Properties

Label 2850.2.a.bn
Level $2850$
Weight $2$
Character orbit 2850.a
Self dual yes
Analytic conductor $22.757$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2850.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.7573645761\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Defining polynomial: \(x^{3} - x^{2} - 3 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 570)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + q^{6} + \beta_{2} q^{7} + q^{8} + q^{9} +O(q^{10})\) \( q + q^{2} + q^{3} + q^{4} + q^{6} + \beta_{2} q^{7} + q^{8} + q^{9} + ( -1 + \beta_{1} + \beta_{2} ) q^{11} + q^{12} + ( 2 - \beta_{2} ) q^{13} + \beta_{2} q^{14} + q^{16} + ( 3 - \beta_{1} ) q^{17} + q^{18} - q^{19} + \beta_{2} q^{21} + ( -1 + \beta_{1} + \beta_{2} ) q^{22} + ( 2 - \beta_{2} ) q^{23} + q^{24} + ( 2 - \beta_{2} ) q^{26} + q^{27} + \beta_{2} q^{28} + ( 3 - \beta_{1} - \beta_{2} ) q^{29} + ( 5 + \beta_{1} - \beta_{2} ) q^{31} + q^{32} + ( -1 + \beta_{1} + \beta_{2} ) q^{33} + ( 3 - \beta_{1} ) q^{34} + q^{36} + ( -2 \beta_{1} + \beta_{2} ) q^{37} - q^{38} + ( 2 - \beta_{2} ) q^{39} -\beta_{2} q^{41} + \beta_{2} q^{42} + ( -3 + \beta_{1} - \beta_{2} ) q^{43} + ( -1 + \beta_{1} + \beta_{2} ) q^{44} + ( 2 - \beta_{2} ) q^{46} + ( 2 \beta_{1} + \beta_{2} ) q^{47} + q^{48} + ( 3 - 2 \beta_{1} - 2 \beta_{2} ) q^{49} + ( 3 - \beta_{1} ) q^{51} + ( 2 - \beta_{2} ) q^{52} + ( 4 - 2 \beta_{1} ) q^{53} + q^{54} + \beta_{2} q^{56} - q^{57} + ( 3 - \beta_{1} - \beta_{2} ) q^{58} + ( 5 + \beta_{1} ) q^{59} + 2 q^{61} + ( 5 + \beta_{1} - \beta_{2} ) q^{62} + \beta_{2} q^{63} + q^{64} + ( -1 + \beta_{1} + \beta_{2} ) q^{66} + ( -2 + 2 \beta_{1} ) q^{67} + ( 3 - \beta_{1} ) q^{68} + ( 2 - \beta_{2} ) q^{69} + ( -2 - 2 \beta_{1} - 2 \beta_{2} ) q^{71} + q^{72} + ( -2 + 2 \beta_{1} + 2 \beta_{2} ) q^{73} + ( -2 \beta_{1} + \beta_{2} ) q^{74} - q^{76} + ( 8 - 4 \beta_{2} ) q^{77} + ( 2 - \beta_{2} ) q^{78} + ( 7 - \beta_{1} + \beta_{2} ) q^{79} + q^{81} -\beta_{2} q^{82} + ( -1 - 3 \beta_{1} ) q^{83} + \beta_{2} q^{84} + ( -3 + \beta_{1} - \beta_{2} ) q^{86} + ( 3 - \beta_{1} - \beta_{2} ) q^{87} + ( -1 + \beta_{1} + \beta_{2} ) q^{88} + ( 2 + 2 \beta_{1} + \beta_{2} ) q^{89} + ( -10 + 2 \beta_{1} + 4 \beta_{2} ) q^{91} + ( 2 - \beta_{2} ) q^{92} + ( 5 + \beta_{1} - \beta_{2} ) q^{93} + ( 2 \beta_{1} + \beta_{2} ) q^{94} + q^{96} + ( -3 - 3 \beta_{1} - 3 \beta_{2} ) q^{97} + ( 3 - 2 \beta_{1} - 2 \beta_{2} ) q^{98} + ( -1 + \beta_{1} + \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 3q^{2} + 3q^{3} + 3q^{4} + 3q^{6} + 3q^{8} + 3q^{9} + O(q^{10}) \) \( 3q + 3q^{2} + 3q^{3} + 3q^{4} + 3q^{6} + 3q^{8} + 3q^{9} - 4q^{11} + 3q^{12} + 6q^{13} + 3q^{16} + 10q^{17} + 3q^{18} - 