Properties

Label 285.2.k.d.77.9
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.9
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.d.248.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0580413 + 0.0580413i) q^{2} +(0.605290 - 1.62284i) q^{3} +1.99326i q^{4} +(-1.89399 - 1.18861i) q^{5} +(0.0590602 + 0.129324i) q^{6} +(-2.14350 - 2.14350i) q^{7} +(-0.231774 - 0.231774i) q^{8} +(-2.26725 - 1.96458i) q^{9} +O(q^{10})\) \(q+(-0.0580413 + 0.0580413i) q^{2} +(0.605290 - 1.62284i) q^{3} +1.99326i q^{4} +(-1.89399 - 1.18861i) q^{5} +(0.0590602 + 0.129324i) q^{6} +(-2.14350 - 2.14350i) q^{7} +(-0.231774 - 0.231774i) q^{8} +(-2.26725 - 1.96458i) q^{9} +(0.178918 - 0.0409414i) q^{10} -4.16350i q^{11} +(3.23476 + 1.20650i) q^{12} +(2.98648 - 2.98648i) q^{13} +0.248823 q^{14} +(-3.07534 + 2.35420i) q^{15} -3.95962 q^{16} +(1.86072 - 1.86072i) q^{17} +(0.245621 - 0.0175672i) q^{18} +1.00000i q^{19} +(2.36921 - 3.77523i) q^{20} +(-4.77601 + 2.18113i) q^{21} +(0.241655 + 0.241655i) q^{22} +(5.35400 + 5.35400i) q^{23} +(-0.516424 + 0.235843i) q^{24} +(2.17442 + 4.50243i) q^{25} +0.346678i q^{26} +(-4.56055 + 2.49025i) q^{27} +(4.27256 - 4.27256i) q^{28} -5.48965 q^{29} +(0.0418557 - 0.315138i) q^{30} -0.743102 q^{31} +(0.693369 - 0.693369i) q^{32} +(-6.75672 - 2.52013i) q^{33} +0.215997i q^{34} +(1.51199 + 6.60756i) q^{35} +(3.91593 - 4.51922i) q^{36} +(-3.93981 - 3.93981i) q^{37} +(-0.0580413 - 0.0580413i) q^{38} +(-3.03891 - 6.65428i) q^{39} +(0.163490 + 0.714467i) q^{40} +7.30907i q^{41} +(0.150610 - 0.403801i) q^{42} +(2.54619 - 2.54619i) q^{43} +8.29896 q^{44} +(1.95904 + 6.41578i) q^{45} -0.621506 q^{46} +(4.88333 - 4.88333i) q^{47} +(-2.39672 + 6.42585i) q^{48} +2.18918i q^{49} +(-0.387533 - 0.135121i) q^{50} +(-1.89338 - 4.14593i) q^{51} +(5.95284 + 5.95284i) q^{52} +(1.58196 + 1.58196i) q^{53} +(0.120163 - 0.409238i) q^{54} +(-4.94878 + 7.88565i) q^{55} +0.993615i q^{56} +(1.62284 + 0.605290i) q^{57} +(0.318626 - 0.318626i) q^{58} +12.7007 q^{59} +(-4.69255 - 6.12996i) q^{60} -5.26300 q^{61} +(0.0431306 - 0.0431306i) q^{62} +(0.648767 + 9.07093i) q^{63} -7.83875i q^{64} +(-9.20613 + 2.10662i) q^{65} +(0.538440 - 0.245897i) q^{66} +(1.58677 + 1.58677i) q^{67} +(3.70890 + 3.70890i) q^{68} +(11.9294 - 5.44799i) q^{69} +(-0.471269 - 0.295753i) q^{70} -7.97592i q^{71} +(0.0701504 + 0.980828i) q^{72} +(3.09062 - 3.09062i) q^{73} +0.457343 q^{74} +(8.62290 - 0.803471i) q^{75} -1.99326 q^{76} +(-8.92447 + 8.92447i) q^{77} +(0.562605 + 0.209841i) q^{78} +4.68054i q^{79} +(7.49949 + 4.70644i) q^{80} +(1.28084 + 8.90839i) q^{81} +(-0.424228 - 0.424228i) q^{82} +(-0.803758 - 0.803758i) q^{83} +(-4.34756 - 9.51983i) q^{84} +(-5.73586 + 1.31252i) q^{85} +0.295569i q^{86} +(-3.32283 + 8.90884i) q^{87} +(-0.964992 + 0.964992i) q^{88} +7.94955 q^{89} +(-0.486085 - 0.258675i) q^{90} -12.8030 q^{91} +(-10.6719 + 10.6719i) q^{92} +(-0.449792 + 1.20594i) q^{93} +0.566869i q^{94} +(1.18861 - 1.89399i) q^{95} +(-0.705541 - 1.54492i) q^{96} +(11.4514 + 11.4514i) q^{97} +(-0.127063 - 0.127063i) q^{98} +(-8.17954 + 9.43970i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7} - 4 q^{10} - 18 q^{12} - 8 q^{13} - 8 q^{15} - 84 q^{16} + 8 q^{21} + 40 q^{22} - 20 q^{25} - 14 q^{27} + 36 q^{28} + 28 q^{30} - 28 q^{33} + 92 q^{36} - 4 q^{37} - 20 q^{40} - 100 q^{42} + 16 q^{43} + 28 q^{45} - 24 q^{46} - 58 q^{48} + 32 q^{51} + 148 q^{52} - 72 q^{55} - 2 q^{57} - 12 q^{58} + 58 q^{60} - 112 q^{61} - 64 q^{63} + 92 q^{66} - 8 q^{67} + 8 q^{70} - 88 q^{72} + 76 q^{73} + 80 q^{75} + 36 q^{76} - 36 q^{78} + 4 q^{81} + 20 q^{82} - 28 q^{85} - 4 q^{87} + 140 q^{88} + 76 q^{90} - 24 q^{91} - 48 q^{93} + 32 q^{96} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0580413 + 0.0580413i −0.0410414 + 0.0410414i −0.727330 0.686288i \(-0.759239\pi\)
0.686288 + 0.727330i \(0.259239\pi\)
\(3\) 0.605290 1.62284i 0.349464 0.936950i
\(4\) 1.99326i 0.996631i
\(5\) −1.89399 1.18861i −0.847020 0.531562i
\(6\) 0.0590602 + 0.129324i 0.0241112 + 0.0527962i
\(7\) −2.14350 2.14350i −0.810167 0.810167i 0.174492 0.984659i \(-0.444172\pi\)
−0.984659 + 0.174492i \(0.944172\pi\)
\(8\) −0.231774 0.231774i −0.0819445 0.0819445i
\(9\) −2.26725 1.96458i −0.755750 0.654861i
\(10\) 0.178918 0.0409414i 0.0565789 0.0129468i
\(11\) 4.16350i 1.25534i −0.778478 0.627672i \(-0.784008\pi\)
0.778478 0.627672i \(-0.215992\pi\)
\(12\) 3.23476 + 1.20650i 0.933793 + 0.348287i
\(13\) 2.98648 2.98648i 0.828300 0.828300i −0.158981 0.987282i \(-0.550821\pi\)
0.987282 + 0.158981i \(0.0508210\pi\)
\(14\) 0.248823 0.0665007
\(15\) −3.07534 + 2.35420i −0.794050 + 0.607853i
\(16\) −3.95962 −0.989905
\(17\) 1.86072 1.86072i 0.451291 0.451291i −0.444492 0.895783i \(-0.646616\pi\)
0.895783 + 0.444492i \(0.146616\pi\)
\(18\) 0.245621 0.0175672i 0.0578934 0.00414063i
\(19\) 1.00000i 0.229416i
\(20\) 2.36921 3.77523i 0.529771 0.844166i
\(21\) −4.77601 + 2.18113i −1.04221 + 0.475961i
\(22\) 0.241655 + 0.241655i 0.0515210 + 0.0515210i
\(23\) 5.35400 + 5.35400i 1.11639 + 1.11639i 0.992267 + 0.124120i \(0.0396107\pi\)
0.124120 + 0.992267i \(0.460389\pi\)
\(24\) −0.516424 + 0.235843i −0.105415 + 0.0481412i
\(25\) 2.17442 + 4.50243i 0.434884 + 0.900486i
\(26\) 0.346678i 0.0679892i
\(27\) −4.56055 + 2.49025i −0.877679 + 0.479249i
\(28\) 4.27256 4.27256i 0.807438 0.807438i
\(29\) −5.48965 −1.01940 −0.509701 0.860352i \(-0.670244\pi\)
−0.509701 + 0.860352i \(0.670244\pi\)
\(30\) 0.0418557 0.315138i 0.00764177 0.0575360i
\(31\) −0.743102 −0.133465 −0.0667325 0.997771i \(-0.521257\pi\)
−0.0667325 + 0.997771i \(0.521257\pi\)
\(32\) 0.693369 0.693369i 0.122572 0.122572i
\(33\) −6.75672 2.52013i −1.17619 0.438698i
\(34\) 0.215997i 0.0370432i
\(35\) 1.51199 + 6.60756i 0.255573 + 1.11688i
\(36\) 3.91593 4.51922i 0.652655 0.753204i
