# Properties

 Label 2850.2.a.y Level $2850$ Weight $2$ Character orbit 2850.a Self dual yes Analytic conductor $22.757$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2850.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$22.7573645761$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 570) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} + q^{4} + q^{6} - 2q^{7} + q^{8} + q^{9} + O(q^{10})$$ $$q + q^{2} + q^{3} + q^{4} + q^{6} - 2q^{7} + q^{8} + q^{9} - 6q^{11} + q^{12} - 2q^{14} + q^{16} - 2q^{17} + q^{18} - q^{19} - 2q^{21} - 6q^{22} - 4q^{23} + q^{24} + q^{27} - 2q^{28} - 8q^{29} - 8q^{31} + q^{32} - 6q^{33} - 2q^{34} + q^{36} + 4q^{37} - q^{38} - 4q^{41} - 2q^{42} + 6q^{43} - 6q^{44} - 4q^{46} + 12q^{47} + q^{48} - 3q^{49} - 2q^{51} - 6q^{53} + q^{54} - 2q^{56} - q^{57} - 8q^{58} - 4q^{59} + 2q^{61} - 8q^{62} - 2q^{63} + q^{64} - 6q^{66} + 8q^{67} - 2q^{68} - 4q^{69} + q^{72} - 6q^{73} + 4q^{74} - q^{76} + 12q^{77} + 8q^{79} + q^{81} - 4q^{82} - 4q^{83} - 2q^{84} + 6q^{86} - 8q^{87} - 6q^{88} - 4q^{89} - 4q^{92} - 8q^{93} + 12q^{94} + q^{96} - 12q^{97} - 3q^{98} - 6q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 1.00000 1.00000 0 1.00000 −2.00000 1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2850.2.a.y 1
3.b odd 2 1 8550.2.a.g 1
5.b even 2 1 570.2.a.b 1
5.c odd 4 2 2850.2.d.j 2
15.d odd 2 1 1710.2.a.s 1
20.d odd 2 1 4560.2.a.r 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.a.b 1 5.b even 2 1
1710.2.a.s 1 15.d odd 2 1
2850.2.a.y 1 1.a even 1 1 trivial
2850.2.d.j 2 5.c odd 4 2
4560.2.a.r 1 20.d odd 2 1
8550.2.a.g 1 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2850))$$:

 $$T_{7} + 2$$ $$T_{11} + 6$$ $$T_{13}$$ $$T_{23} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$-1 + T$$
$3$ $$-1 + T$$
$5$ $$T$$
$7$ $$2 + T$$
$11$ $$6 + T$$
$13$ $$T$$
$17$ $$2 + T$$
$19$ $$1 + T$$
$23$ $$4 + T$$
$29$ $$8 + T$$
$31$ $$8 + T$$
$37$ $$-4 + T$$
$41$ $$4 + T$$
$43$ $$-6 + T$$
$47$ $$-12 + T$$
$53$ $$6 + T$$
$59$ $$4 + T$$
$61$ $$-2 + T$$
$67$ $$-8 + T$$
$71$ $$T$$
$73$ $$6 + T$$
$79$ $$-8 + T$$
$83$ $$4 + T$$
$89$ $$4 + T$$
$97$ $$12 + T$$