# Properties

 Label 2850.2.a.bn Level $2850$ Weight $2$ Character orbit 2850.a Self dual yes Analytic conductor $22.757$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2850.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$22.7573645761$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.148.1 Defining polynomial: $$x^{3} - x^{2} - 3x + 1$$ x^3 - x^2 - 3*x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: no (minimal twist has level 570) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} + q^{4} + q^{6} + \beta_{2} q^{7} + q^{8} + q^{9}+O(q^{10})$$ q + q^2 + q^3 + q^4 + q^6 + b2 * q^7 + q^8 + q^9 $$q + q^{2} + q^{3} + q^{4} + q^{6} + \beta_{2} q^{7} + q^{8} + q^{9} + (\beta_{2} + \beta_1 - 1) q^{11} + q^{12} + ( - \beta_{2} + 2) q^{13} + \beta_{2} q^{14} + q^{16} + ( - \beta_1 + 3) q^{17} + q^{18} - q^{19} + \beta_{2} q^{21} + (\beta_{2} + \beta_1 - 1) q^{22} + ( - \beta_{2} + 2) q^{23} + q^{24} + ( - \beta_{2} + 2) q^{26} + q^{27} + \beta_{2} q^{28} + ( - \beta_{2} - \beta_1 + 3) q^{29} + ( - \beta_{2} + \beta_1 + 5) q^{31} + q^{32} + (\beta_{2} + \beta_1 - 1) q^{33} + ( - \beta_1 + 3) q^{34} + q^{36} + (\beta_{2} - 2 \beta_1) q^{37} - q^{38} + ( - \beta_{2} + 2) q^{39} - \beta_{2} q^{41} + \beta_{2} q^{42} + ( - \beta_{2} + \beta_1 - 3) q^{43} + (\beta_{2} + \beta_1 - 1) q^{44} + ( - \beta_{2} + 2) q^{46} + (\beta_{2} + 2 \beta_1) q^{47} + q^{48} + ( - 2 \beta_{2} - 2 \beta_1 + 3) q^{49} + ( - \beta_1 + 3) q^{51} + ( - \beta_{2} + 2) q^{52} + ( - 2 \beta_1 + 4) q^{53} + q^{54} + \beta_{2} q^{56} - q^{57} + ( - \beta_{2} - \beta_1 + 3) q^{58} + (\beta_1 + 5) q^{59} + 2 q^{61} + ( - \beta_{2} + \beta_1 + 5) q^{62} + \beta_{2} q^{63} + q^{64} + (\beta_{2} + \beta_1 - 1) q^{66} + (2 \beta_1 - 2) q^{67} + ( - \beta_1 + 3) q^{68} + ( - \beta_{2} + 2) q^{69} + ( - 2 \beta_{2} - 2 \beta_1 - 2) q^{71} + q^{72} + (2 \beta_{2} + 2 \beta_1 - 2) q^{73} + (\beta_{2} - 2 \beta_1) q^{74} - q^{76} + ( - 4 \beta_{2} + 8) q^{77} + ( - \beta_{2} + 2) q^{78} + (\beta_{2} - \beta_1 + 7) q^{79} + q^{81} - \beta_{2} q^{82} + ( - 3 \beta_1 - 1) q^{83} + \beta_{2} q^{84} + ( - \beta_{2} + \beta_1 - 3) q^{86} + ( - \beta_{2} - \beta_1 + 3) q^{87} + (\beta_{2} + \beta_1 - 1) q^{88} + (\beta_{2} + 2 \beta_1 + 2) q^{89} + (4 \beta_{2} + 2 \beta_1 - 10) q^{91} + ( - \beta_{2} + 2) q^{92} + ( - \beta_{2} + \beta_1 + 5) q^{93} + (\beta_{2} + 2 \beta_1) q^{94} + q^{96} + ( - 3 \beta_{2} - 3 \beta_1 - 3) q^{97} + ( - 2 \beta_{2} - 2 \beta_1 + 3) q^{98} + (\beta_{2} + \beta_1 - 1) q^{99}+O(q^{100})$$ q + q^2 + q^3 + q^4 + q^6 + b2 * q^7 + q^8 + q^9 + (b2 + b1 - 1) * q^11 + q^12 + (-b2 + 2) * q^13 + b2 * q^14 + q^16 + (-b1 + 3) * q^17 + q^18 - q^19 + b2 * q^21 + (b2 + b1 - 1) * q^22 + (-b2 + 2) * q^23 + q^24 + (-b2 + 2) * q^26 + q^27 + b2 * q^28 + (-b2 - b1 + 3) * q^29 + (-b2 + b1 + 5) * q^31 + q^32 + (b2 + b1 - 1) * q^33 + (-b1 + 3) * q^34 + q^36 + (b2 - 2*b1) * q^37 - q^38 + (-b2 + 2) * q^39 - b2 * q^41 + b2 * q^42 + (-b2 + b1 - 3) * q^43 + (b2 + b1 - 1) * q^44 + (-b2 + 2) * q^46 + (b2 + 2*b1) * q^47 + q^48 + (-2*b2 - 2*b1 + 3) * q^49 + (-b1 + 3) * q^51 + (-b2 + 2) * q^52 + (-2*b1 + 4) * q^53 + q^54 + b2 * q^56 - q^57 + (-b2 - b1 + 3) * q^58 + (b1 + 5) * q^59 + 2 * q^61 + (-b2 + b1 + 5) * q^62 + b2 * q^63 + q^64 + (b2 + b1 - 1) * q^66 + (2*b1 - 2) * q^67 + (-b1 + 3) * q^68 + (-b2 + 2) * q^69 + (-2*b2 - 2*b1 - 2) * q^71 + q^72 + (2*b2 + 2*b1 - 2) * q^73 + (b2 - 2*b1) * q^74 - q^76 + (-4*b2 + 8) * q^77 + (-b2 + 2) * q^78 + (b2 - b1 + 7) * q^79 + q^81 - b2 * q^82 + (-3*b1 - 1) * q^83 + b2 * q^84 + (-b2 + b1 - 3) * q^86 + (-b2 - b1 + 3) * q^87 + (b2 + b1 - 1) * q^88 + (b2 + 2*b1 + 2) * q^89 + (4*b2 + 2*b1 - 10) * q^91 + (-b2 + 2) * q^92 + (-b2 + b1 + 5) * q^93 + (b2 + 2*b1) * q^94 + q^96 + (-3*b2 - 3*b1 - 3) * q^97 + (-2*b2 - 2*b1 + 3) * q^98 + (b2 + b1 - 1) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} + 3 q^{6} + 3 q^{8} + 3 q^{9}+O(q^{10})$$ 3 * q + 3 * q^2 + 3 * q^3 + 3 * q^4 + 3 * q^6 + 3 * q^8 + 3 * q^9 $$3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} + 3 q^{6} + 3 q^{8} + 3 q^{9} - 4 q^{11} + 3 q^{12} + 6 q^{13} + 3 q^{16} + 10 q^{17} + 3 q^{18} - 3 q^{19} - 4 q^{22} + 6 q^{23} + 3 q^{24} + 6 q^{26} + 3 q^{27} + 10 q^{29} + 14 q^{31} + 3 q^{32} - 4 q^{33} + 10 q^{34} + 3 q^{36} + 2 q^{37} - 3 q^{38} + 6 q^{39} - 10 q^{43} - 4 q^{44} + 6 q^{46} - 2 q^{47} + 3 q^{48} + 11 q^{49} + 10 q^{51} + 6 q^{52} + 14 q^{53} + 3 q^{54} - 3 q^{57} + 10 q^{58} + 14 q^{59} + 6 q^{61} + 14 q^{62} + 3 q^{64} - 4 q^{66} - 8 q^{67} + 10 q^{68} + 6 q^{69} - 4 q^{71} + 3 q^{72} - 8 q^{73} + 2 q^{74} - 3 q^{76} + 24 q^{77} + 6 q^{78} + 22 q^{79} + 3 q^{81} - 10 q^{86} + 10 q^{87} - 4 q^{88} + 4 q^{89} - 32 q^{91} + 6 q^{92} + 14 q^{93} - 2 q^{94} + 3 q^{96} - 6 q^{97} + 11 q^{98} - 4 q^{99}+O(q^{100})$$ 3 * q + 3 * q^2 + 3 * q^3 + 3 * q^4 + 3 * q^6 + 3 * q^8 + 3 * q^9 - 4 * q^11 + 3 * q^12 + 6 * q^13 + 3 * q^16 + 10 * q^17 + 3 * q^18 - 3 * q^19 - 4 * q^22 + 6 * q^23 + 3 * q^24 + 6 * q^26 + 3 * q^27 + 10 * q^29 + 14 * q^31 + 3 * q^32 - 4 * q^33 + 10 * q^34 + 3 * q^36 + 2 * q^37 - 3 * q^38 + 6 * q^39 - 10 * q^43 - 4 * q^44 + 6 * q^46 - 2 * q^47 + 3 * q^48 + 11 * q^49 + 10 * q^51 + 6 * q^52 + 14 * q^53 + 3 * q^54 - 3 * q^57 + 10 * q^58 + 14 * q^59 + 6 * q^61 + 14 * q^62 + 3 * q^64 - 4 * q^66 - 8 * q^67 + 10 * q^68 + 6 * q^69 - 4 * q^71 + 3 * q^72 - 8 * q^73 + 2 * q^74 - 3 * q^76 + 24 * q^77 + 6 * q^78 + 22 * q^79 + 3 * q^81 - 10 * q^86 + 10 * q^87 - 4 * q^88 + 4 * q^89 - 32 * q^91 + 6 * q^92 + 14 * q^93 - 2 * q^94 + 3 * q^96 - 6 * q^97 + 11 * q^98 - 4 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 3x + 1$$ :