\(37\) −3.93981 3.93981i −0.647701 0.647701i 0.304736 0.952437i \(-0.401432\pi\)
−0.952437 + 0.304736i \(0.901432\pi\)
\(38\) −0.0580413 0.0580413i −0.00941554 0.00941554i
\(39\) −3.03891 6.65428i −0.486615 1.06554i
\(40\) 0.163490 + 0.714467i 0.0258500 + 0.112967i
\(41\) 7.30907i 1.14148i 0.821129 + 0.570742i \(0.193345\pi\)
−0.821129 + 0.570742i \(0.806655\pi\)
\(42\) 0.150610 0.403801i 0.0232396 0.0623078i
\(43\) 2.54619 2.54619i 0.388291 0.388291i −0.485786 0.874078i \(-0.661467\pi\)
0.874078 + 0.485786i \(0.161467\pi\)
\(44\) 8.29896 1.25111
\(45\) 1.95904 + 6.41578i 0.292036 + 0.956407i
\(46\) −0.621506 −0.0916361
\(47\) 4.88333 4.88333i 0.712306 0.712306i −0.254711 0.967017i \(-0.581980\pi\)
0.967017 + 0.254711i \(0.0819803\pi\)
\(48\) −2.39672 + 6.42585i −0.345936 + 0.927491i
\(49\) 2.18918i 0.312741i
\(50\) −0.387533 0.135121i −0.0548054 0.0191090i
\(51\) −1.89338 4.14593i −0.265127 0.580547i
\(52\) 5.95284 + 5.95284i 0.825510 + 0.825510i
\(53\) 1.58196 + 1.58196i 0.217299 + 0.217299i 0.807359 0.590060i \(-0.200896\pi\)
−0.590060 + 0.807359i \(0.700896\pi\)
\(54\) 0.120163 0.409238i 0.0163521 0.0556902i
\(55\) −4.94878 + 7.88565i −0.667293 + 1.06330i
\(56\) 0.993615i 0.132777i
\(57\) 1.62284 + 0.605290i 0.214951 + 0.0801726i
\(58\) 0.318626 0.318626i 0.0418376 0.0418376i
\(59\) 12.7007 1.65349 0.826746 0.562575i \(-0.190189\pi\)
0.826746 + 0.562575i \(0.190189\pi\)
\(60\) −4.69255 6.12996i −0.605805 0.791375i
\(61\) −5.26300 −0.673858 −0.336929 0.941530i \(-0.609388\pi\)
−0.336929 + 0.941530i \(0.609388\pi\)
\(62\) 0.0431306 0.0431306i 0.00547759 0.00547759i
\(63\) 0.648767 + 9.07093i 0.0817370 + 1.14283i
\(64\) 7.83875i 0.979844i
\(65\) −9.20613 + 2.10662i −1.14188 + 0.261294i
\(66\) 0.538440 0.245897i 0.0662774 0.0302679i
\(67\) 1.58677 + 1.58677i 0.193855 + 0.193855i 0.797360 0.603505i \(-0.206229\pi\)
−0.603505 + 0.797360i \(0.706229\pi\)
\(68\) 3.70890 + 3.70890i 0.449771 + 0.449771i
\(69\) 11.9294 5.44799i 1.43614 0.655861i
\(70\) −0.471269 0.295753i −0.0563274 0.0353492i
\(71\) 7.97592i 0.946568i −0.880910 0.473284i \(-0.843068\pi\)
0.880910 0.473284i \(-0.156932\pi\)
\(72\) 0.0701504 + 0.980828i 0.00826730 + 0.115592i
\(73\) 3.09062 3.09062i 0.361729 0.361729i −0.502720 0.864449i \(-0.667667\pi\)
0.864449 + 0.502720i \(0.167667\pi\)
\(74\) 0.457343 0.0531650
\(75\) 8.62290 0.803471i 0.995687 0.0927769i
\(76\) −1.99326 −0.228643
\(77\) −8.92447 + 8.92447i −1.01704 + 1.01704i
\(78\) 0.562605 + 0.209841i 0.0637024 + 0.0237598i
\(79\) 4.68054i 0.526602i 0.964714 + 0.263301i \(0.0848113\pi\)
−0.964714 + 0.263301i \(0.915189\pi\)
\(80\) 7.49949 + 4.70644i 0.838469 + 0.526196i
\(81\) 1.28084 + 8.90839i 0.142315 + 0.989821i
\(82\) −0.424228 0.424228i −0.0468481 0.0468481i
\(83\) −0.803758 0.803758i −0.0882239 0.0882239i 0.661618 0.749841i \(-0.269870\pi\)
−0.749841 + 0.661618i \(0.769870\pi\)
\(84\) −4.34756 9.51983i −0.474358 1.03870i
\(85\) −5.73586 + 1.31252i −0.622141 + 0.142363i
\(86\) 0.295569i 0.0318720i
\(87\) −3.32283 + 8.90884i −0.356244 + 0.955128i
\(88\) −0.964992 + 0.964992i −0.102868 + 0.102868i
\(89\) 7.94955 0.842650 0.421325 0.906910i \(-0.361565\pi\)
0.421325 + 0.906910i \(0.361565\pi\)
\(90\) −0.486085 0.258675i −0.0512378 0.0272667i
\(91\) −12.8030 −1.34212
\(92\) −10.6719 + 10.6719i −1.11263 + 1.11263i
\(93\) −0.449792 + 1.20594i −0.0466412 + 0.125050i
\(94\) 0.566869i 0.0584681i
\(95\) 1.18861 1.89399i 0.121949 0.194320i
\(96\) −0.705541 1.54492i −0.0720090 0.157678i
\(97\) 11.4514 + 11.4514i 1.16271 + 1.16271i 0.983880 + 0.178830i \(0.0572313\pi\)
0.178830 + 0.983880i \(0.442769\pi\)
\(98\) −0.127063 0.127063i −0.0128353 0.0128353i
\(99\) −8.17954 + 9.43970i −0.822075 + 0.948726i
\(100\) −8.97453 + 4.33419i −0.897453 + 0.433419i
\(101\) 3.95414i 0.393451i −0.980459 0.196726i \(-0.936969\pi\)
0.980459 0.196726i \(-0.0630308\pi\)
\(102\) 0.350530 + 0.130741i 0.0347076 + 0.0129453i
\(103\) 4.59293 4.59293i 0.452554 0.452554i −0.443647 0.896202i \(-0.646316\pi\)
0.896202 + 0.443647i \(0.146316\pi\)
\(104\) −1.38438 −0.135749
\(105\) 11.6382 + 1.54576i 1.13577 + 0.150850i
\(106\) −0.183638 −0.0178365
\(107\) 5.73547 5.73547i 0.554469 0.554469i −0.373259 0.927727i \(-0.621760\pi\)
0.927727 + 0.373259i \(0.121760\pi\)
\(108\) −4.96373 9.09038i −0.477635 0.874722i
\(109\) 15.4746i 1.48220i −0.671397 0.741098i \(-0.734306\pi\)
0.671397 0.741098i \(-0.265694\pi\)
\(110\) −0.170460 0.744926i −0.0162527 0.0710259i
\(111\) −8.77842 + 4.00897i −0.833211 + 0.380515i
\(112\) 8.48744 + 8.48744i 0.801988 + 0.801988i
\(113\) −9.52067 9.52067i −0.895629 0.895629i 0.0994165 0.995046i \(-0.468302\pi\)
−0.995046 + 0.0994165i \(0.968302\pi\)
\(114\) −0.129324 + 0.0590602i −0.0121123 + 0.00553149i
\(115\) −3.77663 16.5043i −0.352173 1.53903i
\(116\) 10.9423i 1.01597i
\(117\) −12.6383 + 0.903909i −1.16841 + 0.0835665i
\(118\) −0.737165 + 0.737165i −0.0678616 + 0.0678616i
\(119\) −7.97691 −0.731242
\(120\) 1.25843 + 0.167141i 0.114878 + 0.0152578i
\(121\) −6.33476 −0.575888
\(122\) 0.305471 0.305471i 0.0276561 0.0276561i
\(123\) 11.8615 + 4.42410i 1.06951 + 0.398908i
\(124\) 1.48120i 0.133015i
\(125\) 1.23329 11.1121i 0.110309 0.993897i
\(126\) −0.564143 0.488833i −0.0502579 0.0435487i
\(127\) 4.31844 + 4.31844i 0.383199 + 0.383199i 0.872253 0.489054i \(-0.162658\pi\)
−0.489054 + 0.872253i \(0.662658\pi\)
\(128\) 1.84171 + 1.84171i 0.162786 + 0.162786i
\(129\) −2.59089 5.67326i −0.228115 0.499503i
\(130\) 0.412064 0.656606i 0.0361404 0.0575881i
\(131\) 5.60156i 0.489410i 0.969598 + 0.244705i \(0.0786912\pi\)
−0.969598 + 0.244705i \(0.921309\pi\)
\(132\) 5.02327 13.4679i 0.437220 1.17223i
\(133\) 2.14350 2.14350i 0.185865 0.185865i
\(134\) −0.184196 −0.0159121
\(135\) 11.5976 + 0.704191i 0.998162 + 0.0606071i
\(136\) −0.862533 −0.0739616
\(137\) 10.8653 10.8653i 0.928282 0.928282i −0.0693125 0.997595i \(-0.522081\pi\)
