Properties

Label 285.2.k.d.77.8
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.8
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.d.248.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.538497 + 0.538497i) q^{2} +(1.54795 + 0.777077i) q^{3} +1.42004i q^{4} +(1.01787 - 1.99096i) q^{5} +(-1.25202 + 0.415113i) q^{6} +(1.88175 + 1.88175i) q^{7} +(-1.84168 - 1.84168i) q^{8} +(1.79230 + 2.40575i) q^{9} +O(q^{10})\) \(q+(-0.538497 + 0.538497i) q^{2} +(1.54795 + 0.777077i) q^{3} +1.42004i q^{4} +(1.01787 - 1.99096i) q^{5} +(-1.25202 + 0.415113i) q^{6} +(1.88175 + 1.88175i) q^{7} +(-1.84168 - 1.84168i) q^{8} +(1.79230 + 2.40575i) q^{9} +(0.524007 + 1.62025i) q^{10} -1.35850i q^{11} +(-1.10348 + 2.19815i) q^{12} +(1.03932 - 1.03932i) q^{13} -2.02663 q^{14} +(3.12275 - 2.29095i) q^{15} -0.856600 q^{16} +(-1.42628 + 1.42628i) q^{17} +(-2.26064 - 0.330342i) q^{18} +1.00000i q^{19} +(2.82725 + 1.44542i) q^{20} +(1.45059 + 4.37511i) q^{21} +(0.731550 + 0.731550i) q^{22} +(-1.15037 - 1.15037i) q^{23} +(-1.41970 - 4.28196i) q^{24} +(-2.92787 - 4.05309i) q^{25} +1.11935i q^{26} +(0.904938 + 5.11675i) q^{27} +(-2.67216 + 2.67216i) q^{28} -4.57000 q^{29} +(-0.447922 + 2.91526i) q^{30} -4.81716 q^{31} +(4.14464 - 4.14464i) q^{32} +(1.05566 - 2.10290i) q^{33} -1.53609i q^{34} +(5.66187 - 1.83111i) q^{35} +(-3.41627 + 2.54514i) q^{36} +(2.99094 + 2.99094i) q^{37} +(-0.538497 - 0.538497i) q^{38} +(2.41645 - 0.801186i) q^{39} +(-5.54132 + 1.79213i) q^{40} +8.00113i q^{41} +(-3.13713 - 1.57485i) q^{42} +(5.08869 - 5.08869i) q^{43} +1.92913 q^{44} +(6.61410 - 1.11966i) q^{45} +1.23894 q^{46} +(6.64580 - 6.64580i) q^{47} +(-1.32597 - 0.665644i) q^{48} +0.0819438i q^{49} +(3.75923 + 0.605928i) q^{50} +(-3.31613 + 1.09948i) q^{51} +(1.47588 + 1.47588i) q^{52} +(-7.34782 - 7.34782i) q^{53} +(-3.24266 - 2.26805i) q^{54} +(-2.70473 - 1.38278i) q^{55} -6.93116i q^{56} +(-0.777077 + 1.54795i) q^{57} +(2.46093 - 2.46093i) q^{58} +1.44815 q^{59} +(3.25324 + 4.43443i) q^{60} -8.86625 q^{61} +(2.59403 - 2.59403i) q^{62} +(-1.15436 + 7.89968i) q^{63} +2.75056i q^{64} +(-1.01136 - 3.12715i) q^{65} +(0.563933 + 1.70087i) q^{66} +(-2.63849 - 2.63849i) q^{67} +(-2.02537 - 2.02537i) q^{68} +(-0.886786 - 2.67463i) q^{69} +(-2.06285 + 4.03495i) q^{70} -4.15837i q^{71} +(1.12978 - 7.73149i) q^{72} +(10.4907 - 10.4907i) q^{73} -3.22123 q^{74} +(-1.38264 - 8.54917i) q^{75} -1.42004 q^{76} +(2.55636 - 2.55636i) q^{77} +(-0.869818 + 1.73269i) q^{78} -13.1425i q^{79} +(-0.871909 + 1.70546i) q^{80} +(-2.57531 + 8.62368i) q^{81} +(-4.30858 - 4.30858i) q^{82} +(5.76879 + 5.76879i) q^{83} +(-6.21284 + 2.05990i) q^{84} +(1.38790 + 4.29143i) q^{85} +5.48049i q^{86} +(-7.07414 - 3.55125i) q^{87} +(-2.50193 + 2.50193i) q^{88} -15.3007 q^{89} +(-2.95874 + 4.16461i) q^{90} +3.91149 q^{91} +(1.63357 - 1.63357i) q^{92} +(-7.45673 - 3.74331i) q^{93} +7.15749i q^{94} +(1.99096 + 1.01787i) q^{95} +(9.63641 - 3.19499i) q^{96} +(-6.91795 - 6.91795i) q^{97} +(-0.0441265 - 0.0441265i) q^{98} +(3.26823 - 2.43485i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7} - 4 q^{10} - 18 q^{12} - 8 q^{13} - 8 q^{15} - 84 q^{16} + 8 q^{21} + 40 q^{22} - 20 q^{25} - 14 q^{27} + 36 q^{28} + 28 q^{30} - 28 q^{33} + 92 q^{36} - 4 q^{37} - 20 q^{40} - 100 q^{42} + 16 q^{43} + 28 q^{45} - 24 q^{46} - 58 q^{48} + 32 q^{51} + 148 q^{52} - 72 q^{55} - 2 q^{57} - 12 q^{58} + 58 q^{60} - 112 q^{61} - 64 q^{63} + 92 q^{66} - 8 q^{67} + 8 q^{70} - 88 q^{72} + 76 q^{73} + 80 q^{75} + 36 q^{76} - 36 q^{78} + 4 q^{81} + 20 q^{82} - 28 q^{85} - 4 q^{87} + 140 q^{88} + 76 q^{90} - 24 q^{91} - 48 q^{93} + 32 q^{96} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.538497 + 0.538497i −0.380775 + 0.380775i −0.871381 0.490606i \(-0.836775\pi\)
0.490606 + 0.871381i \(0.336775\pi\)
\(3\) 1.54795 + 0.777077i 0.893710 + 0.448646i
\(4\) 1.42004i 0.710021i
\(5\) 1.01787 1.99096i 0.455206 0.890386i
\(6\) −1.25202 + 0.415113i −0.511136 + 0.169469i
\(7\) 1.88175 + 1.88175i 0.711234 + 0.711234i 0.966793 0.255560i \(-0.0822597\pi\)
−0.255560 + 0.966793i \(0.582260\pi\)
\(8\) −1.84168 1.84168i −0.651133 0.651133i
\(9\) 1.79230 + 2.40575i 0.597434 + 0.801918i
\(10\) 0.524007 + 1.62025i 0.165706 + 0.512368i
\(11\) 1.35850i 0.409604i −0.978803 0.204802i \(-0.934345\pi\)
0.978803 0.204802i \(-0.0656551\pi\)
\(12\) −1.10348 + 2.19815i −0.318548 + 0.634552i
\(13\) 1.03932 1.03932i 0.288256 0.288256i −0.548134 0.836390i \(-0.684662\pi\)
0.836390 + 0.548134i \(0.184662\pi\)
\(14\) −2.02663 −0.541640
\(15\) 3.12275 2.29095i 0.806290 0.591520i
\(16\) −0.856600 −0.214150
\(17\) −1.42628 + 1.42628i −0.345923 + 0.345923i −0.858588 0.512665i \(-0.828658\pi\)
0.512665 + 0.858588i \(0.328658\pi\)
\(18\) −2.26064 0.330342i −0.532838 0.0778625i
\(19\) 1.00000i 0.229416i
\(20\) 2.82725 + 1.44542i 0.632192 + 0.323206i
\(21\) 1.45059 + 4.37511i 0.316544 + 0.954728i
\(22\) 0.731550 + 0.731550i 0.155967 + 0.155967i
\(23\) −1.15037 1.15037i −0.239868 0.239868i 0.576928 0.816795i \(-0.304251\pi\)
−0.816795 + 0.576928i \(0.804251\pi\)
\(24\) −1.41970 4.28196i −0.289796 0.874052i
\(25\) −2.92787 4.05309i −0.585575 0.810618i
\(26\) 1.11935i 0.219522i
\(27\) 0.904938 + 5.11675i 0.174155 + 0.984718i
\(28\) −2.67216 + 2.67216i −0.504990 + 0.504990i
\(29\) −4.57000 −0.848628 −0.424314 0.905515i \(-0.639485\pi\)
−0.424314 + 0.905515i \(0.639485\pi\)
\(30\) −0.447922 + 2.91526i −0.0817790 + 0.532251i
\(31\) −4.81716 −0.865188 −0.432594 0.901589i \(-0.642402\pi\)