3q^{19} - 4q^{22} + 6q^{23} + 3q^{24} + 6q^{26} + 3q^{27} + 10q^{29} + 14q^{31} + 3q^{32} - 4q^{33} + 10q^{34} + 3q^{36} + 2q^{37} - 3q^{38} + 6q^{39} - 10q^{43} - 4q^{44} + 6q^{46} - 2q^{47} + 3q^{48} + 11q^{49} + 10q^{51} + 6q^{52} + 14q^{53} + 3q^{54} - 3q^{57} + 10q^{58} + 14q^{59} + 6q^{61} + 14q^{62} + 3q^{64} - 4q^{66} - 8q^{67} + 10q^{68} + 6q^{69} - 4q^{71} + 3q^{72} - 8q^{73} + 2q^{74} - 3q^{76} + 24q^{77} + 6q^{78} + 22q^{79} + 3q^{81} - 10q^{86} + 10q^{87} - 4q^{88} + 4q^{89} - 32q^{91} + 6q^{92} + 14q^{93} - 2q^{94} + 3q^{96} - 6q^{97} + 11q^{98} - 4q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 3 x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( 2 \nu - 1 \)
\(\beta_{2}\)\(=\)\( 2 \nu^{2} - 2 \nu - 4 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{1} + 1\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{2} + \beta_{1} + 5\)\()/2\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.311108
2.17009
−1.48119
1.00000 1.00000 1.00000 0 1.00000 −4.42864 1.00000 1.00000 0
1.2 1.00000 1.00000 1.00000 0 1.00000 1.07838 1.00000 1.00000 0
1.3 1.00000 1.00000 1.00000 0 1.00000 3.35026 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2850.2.a.bn 3
3.b odd 2 1 8550.2.a.cf 3
5.b even 2 1 2850.2.a.bk 3
5.c odd 4 2 570.2.d.d 6
15.d odd 2 1 8550.2.a.cr 3
15.e even 4 2 1710.2.d.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.d.d 6 5.c odd 4 2
1710.2.d.e 6 15.e even 4 2
2850.2.a.bk 3 5.b even 2 1
2850.2.a.bn 3 1.a even 1 1 trivial
8550.2.a.cf 3 3.b odd 2 1
8550.2.a.cr 3 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2850))\):

\( T_{7}^{3} - 16 T_{7} + 16 \)
\( T_{11}^{3} + 4 T_{11}^{2} - 16 T_{11} - 32 \)
\( T_{13}^{3} - 6 T_{13}^{2} - 4 T_{13} + 8 \)
\( T_{23}^{3} - 6 T_{23}^{2} - 4 T_{23} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -1 + T )^{3} \)
$3$ \( ( -1 + T )^{3} \)
$5$ \( T^{3} \)
$7$ \( 16 - 16 T + T^{3} \)
$11$ \( -32 - 16 T + 4 T^{2} + T^{3} \)
$13$ \( 8 - 4 T - 6 T^{2} + T^{3} \)
$17$ \( 8 + 20 T - 10 T^{2} + T^{3} \)
$19$ \( ( 1 + T )^{3} \)
$23$ \( 8 - 4 T - 6 T^{2} + T^{3} \)
$29$ \( 40 + 12 T - 10 T^{2} + T^{3} \)
$31$ \( 152 + 28 T - 14 T^{2} + T^{3} \)
$37$ \( -232 - 84 T - 2 T^{2} + T^{3} \)
$41$ \( -16 - 16 T + T^{3} \)
$43$ \( -8 - 4 T + 10 T^{2} + T^{3} \)
$47$ \( -184 - 52 T + 2 T^{2} + T^{3} \)
$53$ \( 152 + 12 T - 14 T^{2} + T^{3} \)
$59$ \( -40 + 52 T - 14 T^{2} + T^{3} \)
$61$ \( ( -2 + T )^{3} \)
$67$ \( -128 - 32 T + 8 T^{2} + T^{3} \)
$71$ \( -64 - 80 T + 4 T^{2} + T^{3} \)
$73$ \( -256 - 64 T + 8 T^{2} + T^{3} \)
$79$ \( -200 + 124 T - 22 T^{2} + T^{3} \)
$83$ \( 16 - 120 T + T^{3} \)
$89$ \( -80 - 48 T - 4 T^{2} + T^{3} \)
$97$ \( -216 - 180 T + 6 T^{2} + T^{3} \)
show more
show less