0.997595 + 0.0693125i \(0.0220806\pi\)
\(138\) −0.376191 + 1.00861i −0.0320235 + 0.0858584i
\(139\) 17.0106i 1.44282i 0.692509 + 0.721409i \(0.256505\pi\)
−0.692509 + 0.721409i \(0.743495\pi\)
\(140\) −13.1706 + 3.01380i −1.11312 + 0.254712i
\(141\) −4.96905 10.8807i −0.418470 0.916321i
\(142\) 0.462933 + 0.462933i 0.0388484 + 0.0388484i
\(143\) −12.4342 12.4342i −1.03980 1.03980i
\(144\) 8.97744 + 7.77900i 0.748120 + 0.648250i
\(145\) 10.3974 + 6.52504i 0.863453 + 0.541875i
\(146\) 0.358767i 0.0296917i
\(147\) 3.55270 + 1.32509i 0.293022 + 0.109292i
\(148\) 7.85307 7.85307i 0.645519 0.645519i
\(149\) −18.4556 −1.51194 −0.755972 0.654604i \(-0.772835\pi\)
−0.755972 + 0.654604i \(0.772835\pi\)
\(150\) −0.453850 + 0.547119i −0.0370567 + 0.0446720i
\(151\) 22.7751 1.85341 0.926707 0.375786i \(-0.122627\pi\)
0.926707 + 0.375786i \(0.122627\pi\)
\(152\) 0.231774 0.231774i 0.0187994 0.0187994i
\(153\) −7.87425 + 0.563179i −0.636596 + 0.0455303i
\(154\) 1.03597i 0.0834812i
\(155\) 1.40743 + 0.883257i 0.113047 + 0.0709449i
\(156\) 13.2637 6.05734i 1.06195 0.484975i
\(157\) −13.8123 13.8123i −1.10234 1.10234i −0.994127 0.108216i \(-0.965486\pi\)
−0.108216 0.994127i \(-0.534514\pi\)
\(158\) −0.271665 0.271665i −0.0216125 0.0216125i
\(159\) 3.52482 1.60973i 0.279536 0.127660i
\(160\) −2.13738 + 0.489092i −0.168975 + 0.0386661i
\(161\) 22.9526i 1.80892i
\(162\) −0.591396 0.442713i −0.0464644 0.0347828i
\(163\) 5.45224 5.45224i 0.427052 0.427052i −0.460571 0.887623i \(-0.652355\pi\)
0.887623 + 0.460571i \(0.152355\pi\)
\(164\) −14.5689 −1.13764
\(165\) 9.80174 + 12.8042i 0.763064 + 0.996805i
\(166\) 0.0933023 0.00724166
\(167\) −7.44685 + 7.44685i −0.576254 + 0.576254i −0.933869 0.357615i \(-0.883590\pi\)
0.357615 + 0.933869i \(0.383590\pi\)
\(168\) 1.61248 + 0.601425i 0.124406 + 0.0464009i
\(169\) 4.83812i 0.372163i
\(170\) 0.256736 0.409097i 0.0196907 0.0313763i
\(171\) 1.96458 2.26725i 0.150235 0.173381i
\(172\) 5.07523 + 5.07523i 0.386983 + 0.386983i
\(173\) −8.58517 8.58517i −0.652718 0.652718i 0.300929 0.953647i \(-0.402703\pi\)
−0.953647 + 0.300929i \(0.902703\pi\)
\(174\) −0.324219 0.709941i −0.0245790 0.0538205i
\(175\) 4.99009 14.3118i 0.377216 1.08187i
\(176\) 16.4859i 1.24267i
\(177\) 7.68761 20.6113i 0.577836 1.54924i
\(178\) −0.461402 + 0.461402i −0.0345835 + 0.0345835i
\(179\) −3.44269 −0.257319 −0.128659 0.991689i \(-0.541067\pi\)
−0.128659 + 0.991689i \(0.541067\pi\)
\(180\) −12.7883 + 3.90487i −0.953185 + 0.291052i
\(181\) 4.53119 0.336800 0.168400 0.985719i \(-0.446140\pi\)
0.168400 + 0.985719i \(0.446140\pi\)
\(182\) 0.743104 0.743104i 0.0550826 0.0550826i
\(183\) −3.18564 + 8.54104i −0.235489 + 0.631372i
\(184\) 2.48184i 0.182964i
\(185\) 2.77908 + 12.1449i 0.204322 + 0.892908i
\(186\) −0.0438877 0.0961007i −0.00321800 0.00704644i
\(187\) −7.74711 7.74711i −0.566525 0.566525i
\(188\) 9.73375 + 9.73375i 0.709907 + 0.709907i
\(189\) 15.1134 + 4.43769i 1.09934 + 0.322794i
\(190\) 0.0409414 + 0.178918i 0.00297020 + 0.0129801i
\(191\) 16.7193i 1.20976i 0.796315 + 0.604882i \(0.206780\pi\)
−0.796315 + 0.604882i \(0.793220\pi\)
\(192\) −12.7211 4.74471i −0.918065 0.342420i
\(193\) −1.70638 + 1.70638i −0.122828 + 0.122828i −0.765849 0.643021i \(-0.777681\pi\)
0.643021 + 0.765849i \(0.277681\pi\)
\(194\) −1.32930 −0.0954384
\(195\) −2.15366 + 16.2152i −0.154227 + 1.16120i
\(196\) −4.36362 −0.311687
\(197\) −18.8065 + 18.8065i −1.33991 + 1.33991i −0.443770 + 0.896141i \(0.646359\pi\)
−0.896141 + 0.443770i \(0.853641\pi\)
\(198\) −0.0731411 1.02264i −0.00519791 0.0726761i
\(199\) 14.8863i 1.05526i 0.849475 + 0.527630i \(0.176919\pi\)
−0.849475 + 0.527630i \(0.823081\pi\)
\(200\) 0.539573 1.54752i 0.0381535 0.109426i
\(201\) 3.53554 1.61463i 0.249378 0.113887i
\(202\) 0.229503 + 0.229503i 0.0161478 + 0.0161478i
\(203\) 11.7671 + 11.7671i 0.825885 + 0.825885i
\(204\) 8.26393 3.77401i 0.578591 0.264234i
\(205\) 8.68762 13.8433i 0.606770 0.966860i
\(206\) 0.533158i 0.0371469i
\(207\) −1.62048 22.6572i −0.112631 1.57479i
\(208\) −11.8253 + 11.8253i −0.819939 + 0.819939i
\(209\) 4.16350 0.287996
\(210\) −0.765215 + 0.585780i −0.0528049 + 0.0404227i
\(211\) −14.2111 −0.978335 −0.489168 0.872190i \(-0.662699\pi\)
−0.489168 + 0.872190i \(0.662699\pi\)
\(212\) −3.15326 + 3.15326i −0.216567 + 0.216567i
\(213\) −12.9437 4.82774i −0.886887 0.330791i
\(214\) 0.665788i 0.0455123i
\(215\) −7.84890 + 1.79605i −0.535291 + 0.122489i
\(216\) 1.63419 + 0.479842i 0.111193 + 0.0326491i
\(217\) 1.59284 + 1.59284i 0.108129 + 0.108129i
\(218\) 0.898164 + 0.898164i 0.0608313 + 0.0608313i
\(219\) −3.14487 6.88631i −0.212511 0.465334i
\(220\) −15.7182 9.86421i −1.05972 0.665045i
\(221\) 11.1140i 0.747609i
\(222\) 0.276825 0.742197i 0.0185793 0.0498130i
\(223\) −18.1315 + 18.1315i −1.21417 + 1.21417i −0.244532 + 0.969641i \(0.578634\pi\)
−0.969641 + 0.244532i \(0.921366\pi\)
\(224\) −2.97247 −0.198607
\(225\) 3.91544 14.4800i 0.261030 0.965331i
\(226\) 1.10518 0.0735157
\(227\) 18.1839 18.1839i 1.20691 1.20691i 0.234888 0.972022i \(-0.424528\pi\)
0.972022 0.234888i \(-0.0754724\pi\)
\(228\) −1.20650 + 3.23476i −0.0799025 + 0.214227i
\(229\) 29.0631i 1.92055i 0.279061 + 0.960273i \(0.409977\pi\)
−0.279061 + 0.960273i \(0.590023\pi\)
\(230\) 1.17713 + 0.738728i 0.0776176 + 0.0487103i
\(231\) 9.08114 + 19.8849i 0.597495 + 1.30833i
\(232\) 1.27236 + 1.27236i 0.0835343 + 0.0835343i
\(233\) −7.51531 7.51531i −0.492345 0.492345i 0.416700 0.909044i \(-0.363187\pi\)
−0.909044 + 0.416700i \(0.863187\pi\)
\(234\) 0.681077 0.786005i 0.0445234 0.0513828i
\(235\) −15.0533 + 3.44462i −0.981972 + 0.224703i
\(236\) 25.3159i 1.64792i
\(237\) 7.59580 + 2.83309i 0.493400 + 0.184029i
\(238\) 0.462990 0.462990i 0.0300112 0.0300112i
\(239\) −2.82540 −0.182760 −0.0913799 0.995816i \(-0.529128\pi\)
