [\chi])\)\(^{\oplus 2}\)