Defining parameters
| Level: | \( N \) | \(=\) | \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2850.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 40 \) | ||
| Sturm bound: | \(1200\) | ||
| Trace bound: | \(23\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2850))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 624 | 56 | 568 |
| Cusp forms | 577 | 56 | 521 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(33\) | \(4\) | \(29\) | \(31\) | \(4\) | \(27\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(42\) | \(4\) | \(38\) | \(39\) | \(4\) | \(35\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(44\) | \(4\) | \(40\) | \(41\) | \(4\) | \(37\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(37\) | \(2\) | \(35\) | \(34\) | \(2\) | \(32\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(39\) | \(3\) | \(36\) | \(36\) | \(3\) | \(33\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(39\) | \(4\) | \(35\) | \(36\) | \(4\) | \(32\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(40\) | \(4\) | \(36\) | \(37\) | \(4\) | \(33\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(38\) | \(4\) | \(34\) | \(35\) | \(4\) | \(31\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(42\) | \(4\) | \(38\) | \(39\) | \(4\) | \(35\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(36\) | \(2\) | \(34\) | \(33\) | \(2\) | \(31\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(37\) | \(3\) | \(34\) | \(34\) | \(3\) | \(31\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(41\) | \(5\) | \(36\) | \(38\) | \(5\) | \(33\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(42\) | \(2\) | \(40\) | \(39\) | \(2\) | \(37\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(39\) | \(5\) | \(34\) | \(36\) | \(5\) | \(31\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(35\) | \(5\) | \(30\) | \(32\) | \(5\) | \(27\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(40\) | \(1\) | \(39\) | \(37\) | \(1\) | \(36\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(304\) | \(22\) | \(282\) | \(281\) | \(22\) | \(259\) | \(23\) | \(0\) | \(23\) | ||||||
| Minus space | \(-\) | \(320\) | \(34\) | \(286\) | \(296\) | \(34\) | \(262\) | \(24\) | \(0\) | \(24\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2850))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2850))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2850)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(190))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(285))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(475))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(570))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(950))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1425))\)\(^{\oplus 2}\)