−0.0913799 + 0.995816i \(0.529128\pi\)
\(240\) 12.1772 9.32175i 0.786034 0.601717i
\(241\) −8.64879 −0.557118 −0.278559 0.960419i \(-0.589857\pi\)
−0.278559 + 0.960419i \(0.589857\pi\)
\(242\) 0.367678 0.367678i 0.0236352 0.0236352i
\(243\) 15.2322 + 3.31356i 0.977147 + 0.212565i
\(244\) 10.4905i 0.671588i
\(245\) 2.60208 4.14630i 0.166241 0.264897i
\(246\) −0.945236 + 0.431675i −0.0602660 + 0.0275226i
\(247\) 2.98648 + 2.98648i 0.190025 + 0.190025i
\(248\) 0.172232 + 0.172232i 0.0109367 + 0.0109367i
\(249\) −1.79088 + 0.817868i −0.113492 + 0.0518303i
\(250\) 0.573379 + 0.716543i 0.0362637 + 0.0453181i
\(251\) 11.8528i 0.748144i 0.927400 + 0.374072i \(0.122039\pi\)
−0.927400 + 0.374072i \(0.877961\pi\)
\(252\) −18.0807 + 1.29316i −1.13898 + 0.0814616i
\(253\) 22.2914 22.2914i 1.40145 1.40145i
\(254\) −0.501295 −0.0314541
\(255\) −1.34183 + 10.1029i −0.0840289 + 0.632666i
\(256\) 15.4637 0.966482
\(257\) 0.0936028 0.0936028i 0.00583878 0.00583878i −0.704181 0.710020i \(-0.748686\pi\)
0.710020 + 0.704181i \(0.248686\pi\)
\(258\) 0.479662 + 0.178905i 0.0298625 + 0.0111381i
\(259\) 16.8900i 1.04949i
\(260\) −4.19904 18.3502i −0.260413 1.13803i
\(261\) 12.4464 + 10.7849i 0.770412 + 0.667566i
\(262\) −0.325122 0.325122i −0.0200861 0.0200861i
\(263\) 9.94320 + 9.94320i 0.613124 + 0.613124i 0.943759 0.330635i \(-0.107263\pi\)
−0.330635 + 0.943759i \(0.607263\pi\)
\(264\) 0.981932 + 2.15013i 0.0604338 + 0.132331i
\(265\) −1.11589 4.87655i −0.0685486 0.299564i
\(266\) 0.248823i 0.0152563i
\(267\) 4.81178 12.9009i 0.294476 0.789521i
\(268\) −3.16285 + 3.16285i −0.193202 + 0.193202i
\(269\) −17.9294 −1.09317 −0.546587 0.837402i \(-0.684073\pi\)
−0.546587 + 0.837402i \(0.684073\pi\)
\(270\) −0.714011 + 0.632267i −0.0434533 + 0.0384785i
\(271\) 7.52729 0.457250 0.228625 0.973515i \(-0.426577\pi\)
0.228625 + 0.973515i \(0.426577\pi\)
\(272\) −7.36774 + 7.36774i −0.446735 + 0.446735i
\(273\) −7.74954 + 20.7773i −0.469024 + 1.25750i
\(274\) 1.26127i 0.0761960i
\(275\) 18.7459 9.05321i 1.13042 0.545929i
\(276\) 10.8593 + 23.7785i 0.653652 + 1.43130i
\(277\) 7.53970 + 7.53970i 0.453017 + 0.453017i 0.896355 0.443338i \(-0.146206\pi\)
−0.443338 + 0.896355i \(0.646206\pi\)
\(278\) −0.987315 0.987315i −0.0592152 0.0592152i
\(279\) 1.68480 + 1.45988i 0.100866 + 0.0874010i
\(280\) 1.18102 1.88190i 0.0705794 0.112465i
\(281\) 30.1264i 1.79719i −0.438780 0.898594i \(-0.644589\pi\)
0.438780 0.898594i \(-0.355411\pi\)
\(282\) 0.919940 + 0.343120i 0.0547816 + 0.0204325i
\(283\) 10.5281 10.5281i 0.625832 0.625832i −0.321184 0.947017i \(-0.604081\pi\)
0.947017 + 0.321184i \(0.104081\pi\)
\(284\) 15.8981 0.943379
\(285\) −2.35420 3.07534i −0.139451 0.182167i
\(286\) 1.44340 0.0853498
\(287\) 15.6670 15.6670i 0.924793 0.924793i
\(288\) −2.93422 + 0.209860i −0.172901 + 0.0123661i
\(289\) 10.0754i 0.592673i
\(290\) −0.982197 + 0.224754i −0.0576766 + 0.0131980i
\(291\) 25.5152 11.6524i 1.49573 0.683076i
\(292\) 6.16041 + 6.16041i 0.360511 + 0.360511i
\(293\) 12.9048 + 12.9048i 0.753906 + 0.753906i 0.975206 0.221300i \(-0.0710299\pi\)
−0.221300 + 0.975206i \(0.571030\pi\)
\(294\) −0.283113 + 0.129294i −0.0165115 + 0.00754055i
\(295\) −24.0551 15.0962i −1.40054 0.878933i
\(296\) 1.82629i 0.106151i
\(297\) 10.3682 + 18.9879i 0.601622 + 1.10179i
\(298\) 1.07119 1.07119i 0.0620523 0.0620523i
\(299\) 31.9792 1.84941
\(300\) 1.60153 + 17.1877i 0.0924643 + 0.992333i
\(301\) −10.9155 −0.629161
\(302\) −1.32190 + 1.32190i −0.0760666 + 0.0760666i
\(303\) −6.41695 2.39340i −0.368644 0.137497i
\(304\) 3.95962i 0.227100i
\(305\) 9.96809 + 6.25565i 0.570771 + 0.358197i
\(306\) 0.424344 0.489719i 0.0242581 0.0279954i
\(307\) −2.49080 2.49080i −0.142157 0.142157i 0.632447 0.774604i \(-0.282051\pi\)
−0.774604 + 0.632447i \(0.782051\pi\)
\(308\) −17.7888 17.7888i −1.01361 1.01361i
\(309\) −4.67355 10.2337i −0.265869 0.582172i
\(310\) −0.132954 + 0.0304236i −0.00755130 + 0.00172795i
\(311\) 28.0331i 1.58961i 0.606863 + 0.794806i \(0.292428\pi\)
−0.606863 + 0.794806i \(0.707572\pi\)
\(312\) −0.837949 + 2.24663i −0.0474395 + 0.127190i
\(313\) −4.14796 + 4.14796i −0.234457 + 0.234457i −0.814550 0.580093i \(-0.803016\pi\)
0.580093 + 0.814550i \(0.303016\pi\)
\(314\) 1.60337 0.0904834
\(315\) 9.55302 17.9514i 0.538252 1.01145i
\(316\) −9.32955 −0.524828
\(317\) 12.4734 12.4734i 0.700577 0.700577i −0.263957 0.964534i \(-0.585028\pi\)
0.964534 + 0.263957i \(0.0850278\pi\)
\(318\) −0.111154 + 0.298016i −0.00623322 + 0.0167119i
\(319\) 22.8562i 1.27970i
\(320\) −9.31721 + 14.8465i −0.520848 + 0.829947i
\(321\) −5.83616 12.7794i −0.325742 0.713276i
\(322\) 1.33220 + 1.33220i 0.0742405 + 0.0742405i
\(323\) 1.86072 + 1.86072i 0.103533 + 0.103533i
\(324\) −17.7568 + 2.55304i −0.986487 + 0.141836i
\(325\) 19.9403 + 6.95256i 1.10609 + 0.385659i
\(326\) 0.632910i 0.0350536i
\(327\) −25.1128 9.36660i −1.38874 0.517974i
\(328\) 1.69405 1.69405i 0.0935384 0.0935384i
\(329\) −20.9348 −1.15417
\(330\) −1.31208 0.174266i −0.0722275 0.00959304i
\(331\) 13.2958 0.730803 0.365401 0.930850i \(-0.380932\pi\)
0.365401 + 0.930850i \(0.380932\pi\)
\(332\) 1.60210 1.60210i 0.0879267 0.0879267i
\(333\) 1.19245 + 16.6726i 0.0653459 + 0.913653i
\(334\) 0.864449i 0.0473005i
\(335\) −1.11928 4.89138i −0.0611531 0.267245i
\(336\) 18.9112 8.63644i 1.03169 0.471157i
\(337\) −7.67694 7.67694i −0.418190 0.418190i 0.466390 0.884579i \(-0.345554\pi\)
−0.884579 + 0.466390i \(0.845554\pi\)
\(338\) 0.280810 + 0.280810i 0.0152741 + 0.0152741i
\(339\) −21.2133 + 9.68781i −1.15215 + 0.526169i
\(340\) −2.61620 11.4331i −0.141884 0.620045i
\(341\) 3.09391i 0.167544i
\(342\) 0.0175672 + 0.245621i 0.000949925 + 0.0132817i
\(343\) −10.3120 + 10.3120i −0.556795 + 0.556795i
\(344\) −1.18028 −0.0636366
\(345\) −29.0698 3.86097i −1.56507 0.207868i
\(346\) 0.996588 0.0535769
