# Properties

 Label 2850.2.a.i Level $2850$ Weight $2$ Character orbit 2850.a Self dual yes Analytic conductor $22.757$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2850.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$22.7573645761$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 570) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + O(q^{10})$$ $$q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} - 4q^{11} + q^{12} - 2q^{13} + q^{16} + 6q^{17} - q^{18} - q^{19} + 4q^{22} - 6q^{23} - q^{24} + 2q^{26} + q^{27} - 2q^{29} - 6q^{31} - q^{32} - 4q^{33} - 6q^{34} + q^{36} + 10q^{37} + q^{38} - 2q^{39} + 6q^{43} - 4q^{44} + 6q^{46} - 6q^{47} + q^{48} - 7q^{49} + 6q^{51} - 2q^{52} - 10q^{53} - q^{54} - q^{57} + 2q^{58} + 2q^{59} - 6q^{61} + 6q^{62} + q^{64} + 4q^{66} - 8q^{67} + 6q^{68} - 6q^{69} - 12q^{71} - q^{72} + 16q^{73} - 10q^{74} - q^{76} + 2q^{78} - 14q^{79} + q^{81} - 12q^{83} - 6q^{86} - 2q^{87} + 4q^{88} + 4q^{89} - 6q^{92} - 6q^{93} + 6q^{94} - q^{96} + 10q^{97} + 7q^{98} - 4q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 1.00000 1.00000 0 −1.00000 0 −1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2850.2.a.i 1
3.b odd 2 1 8550.2.a.bb 1
5.b even 2 1 2850.2.a.t 1
5.c odd 4 2 570.2.d.a 2
15.d odd 2 1 8550.2.a.k 1
15.e even 4 2 1710.2.d.b 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.d.a 2 5.c odd 4 2
1710.2.d.b 2 15.e even 4 2
2850.2.a.i 1 1.a even 1 1 trivial
2850.2.a.t 1 5.b even 2 1
8550.2.a.k 1 15.d odd 2 1
8550.2.a.bb 1 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2850))$$:

 $$T_{7}$$ $$T_{11} + 4$$ $$T_{13} + 2$$ $$T_{23} + 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T$$
$3$ $$-1 + T$$
$5$ $$T$$
$7$ $$T$$
$11$ $$4 + T$$
$13$ $$2 + T$$
$17$ $$-6 + T$$
$19$ $$1 + T$$
$23$ $$6 + T$$
$29$ $$2 + T$$
$31$ $$6 + T$$
$37$ $$-10 + T$$
$41$ $$T$$
$43$ $$-6 + T$$
$47$ $$6 + T$$
$53$ $$10 + T$$
$59$ $$-2 + T$$
$61$ $$6 + T$$
$67$ $$8 + T$$
$71$ $$12 + T$$
$73$ $$-16 + T$$
$79$ $$14 + T$$
$83$ $$12 + T$$
$89$ $$-4 + T$$
$97$ $$-10 + T$$
show more
show less