Properties

Label 2850.2.a.c
Level $2850$
Weight $2$
Character orbit 2850.a
Self dual yes
Analytic conductor $22.757$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2850.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.7573645761\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 570)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{6} - 2 q^{7} - q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} - q^{3} + q^{4} + q^{6} - 2 q^{7} - q^{8} + q^{9} + 6 q^{11} - q^{12} + 4 q^{13} + 2 q^{14} + q^{16} + 6 q^{17} - q^{18} + q^{19} + 2 q^{21} - 6 q^{22} + q^{24} - 4 q^{26} - q^{27} - 2 q^{28} + 8 q^{31} - q^{32} - 6 q^{33} - 6 q^{34} + q^{36} - 8 q^{37} - q^{38} - 4 q^{39} - 12 q^{41} - 2 q^{42} - 2 q^{43} + 6 q^{44} - q^{48} - 3 q^{49} - 6 q^{51} + 4 q^{52} + 6 q^{53} + q^{54} + 2 q^{56} - q^{57} - 12 q^{59} + 2 q^{61} - 8 q^{62} - 2 q^{63} + q^{64} + 6 q^{66} + 16 q^{67} + 6 q^{68} - q^{72} + 10 q^{73} + 8 q^{74} + q^{76} - 12 q^{77} + 4 q^{78} + 8 q^{79} + q^{81} + 12 q^{82} + 2 q^{84} + 2 q^{86} - 6 q^{88} - 12 q^{89} - 8 q^{91} - 8 q^{93} + q^{96} - 8 q^{97} + 3 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 1.00000 0 1.00000 −2.00000 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2850.2.a.c 1
3.b odd 2 1 8550.2.a.v 1
5.b even 2 1 570.2.a.k 1
5.c odd 4 2 2850.2.d.t 2
15.d odd 2 1 1710.2.a.j 1
20.d odd 2 1 4560.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.a.k 1 5.b even 2 1
1710.2.a.j 1 15.d odd 2 1
2850.2.a.c 1 1.a even 1 1 trivial
2850.2.d.t 2 5.c odd 4 2
4560.2.a.b 1 20.d odd 2 1
8550.2.a.v 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2850))\):

\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{11} - 6 \) Copy content Toggle raw display
\( T_{13} - 4 \) Copy content Toggle raw display
\( T_{23} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T - 6 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T - 6 \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 8 \) Copy content Toggle raw display
$37$ \( T + 8 \) Copy content Toggle raw display
$41$ \( T + 12 \) Copy content Toggle raw display
$43$ \( T + 2 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T - 16 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 10 \) Copy content Toggle raw display
$79$ \( T - 8 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 12 \) Copy content Toggle raw display
$97$ \( T + 8 \) Copy content Toggle raw display
show more
show less