\(347\) 8.99478 8.99478i 0.482865 0.482865i −0.423181 0.906045i \(-0.639086\pi\)
0.906045 + 0.423181i \(0.139086\pi\)
\(348\) −17.7577 6.62326i −0.951911 0.355044i
\(349\) 22.1560i 1.18598i −0.805208 0.592992i \(-0.797947\pi\)
0.805208 0.592992i \(-0.202053\pi\)
\(350\) 0.541046 + 1.12031i 0.0289201 + 0.0598830i
\(351\) −6.18291 + 21.0571i −0.330019 + 1.12394i
\(352\) −2.88685 2.88685i −0.153869 0.153869i
\(353\) 7.83365 + 7.83365i 0.416943 + 0.416943i 0.884149 0.467206i \(-0.154739\pi\)
−0.467206 + 0.884149i \(0.654739\pi\)
\(354\) 0.750106 + 1.64250i 0.0398677 + 0.0872981i
\(355\) −9.48025 + 15.1063i −0.503159 + 0.801761i
\(356\) 15.8455i 0.839812i
\(357\) −4.82834 + 12.9453i −0.255543 + 0.685137i
\(358\) 0.199818 0.199818i 0.0105607 0.0105607i
\(359\) −14.2080 −0.749871 −0.374935 0.927051i \(-0.622335\pi\)
−0.374935 + 0.927051i \(0.622335\pi\)
\(360\) 1.03296 1.94106i 0.0544416 0.102303i
\(361\) −1.00000 −0.0526316
\(362\) −0.262996 + 0.262996i −0.0138228 + 0.0138228i
\(363\) −3.83437 + 10.2803i −0.201252 + 0.539578i
\(364\) 25.5198i 1.33760i
\(365\) −9.52714 + 2.18007i −0.498673 + 0.114110i
\(366\) −0.310834 0.680631i −0.0162475 0.0355772i
\(367\) −18.5949 18.5949i −0.970647 0.970647i 0.0289348 0.999581i \(-0.490788\pi\)
−0.999581 + 0.0289348i \(0.990788\pi\)
\(368\) −21.1998 21.1998i −1.10512 1.10512i
\(369\) 14.3593 16.5715i 0.747513 0.862677i
\(370\) −0.866205 0.543602i −0.0450318 0.0282605i
\(371\) 6.78186i 0.352097i
\(372\) −2.40375 0.896553i −0.124629 0.0464841i
\(373\) 18.8554 18.8554i 0.976298 0.976298i −0.0234275 0.999726i \(-0.507458\pi\)
0.999726 + 0.0234275i \(0.00745787\pi\)
\(374\) 0.899305 0.0465019
\(375\) −17.2867 8.72748i −0.892683 0.450685i
\(376\) −2.26366 −0.116739
\(377\) −16.3947 + 16.3947i −0.844371 + 0.844371i
\(378\) −1.13477 + 0.619632i −0.0583663 + 0.0318704i
\(379\) 19.1917i 0.985812i 0.870082 + 0.492906i \(0.164065\pi\)
−0.870082 + 0.492906i \(0.835935\pi\)
\(380\) 3.77523 + 2.36921i 0.193665 + 0.121538i
\(381\) 9.62206 4.39425i 0.492953 0.225124i
\(382\) −0.970407 0.970407i −0.0496503 0.0496503i
\(383\) 1.59570 + 1.59570i 0.0815367 + 0.0815367i 0.746699 0.665162i \(-0.231638\pi\)
−0.665162 + 0.746699i \(0.731638\pi\)
\(384\) 4.10358 1.87404i 0.209410 0.0956342i
\(385\) 27.5106 6.29519i 1.40207 0.320832i
\(386\) 0.198081i 0.0100821i
\(387\) −10.7751 + 0.770650i −0.547727 + 0.0391743i
\(388\) −22.8256 + 22.8256i −1.15879 + 1.15879i
\(389\) 26.5340 1.34533 0.672664 0.739948i \(-0.265150\pi\)
0.672664 + 0.739948i \(0.265150\pi\)
\(390\) −0.816151 1.06615i −0.0413274 0.0539868i
\(391\) 19.9246 1.00763
\(392\) 0.507396 0.507396i 0.0256274 0.0256274i
\(393\) 9.09046 + 3.39057i 0.458553 + 0.171031i
\(394\) 2.18311i 0.109984i
\(395\) 5.56333 8.86492i 0.279922 0.446043i
\(396\) −18.8158 16.3040i −0.945529 0.819306i
\(397\) 9.81676 + 9.81676i 0.492689 + 0.492689i 0.909152 0.416463i \(-0.136731\pi\)
−0.416463 + 0.909152i \(0.636731\pi\)
\(398\) −0.864018 0.864018i −0.0433093 0.0433093i
\(399\) −2.18113 4.77601i −0.109193 0.239099i
\(400\) −8.60988 17.8279i −0.430494 0.891396i
\(401\) 16.5299i 0.825463i −0.910853 0.412732i \(-0.864575\pi\)
0.910853 0.412732i \(-0.135425\pi\)
\(402\) −0.111492 + 0.298922i −0.00556072 + 0.0149089i
\(403\) −2.21926 + 2.21926i −0.110549 + 0.110549i
\(404\) 7.88163 0.392126
\(405\) 8.16269 18.3948i 0.405608 0.914047i
\(406\) −1.36595 −0.0677909
\(407\) −16.4034 + 16.4034i −0.813087 + 0.813087i
\(408\) −0.522082 + 1.39976i −0.0258469 + 0.0692983i
\(409\) 16.1593i 0.799027i 0.916727 + 0.399514i \(0.130821\pi\)
−0.916727 + 0.399514i \(0.869179\pi\)
\(410\) 0.299244 + 1.30772i 0.0147786 + 0.0645839i
\(411\) −11.0560 24.2093i −0.545353 1.19416i
\(412\) 9.15491 + 9.15491i 0.451030 + 0.451030i
\(413\) −27.2240 27.2240i −1.33960 1.33960i
\(414\) 1.40911 + 1.22100i 0.0692540 + 0.0600089i
\(415\) 0.566959 + 2.47767i 0.0278309 + 0.121624i
\(416\) 4.14147i 0.203052i
\(417\) 27.6055 + 10.2963i 1.35185 + 0.504213i
\(418\) −0.241655 + 0.241655i −0.0118197 + 0.0118197i
\(419\) −1.25815 −0.0614648 −0.0307324 0.999528i \(-0.509784\pi\)
−0.0307324 + 0.999528i \(0.509784\pi\)
\(420\) −3.08110 + 23.1980i −0.150342 + 1.13195i
\(421\) −1.51285 −0.0737318 −0.0368659 0.999320i \(-0.511737\pi\)
−0.0368659 + 0.999320i \(0.511737\pi\)
\(422\) 0.824833 0.824833i 0.0401522 0.0401522i
\(423\) −20.6654 + 1.47802i −1.00479 + 0.0718639i
\(424\) 0.733315i 0.0356129i
\(425\) 12.4238 + 4.33178i 0.602641 + 0.210122i
\(426\) 1.03148 0.471059i 0.0499752 0.0228229i
\(427\) 11.2812 + 11.2812i 0.545938 + 0.545938i
\(428\) 11.4323 + 11.4323i 0.552601 + 0.552601i
\(429\) −27.7051 + 12.6525i −1.33762 + 0.610868i
\(430\) 0.351315 0.559805i 0.0169419 0.0269962i
\(431\) 4.23722i 0.204100i −0.994779 0.102050i \(-0.967460\pi\)
0.994779 0.102050i \(-0.0325401\pi\)
\(432\) 18.0581 9.86045i 0.868819 0.474411i
\(433\) −0.883249 + 0.883249i −0.0424463 + 0.0424463i −0.728011 0.685565i \(-0.759555\pi\)
0.685565 + 0.728011i \(0.259555\pi\)
\(434\) −0.184901 −0.00887552
\(435\) 16.8825 12.9237i 0.809455 0.619646i
\(436\) 30.8449 1.47720
\(437\) −5.35400 + 5.35400i −0.256117 + 0.256117i
\(438\) 0.582222 + 0.217158i 0.0278197 + 0.0103762i
\(439\) 18.5835i 0.886943i −0.896289 0.443471i \(-0.853747\pi\)
0.896289 0.443471i \(-0.146253\pi\)
\(440\) 2.97469 0.680691i 0.141813 0.0324507i
\(441\) 4.30083 4.96342i 0.204801 0.236354i
\(442\) 0.645071 + 0.645071i 0.0306829 + 0.0306829i
\(443\) 3.18658 + 3.18658i 0.151399 + 0.151399i 0.778743 0.627344i \(-0.215858\pi\)
−0.627344 + 0.778743i \(0.715858\pi\)
\(444\) −7.99093 17.4977i −0.379233 0.830404i
\(445\) −15.0564 9.44890i −0.713741 0.447921i
\(446\) 2.10475i 0.0996626i
\(447\) −11.1710 + 29.9506i −0.528370 + 1.41662i
\(448\) −16.8024 + 16.8024i −0.793837 + 0.793837i
\(449\) 18.3534 0.866152 0.433076 0.901358i \(-0.357428\pi\)