 $$\beta_{1}$$ $$=$$ $$2\nu - 1$$ 2*v - 1 $$\beta_{2}$$ $$=$$ $$2\nu^{2} - 2\nu - 4$$ 2*v^2 - 2*v - 4
 $$\nu$$ $$=$$ $$( \beta _1 + 1 ) / 2$$ (b1 + 1) / 2 $$\nu^{2}$$ $$=$$ $$( \beta_{2} + \beta _1 + 5 ) / 2$$ (b2 + b1 + 5) / 2

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0.311108 2.17009 −1.48119
1.00000 1.00000 1.00000 0 1.00000 −4.42864 1.00000 1.00000 0
1.2 1.00000 1.00000 1.00000 0 1.00000 1.07838 1.00000 1.00000 0
1.3 1.00000 1.00000 1.00000 0 1.00000 3.35026 1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2850.2.a.bn 3
3.b odd 2 1 8550.2.a.cf 3
5.b even 2 1 2850.2.a.bk 3
5.c odd 4 2 570.2.d.d 6
15.d odd 2 1 8550.2.a.cr 3
15.e even 4 2 1710.2.d.e 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.d.d 6 5.c odd 4 2
1710.2.d.e 6 15.e even 4 2
2850.2.a.bk 3 5.b even 2 1
2850.2.a.bn 3 1.a even 1 1 trivial
8550.2.a.cf 3 3.b odd 2 1
8550.2.a.cr 3 15.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2850))$$:

 $$T_{7}^{3} - 16T_{7} + 16$$ T7^3 - 16*T7 + 16 $$T_{11}^{3} + 4T_{11}^{2} - 16T_{11} - 32$$ T11^3 + 4*T11^2 - 16*T11 - 32 $$T_{13}^{3} - 6T_{13}^{2} - 4T_{13} + 8$$ T13^3 - 6*T13^2 - 4*T13 + 8 $$T_{23}^{3} - 6T_{23}^{2} - 4T_{23} + 8$$ T23^3 - 6*T23^2 - 4*T23 + 8

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T - 1)^{3}$$
$3$ $$(T - 1)^{3}$$
$5$ $$T^{3}$$
$7$ $$T^{3} - 16T + 16$$
$11$ $$T^{3} + 4 T^{2} - 16 T - 32$$
$13$ $$T^{3} - 6 T^{2} - 4 T + 8$$
$17$ $$T^{3} - 10 T^{2} + 20 T + 8$$
$19$ $$(T + 1)^{3}$$
$23$ $$T^{3} - 6 T^{2} - 4 T + 8$$
$29$ $$T^{3} - 10 T^{2} + 12 T + 40$$
$31$ $$T^{3} - 14 T^{2} + 28 T + 152$$
$37$ $$T^{3} - 2 T^{2} - 84 T - 232$$
$41$ $$T^{3} - 16T - 16$$
$43$ $$T^{3} + 10 T^{2} - 4 T - 8$$
$47$ $$T^{3} + 2 T^{2} - 52 T - 184$$
$53$ $$T^{3} - 14 T^{2} + 12 T + 152$$
$59$ $$T^{3} - 14 T^{2} + 52 T - 40$$
$61$ $$(T - 2)^{3}$$
$67$ $$T^{3} + 8 T^{2} - 32 T - 128$$
$71$ $$T^{3} + 4 T^{2} - 80 T - 64$$
$73$ $$T^{3} + 8 T^{2} - 64 T - 256$$
$79$ $$T^{3} - 22 T^{2} + 124 T - 200$$
$83$ $$T^{3} - 120T + 16$$
$89$ $$T^{3} - 4 T^{2} - 48 T - 80$$
$97$ $$T^{3} + 6 T^{2} - 180 T - 216$$