0.433076 + 0.901358i \(0.357428\pi\)
\(450\) 0.613178 + 1.06769i 0.0289055 + 0.0503315i
\(451\) 30.4313 1.43296
\(452\) 18.9772 18.9772i 0.892612 0.892612i
\(453\) 13.7855 36.9605i 0.647701 1.73656i
\(454\) 2.11084i 0.0990665i
\(455\) 24.2489 + 15.2178i 1.13680 + 0.713421i
\(456\) −0.235843 0.516424i −0.0110444 0.0241837i
\(457\) −1.96587 1.96587i −0.0919595 0.0919595i 0.659631 0.751590i \(-0.270713\pi\)
−0.751590 + 0.659631i \(0.770713\pi\)
\(458\) −1.68686 1.68686i −0.0788219 0.0788219i
\(459\) −3.85225 + 13.1196i −0.179808 + 0.612369i
\(460\) 32.8973 7.52782i 1.53385 0.350986i
\(461\) 21.1757i 0.986249i −0.869959 0.493125i \(-0.835855\pi\)
0.869959 0.493125i \(-0.164145\pi\)
\(462\) −1.68123 0.627065i −0.0782177 0.0291737i
\(463\) 7.13956 7.13956i 0.331803 0.331803i −0.521468 0.853271i \(-0.674615\pi\)
0.853271 + 0.521468i \(0.174615\pi\)
\(464\) 21.7369 1.00911
\(465\) 2.28529 1.74941i 0.105978 0.0811271i
\(466\) 0.872397 0.0404130
\(467\) 13.3425 13.3425i 0.617416 0.617416i −0.327452 0.944868i \(-0.606190\pi\)
0.944868 + 0.327452i \(0.106190\pi\)
\(468\) −1.80173 25.1914i −0.0832849 1.16447i
\(469\) 6.80249i 0.314110i
\(470\) 0.673785 1.07365i 0.0310794 0.0495236i
\(471\) −30.7757 + 14.0548i −1.41807 + 0.647611i
\(472\) −2.94369 2.94369i −0.135495 0.135495i
\(473\) −10.6011 10.6011i −0.487439 0.487439i
\(474\) −0.605305 + 0.276434i −0.0278026 + 0.0126970i
\(475\) −4.50243 + 2.17442i −0.206586 + 0.0997693i
\(476\) 15.9001i 0.728778i
\(477\) −0.478808 6.69459i −0.0219231 0.306524i
\(478\) 0.163990 0.163990i 0.00750071 0.00750071i
\(479\) −3.39094 −0.154936 −0.0774680 0.996995i \(-0.524684\pi\)
−0.0774680 + 0.996995i \(0.524684\pi\)
\(480\) −0.500014 + 3.76468i −0.0228224 + 0.171833i
\(481\) −23.5323 −1.07298
\(482\) 0.501987 0.501987i 0.0228649 0.0228649i
\(483\) −37.2485 13.8930i −1.69487 0.632152i
\(484\) 12.6268i 0.573948i
\(485\) −8.07762 35.3000i −0.366786 1.60289i
\(486\) −1.07642 + 0.691774i −0.0488274 + 0.0313795i
\(487\) −17.5894 17.5894i −0.797054 0.797054i 0.185576 0.982630i \(-0.440585\pi\)
−0.982630 + 0.185576i \(0.940585\pi\)
\(488\) 1.21983 + 1.21983i 0.0552190 + 0.0552190i
\(489\) −5.54795 12.1483i −0.250887 0.549366i
\(490\) 0.0896283 + 0.391685i 0.00404899 + 0.0176945i
\(491\) 31.4184i 1.41789i 0.705262 + 0.708947i \(0.250829\pi\)
−0.705262 + 0.708947i \(0.749171\pi\)
\(492\) −8.81840 + 23.6430i −0.397564 + 1.06591i
\(493\) −10.2147 + 10.2147i −0.460047 + 0.460047i
\(494\) −0.346678 −0.0155978
\(495\) 26.7121 8.15645i 1.20062 0.366605i
\(496\) 2.94240 0.132118
\(497\) −17.0964 + 17.0964i −0.766878 + 0.766878i
\(498\) 0.0564749 0.151415i 0.00253070 0.00678507i
\(499\) 7.12338i 0.318886i 0.987207 + 0.159443i \(0.0509698\pi\)
−0.987207 + 0.159443i \(0.949030\pi\)
\(500\) 22.1494 + 2.45827i 0.990549 + 0.109937i
\(501\) 7.57758 + 16.5926i 0.338541 + 0.741302i
\(502\) −0.687953 0.687953i −0.0307049 0.0307049i
\(503\) −2.12362 2.12362i −0.0946874 0.0946874i 0.658176 0.752864i \(-0.271328\pi\)
−0.752864 + 0.658176i \(0.771328\pi\)
\(504\) 1.95204 2.25277i 0.0869507 0.100346i
\(505\) −4.69992 + 7.48911i −0.209144 + 0.333261i
\(506\) 2.58764i 0.115035i
\(507\) −7.85151 2.92846i −0.348698 0.130058i
\(508\) −8.60778 + 8.60778i −0.381908 + 0.381908i
\(509\) −21.0531 −0.933164 −0.466582 0.884478i \(-0.654515\pi\)
−0.466582 + 0.884478i \(0.654515\pi\)
\(510\) −0.508501 0.664265i −0.0225168 0.0294141i
\(511\) −13.2495 −0.586122
\(512\) −4.58095 + 4.58095i −0.202451 + 0.202451i
\(513\) −2.49025 4.56055i −0.109947 0.201353i
\(514\) 0.0108657i 0.000479263i
\(515\) −14.1582 + 3.23978i −0.623883 + 0.142762i
\(516\) 11.3083 5.16433i 0.497820 0.227347i
\(517\) −20.3317 20.3317i −0.894189 0.894189i
\(518\) −0.980315 0.980315i −0.0430726 0.0430726i
\(519\) −19.1289 + 8.73588i −0.839666 + 0.383463i
\(520\) 2.62200 + 1.64548i 0.114982 + 0.0721591i
\(521\) 16.1667i 0.708278i 0.935193 + 0.354139i \(0.115226\pi\)
−0.935193 + 0.354139i \(0.884774\pi\)
\(522\) −1.34837 + 0.0964376i −0.0590166 + 0.00422096i
\(523\) 22.4211 22.4211i 0.980407 0.980407i −0.0194047 0.999812i \(-0.506177\pi\)
0.999812 + 0.0194047i \(0.00617708\pi\)
\(524\) −11.1654 −0.487762
\(525\) −20.2054 16.7609i −0.881837 0.731508i
\(526\) −1.15423 −0.0503269
\(527\) −1.38270 + 1.38270i −0.0602315 + 0.0602315i
\(528\) 26.7540 + 9.97874i 1.16432 + 0.434269i
\(529\) 34.3307i 1.49264i
\(530\) 0.347809 + 0.218274i 0.0151079 + 0.00948120i
\(531\) −28.7957 24.9516i −1.24963 1.08281i
\(532\) 4.27256 + 4.27256i 0.185239 + 0.185239i
\(533\) 21.8284 + 21.8284i 0.945492 + 0.945492i
\(534\) 0.469502 + 1.02806i 0.0203173 + 0.0444887i
\(535\) −17.6802 + 4.04571i −0.764380 + 0.174911i
\(536\) 0.735545i 0.0317707i
\(537\) −2.08382 + 5.58695i −0.0899236 + 0.241095i
\(538\) 1.04065 1.04065i 0.0448654 0.0448654i
\(539\) 9.11467 0.392597
\(540\) −1.40364 + 23.1170i −0.0604030 + 0.994799i
\(541\) −17.2312 −0.740829 −0.370415 0.928867i \(-0.620784\pi\)
−0.370415 + 0.928867i \(0.620784\pi\)
\(542\) −0.436893 + 0.436893i −0.0187662 + 0.0187662i
\(543\) 2.74268 7.35341i 0.117700 0.315565i
\(544\) 2.58033i 0.110631i
\(545\) −18.3932 + 29.3087i −0.787878 + 1.25545i
\(546\) −0.756150 1.65574i −0.0323602 0.0708590i
\(547\) −1.75956 1.75956i −0.0752335 0.0752335i 0.668489 0.743722i \(-0.266941\pi\)
−0.743722 + 0.668489i \(0.766941\pi\)
\(548\) 21.6573 + 21.6573i 0.925155 + 0.925155i
\(549\) 11.9325 + 10.3396i 0.509268 + 0.441283i
\(550\) −0.562576 + 1.61349i −0.0239883 + 0.0687997i
\(551\) 5.48965i 0.233867i
\(552\) −4.02764 1.50223i −0.171428 0.0639392i
\(553\) 10.0327 10.0327i 0.426636 0.426636i
\(554\) −0.875227 −0.0371848
\(555\) 21.3914 + 2.84114i 0.908013 + 0.120600i
\(556\) −33.9065 −1.43796
\(557\) 17.9419 17.9419i 0.760224 0.760224i −0.216138 0.976363i \(-0.569346\pi\)
0.976363 + 0.216138i \(0.0693462\pi\)
\(558\) −0.182521 + 0.0130542i −0.00772674 + 0.000552629i
\(559\) 15.2083i 0.643243i
\(560\) −5.98692 26.1634i −0.252993 1.10561i
\(561\) −17.2616 + 7.88312i −0.728786 + 0.332825i
\(562\) 1.74857 + 1.74857i 0.0737591 + 0.0737591i
\(563\) 26.0056 + 26.0056i 1.09601 + 1.09601i 0.994873 + 0.101132i \(0.0322465\pi\)
0.101132 + 0.994873i \(0.467754\pi\)
\(564\) 21.6881 9.90463i 0.913234 0.417060i
\(565\) 6.71574 + 29.3484i 0.282533 + 1.23470i
\(566\) 1.22213i 0.0513700i
\(567\) 16.3497 21.8406i 0.686621 0.917219i
\(568\) −1.84861 + 1.84861i −0.0775660 + 0.0775660i
\(569\) −4.70527 −0.197255 −0.0986277 0.995124i \(-0.531445\pi\)
−0.0986277 + 0.995124i \(0.531445\pi\)
\(570\) 0.315138 + 0.0418557i 0.0131997 + 0.00175314i
\(571\) 16.6581 0.697121 0.348560 0.937286i \(-0.386671\pi\)
0.348560 + 0.937286i \(0.386671\pi\)
\(572\) 24.7847 24.7847i 1.03630 1.03630i
\(573\) 27.1328 + 10.1200i 1.13349 + 0.422769i
\(574\) 1.81866i 0.0759095i
\(575\) −12.4642 + 35.7479i −0.519792 + 1.49079i
\(576\) −15.3999 + 17.7724i −0.641661 + 0.740517i
\(577\) 6.19286 + 6.19286i 0.257812 + 0.257812i 0.824164 0.566352i \(-0.191646\pi\)
−0.566352 + 0.824164i \(0.691646\pi\)
\(578\) −0.584791 0.584791i −0.0243241 0.0243241i
\(579\) 1.73634 + 3.80205i 0.0721598 + 0.158008i
\(580\) −13.0061 + 20.7247i −0.540050 + 0.860544i
\(581\) 3.44571i 0.142952i
\(582\) −0.804614 + 2.15725i −0.0333523 + 0.0894210i
\(583\) 6.58650 6.58650i 0.272785 0.272785i
\(584\) −1.43265 −0.0592834
\(585\) 25.0112 + 13.3100i 1.03409 + 0.550299i
\(586\) −1.49802 −0.0618827
\(587\) −20.8935 + 20.8935i −0.862367 + 0.862367i −0.991613 0.129246i \(-0.958744\pi\)
0.129246 + 0.991613i \(0.458744\pi\)
\(588\) −2.64125 + 7.08147i −0.108923 + 0.292035i
\(589\) 0.743102i 0.0306190i
\(590\) 2.27239 0.519985i 0.0935527 0.0214075i
\(591\) 19.1367 + 41.9035i 0.787178 + 1.72368i
\(592\) 15.6001 + 15.6001i 0.641162 + 0.641162i
\(593\) 24.7223 + 24.7223i 1.01522 + 1.01522i 0.999882 + 0.0153399i \(0.00488302\pi\)
0.0153399 + 0.999882i \(0.495117\pi\)
\(594\) −1.70386 0.500299i −0.0699103 0.0205275i
\(595\) 15.1082 + 9.48142i 0.619376 + 0.388700i
\(596\) 36.7869i 1.50685i
\(597\) 24.1581 + 9.01050i 0.988725 + 0.368775i
\(598\) −1.85612 + 1.85612i −0.0759022 + 0.0759022i
\(599\) −8.27020 −0.337911 −0.168956 0.985624i \(-0.554039\pi\)
−0.168956 + 0.985624i \(0.554039\pi\)
\(600\) −2.18479 1.81234i −0.0891936 0.0739885i
\(601\) 3.70688 0.151207 0.0756034 0.997138i \(-0.475912\pi\)
0.0756034 + 0.997138i \(0.475912\pi\)
\(602\) 0.633551 0.633551i 0.0258216 0.0258216i
\(603\) −0.480264 6.71495i −0.0195579 0.273454i
\(604\) 45.3968i 1.84717i
\(605\) 11.9980 + 7.52955i 0.487788 + 0.306120i
\(606\) 0.511364 0.233532i 0.0207727 0.00948659i
\(607\) −10.6557 10.6557i −0.432501 0.432501i 0.456978 0.889478i \(-0.348932\pi\)
−0.889478 + 0.456978i \(0.848932\pi\)
\(608\) 0.693369 + 0.693369i 0.0281198 + 0.0281198i
\(609\) 26.2186 11.9736i 1.06243 0.485196i
\(610\) −0.941646 + 0.215475i −0.0381261 + 0.00872432i
\(611\) 29.1679i 1.18001i
\(612\) −1.12256 15.6955i −0.0453769 0.634451i
\(613\) −20.0322 + 20.0322i −0.809092 + 0.809092i −0.984496 0.175405i \(-0.943877\pi\)
0.175405 + 0.984496i \(0.443877\pi\)
\(614\) 0.289138 0.0116687
\(615\) −17.2070 22.4779i −0.693855 0.906396i
\(616\) 4.13692 0.166681
\(617\) −16.5295 + 16.5295i −0.665452 + 0.665452i −0.956660 0.291208i \(-0.905943\pi\)
0.291208 + 0.956660i \(0.405943\pi\)
\(618\) 0.865233 + 0.322715i 0.0348048 + 0.0129815i
\(619\) 23.0182i 0.925181i −0.886572 0.462590i \(-0.846920\pi\)
0.886572 0.462590i \(-0.153080\pi\)
\(620\) −1.76056 + 2.80538i −0.0707059 + 0.112667i
\(621\) −37.7500 11.0844i −1.51486 0.444802i
\(622\) −1.62708 1.62708i −0.0652399 0.0652399i
\(623\) −17.0399 17.0399i −0.682687 0.682687i
\(624\) 12.0329 + 26.3484i 0.481702 + 1.05478i
\(625\) −15.5438 + 19.5804i −0.621752 + 0.783214i
\(626\) 0.481506i 0.0192448i
\(627\) 2.52013 6.75672i 0.100644 0.269837i
\(628\) 27.5316 27.5316i 1.09863 1.09863i
\(629\) −14.6618 −0.584603
\(630\) 0.487453 + 1.59639i 0.0194206 + 0.0636018i
\(631\) −23.9130 −0.951960 −0.475980 0.879456i \(-0.657907\pi\)
−0.475980 + 0.879456i \(0.657907\pi\)
\(632\) 1.08483 1.08483i 0.0431522 0.0431522i
\(633\) −8.60186 + 23.0625i −0.341893 + 0.916651i
\(634\) 1.44795i 0.0575053i
\(635\) −3.04616 13.3120i −0.120883 0.528272i
\(636\) 3.20862 + 7.02589i 0.127230 + 0.278595i
\(637\) 6.53795 + 6.53795i 0.259043 + 0.259043i
\(638\) −1.32660 1.32660i −0.0525206 0.0525206i
\(639\) −15.6694 + 18.0834i −0.619870 + 0.715368i
\(640\) −1.29911 5.67726i −0.0513520 0.224413i
\(641\) 25.2039i 0.995495i 0.867322 + 0.497748i \(0.165839\pi\)
−0.867322 + 0.497748i \(0.834161\pi\)
\(642\) 1.08047 + 0.402994i 0.0426428 + 0.0159049i
\(643\) 8.60848 8.60848i 0.339485 0.339485i −0.516688 0.856174i \(-0.672835\pi\)
0.856174 + 0.516688i \(0.172835\pi\)
\(644\) 45.7506 1.80283
\(645\) −1.83615 + 13.8247i −0.0722985 + 0.544346i
\(646\) −0.215997 −0.00849829
\(647\) −12.4854 + 12.4854i −0.490852 + 0.490852i −0.908575 0.417722i \(-0.862828\pi\)
0.417722 + 0.908575i \(0.362828\pi\)
\(648\) 1.76787 2.36160i 0.0694485 0.0927723i
\(649\) 52.8795i 2.07570i
\(650\) −1.56089 + 0.753824i −0.0612233 + 0.0295674i
\(651\) 3.54906 1.62080i 0.139099 0.0635242i
\(652\) 10.8677 + 10.8677i 0.425614 + 0.425614i
\(653\) 7.77670 + 7.77670i 0.304326 + 0.304326i 0.842704 0.538378i \(-0.180963\pi\)
−0.538378 + 0.842704i \(0.680963\pi\)
\(654\) 2.00123 0.913931i 0.0782543 0.0357375i
\(655\) 6.65806 10.6093i 0.260152 0.414540i
\(656\) 28.9411i 1.12996i
\(657\) −13.0790 + 0.935428i −0.510259 + 0.0364945i
\(658\) 1.21508 1.21508i 0.0473689 0.0473689i
\(659\) 2.53638 0.0988033 0.0494017 0.998779i \(-0.484269\pi\)
0.0494017 + 0.998779i \(0.484269\pi\)
\(660\) −25.5221 + 19.5374i −0.993447 + 0.760494i
\(661\) 4.77927 0.185892 0.0929460 0.995671i \(-0.470372\pi\)
0.0929460 + 0.995671i \(0.470372\pi\)
\(662\) −0.771704 + 0.771704i −0.0299931 + 0.0299931i
\(663\) −18.0363 6.72719i −0.700472 0.261262i
\(664\) 0.372580i 0.0144589i
\(665\) −6.60756 + 1.51199i −0.256230 + 0.0586326i
\(666\) −1.03691 0.898488i −0.0401795 0.0348157i
\(667\) −29.3916 29.3916i −1.13805 1.13805i
\(668\) −14.8435 14.8435i −0.574313 0.574313i
\(669\) 18.4498 + 40.3993i 0.713309 + 1.56193i
\(670\) 0.348867 + 0.218937i 0.0134779 + 0.00845829i
\(671\) 21.9125i 0.845924i
\(672\) −1.79921 + 4.82386i −0.0694059 + 0.186085i
\(673\) 8.99234 8.99234i 0.346629 0.346629i −0.512223 0.858852i \(-0.671178\pi\)
0.858852 + 0.512223i \(0.171178\pi\)
\(674\) 0.891159 0.0343262
\(675\) −21.1288 15.1187i −0.813246 0.581920i
\(676\) 9.64363 0.370909
\(677\) 0.402985 0.402985i 0.0154880 0.0154880i −0.699320 0.714808i \(-0.746514\pi\)
0.714808 + 0.699320i \(0.246514\pi\)
\(678\) 0.668956 1.79354i 0.0256911 0.0688805i
\(679\) 49.0920i 1.88398i
\(680\) 1.63363 + 1.02521i 0.0626469 + 0.0393152i
\(681\) −18.5032 40.5163i −0.709043 1.55259i
\(682\) −0.179574 0.179574i −0.00687625 0.00687625i
\(683\) 10.4569 + 10.4569i 0.400122 + 0.400122i 0.878276 0.478154i \(-0.158694\pi\)
−0.478154 + 0.878276i \(0.658694\pi\)
\(684\) 4.51922 + 3.91593i 0.172797 + 0.149729i
\(685\) −33.4933 + 7.66420i −1.27971 + 0.292834i
\(686\) 1.19704i 0.0457032i
\(687\) 47.1650 + 17.5916i 1.79946 + 0.671162i
\(688\) −10.0820 + 10.0820i −0.384371 + 0.384371i
\(689\) 9.44898 0.359978
\(690\) 1.91134 1.46315i 0.0727636 0.0557013i
\(691\) 21.9916 0.836600 0.418300 0.908309i \(-0.362626\pi\)
0.418300 + 0.908309i \(0.362626\pi\)
\(692\) 17.1125 17.1125i 0.650519 0.650519i
\(693\) 37.7668 2.70114i 1.43464 0.102608i
\(694\) 1.04414i 0.0396349i
\(695\) 20.2189 32.2179i 0.766947 1.22209i
\(696\) 2.83498 1.29469i 0.107460 0.0490752i
\(697\) 13.6001 + 13.6001i 0.515142 + 0.515142i
\(698\) 1.28596 + 1.28596i 0.0486744 + 0.0486744i
\(699\) −16.7451 + 7.64725i −0.633359 + 0.289245i
\(700\) 28.5272 + 9.94656i 1.07823 + 0.375945i
\(701\) 28.4018i 1.07272i 0.843989 + 0.536360i \(0.180201\pi\)
−0.843989 + 0.536360i \(0.819799\pi\)
\(702\) −0.863316 1.58104i −0.0325837 0.0596726i
\(703\) 3.93981 3.93981i 0.148593 0.148593i
\(704\) −32.6367 −1.23004
\(705\) −3.52154 + 26.5142i −0.132629 + 0.998584i
\(706\) −0.909350 −0.0342238
\(707\) −8.47569 + 8.47569i −0.318761 + 0.318761i
\(708\) 41.0837 + 15.3234i 1.54402 + 0.575890i
\(709\) 34.8235i 1.30782i 0.756571 + 0.653911i \(0.226873\pi\)
−0.756571 + 0.653911i \(0.773127\pi\)
\(710\) −0.326546 1.42704i −0.0122550 0.0535557i
\(711\) 9.19531 10.6120i 0.344851 0.397980i
\(712\) −1.84250 1.84250i −0.0690505 0.0690505i
\(713\) −3.97857 3.97857i −0.148999 0.148999i
\(714\) −0.471117 1.03160i −0.0176311 0.0386068i
\(715\) 8.77091 + 38.3297i 0.328013 + 1.43345i
\(716\) 6.86218i 0.256452i
\(717\) −1.71018 + 4.58518i −0.0638680 + 0.171237i
\(718\) 0.824652 0.824652i 0.0307757 0.0307757i
\(719\) 21.9447 0.818401 0.409200 0.912445i \(-0.365808\pi\)
0.409200 + 0.912445i \(0.365808\pi\)
\(720\) −7.75704 25.4040i −0.289088 0.946752i
\(721\) −19.6899 −0.733289
\(722\) 0.0580413 0.0580413i 0.00216007 0.00216007i
\(723\) −5.23502 + 14.0356i −0.194693 + 0.521991i
\(724\) 9.03184i 0.335666i
\(725\) −11.9368 24.7168i −0.443322 0.917957i
\(726\) −0.374132 0.819235i −0.0138854 0.0304047i
\(727\) 10.2246 + 10.2246i 0.379210 + 0.379210i 0.870817 0.491607i \(-0.163590\pi\)
−0.491607 + 0.870817i \(0.663590\pi\)
\(728\) 2.96741 + 2.96741i 0.109980 + 0.109980i
\(729\) 14.5973 22.7139i 0.540640 0.841254i
\(730\) 0.426433 0.679501i 0.0157830 0.0251495i
\(731\) 9.47551i 0.350464i
\(732\) −17.0245 6.34982i −0.629245 0.234696i
\(733\) −3.06750 + 3.06750i −0.113301 + 0.113301i −0.761484 0.648184i \(-0.775529\pi\)
0.648184 + 0.761484i \(0.275529\pi\)
\(734\) 2.15854 0.0796733
\(735\) −5.15379 6.73249i −0.190100 0.248331i
\(736\) 7.42460 0.273675
\(737\) 6.60653 6.60653i 0.243355 0.243355i
\(738\) 0.128400 + 1.79526i 0.00472646 + 0.0660844i
\(739\) 42.4693i 1.56226i −0.624368 0.781130i \(-0.714644\pi\)
0.624368 0.781130i \(-0.285356\pi\)
\(740\) −24.2079 + 5.53944i −0.889900 + 0.203634i
\(741\) 6.65428 3.03891i 0.244451 0.111637i
\(742\) 0.393628 + 0.393628i 0.0144505 + 0.0144505i
\(743\) −9.98634 9.98634i −0.366363 0.366363i 0.499786 0.866149i \(-0.333412\pi\)
−0.866149 + 0.499786i \(0.833412\pi\)
\(744\) 0.383755 0.175255i 0.0140691 0.00642517i
\(745\) 34.9548 + 21.9365i 1.28065 + 0.803692i
\(746\) 2.18879i 0.0801372i
\(747\) 0.243271 + 3.40137i 0.00890083 + 0.124450i
\(748\) 15.4420 15.4420i 0.564617 0.564617i
\(749\) −24.5880 −0.898424
\(750\) 1.50990 0.496789i 0.0551337 0.0181402i
\(751\) 28.8689 1.05344 0.526721 0.850038i \(-0.323421\pi\)
0.526721 + 0.850038i \(0.323421\pi\)
\(752\) −19.3361 + 19.3361i −0.705116 + 0.705116i
\(753\) 19.2353 + 7.17440i 0.700974 + 0.261450i
\(754\) 1.90314i 0.0693083i
\(755\) −43.1359 27.0707i −1.56988 0.985204i
\(756\) −8.84548 + 30.1250i −0.321707 + 1.09563i
\(757\) −21.2675 21.2675i −0.772981 0.772981i 0.205646 0.978627i \(-0.434071\pi\)
−0.978627 + 0.205646i \(0.934071\pi\)
\(758\) −1.11391 1.11391i −0.0404591 0.0404591i
\(759\) −22.6827 49.6683i −0.823331 1.80284i
\(760\) −0.714467 + 0.163490i −0.0259164 + 0.00593040i
\(761\) 28.9626i 1.04989i 0.851135 + 0.524947i \(0.175915\pi\)
−0.851135 + 0.524947i \(0.824085\pi\)
\(762\) −0.303429 + 0.813524i −0.0109921 + 0.0294709i
\(763\) −33.1697 + 33.1697i −1.20083 + 1.20083i
\(764\) −33.3259 −1.20569
\(765\) 15.5832 + 8.29274i 0.563411 + 0.299825i
\(766\) −0.185233 −0.00669276
\(767\) 37.9304 37.9304i 1.36959 1.36959i
\(768\) 9.36002 25.0952i 0.337751 0.905545i
\(769\) 37.3396i 1.34650i −0.739415 0.673250i \(-0.764898\pi\)
0.739415 0.673250i \(-0.235102\pi\)
\(770\) −1.23137 + 1.96213i −0.0443754 + 0.0707102i
\(771\) −0.0952460 0.208560i −0.00343020