−0.432594 + 0.901589i \(0.642402\pi\)
\(32\) 4.14464 4.14464i 0.732676 0.732676i
\(33\) 1.05566 2.10290i 0.183767 0.366067i
\(34\) 1.53609i 0.263438i
\(35\) 5.66187 1.83111i 0.957030 0.309515i
\(36\) −3.41627 + 2.54514i −0.569378 + 0.424190i
\(37\) 2.99094 + 2.99094i 0.491708 + 0.491708i 0.908844 0.417136i \(-0.136966\pi\)
−0.417136 + 0.908844i \(0.636966\pi\)
\(38\) −0.538497 0.538497i −0.0873558 0.0873558i
\(39\) 2.41645 0.801186i 0.386942 0.128292i
\(40\) −5.54132 + 1.79213i −0.876160 + 0.283360i
\(41\) 8.00113i 1.24957i 0.780798 + 0.624783i \(0.214813\pi\)
−0.780798 + 0.624783i \(0.785187\pi\)
\(42\) −3.13713 1.57485i −0.484069 0.243005i
\(43\) 5.08869 5.08869i 0.776018 0.776018i −0.203133 0.979151i \(-0.565113\pi\)
0.979151 + 0.203133i \(0.0651125\pi\)
\(44\) 1.92913 0.290827
\(45\) 6.61410 1.11966i 0.985972 0.166909i
\(46\) 1.23894 0.182671
\(47\) 6.64580 6.64580i 0.969389 0.969389i −0.0301564 0.999545i \(-0.509601\pi\)
0.999545 + 0.0301564i \(0.00960052\pi\)
\(48\) −1.32597 0.665644i −0.191388 0.0960775i
\(49\) 0.0819438i 0.0117063i
\(50\) 3.75923 + 0.605928i 0.531636 + 0.0856911i
\(51\) −3.31613 + 1.09948i −0.464352 + 0.153958i
\(52\) 1.47588 + 1.47588i 0.204668 + 0.204668i
\(53\) −7.34782 7.34782i −1.00930 1.00930i −0.999956 0.00934447i \(-0.997026\pi\)
−0.00934447 0.999956i \(-0.502974\pi\)
\(54\) −3.24266 2.26805i −0.441270 0.308642i
\(55\) −2.70473 1.38278i −0.364706 0.186454i
\(56\) 6.93116i 0.926216i
\(57\) −0.777077 + 1.54795i −0.102926 + 0.205031i
\(58\) 2.46093 2.46093i 0.323137 0.323137i
\(59\) 1.44815 0.188533 0.0942667 0.995547i \(-0.469949\pi\)
0.0942667 + 0.995547i \(0.469949\pi\)
\(60\) 3.25324 + 4.43443i 0.419992 + 0.572483i
\(61\) −8.86625 −1.13521 −0.567603 0.823302i \(-0.692129\pi\)
−0.567603 + 0.823302i \(0.692129\pi\)
\(62\) 2.59403 2.59403i 0.329442 0.329442i
\(63\) −1.15436 + 7.89968i −0.145436 + 0.995266i
\(64\) 2.75056i 0.343820i
\(65\) −1.01136 3.12715i −0.125443 0.387875i
\(66\) 0.563933 + 1.70087i 0.0694153 + 0.209363i
\(67\) −2.63849 2.63849i −0.322343 0.322343i 0.527322 0.849665i \(-0.323196\pi\)
−0.849665 + 0.527322i \(0.823196\pi\)
\(68\) −2.02537 2.02537i −0.245612 0.245612i
\(69\) −0.886786 2.67463i −0.106756 0.321988i
\(70\) −2.06285 + 4.03495i −0.246558 + 0.482269i
\(71\) 4.15837i 0.493508i −0.969078 0.246754i \(-0.920636\pi\)
0.969078 0.246754i \(-0.0793639\pi\)
\(72\) 1.12978 7.73149i 0.133146 0.911165i
\(73\) 10.4907 10.4907i 1.22785 1.22785i 0.263068 0.964777i \(-0.415266\pi\)
0.964777 0.263068i \(-0.0847344\pi\)
\(74\) −3.22123 −0.374460
\(75\) −1.38264 8.54917i −0.159653 0.987173i
\(76\) −1.42004 −0.162890
\(77\) 2.55636 2.55636i 0.291324 0.291324i
\(78\) −0.869818 + 1.73269i −0.0984875 + 0.196189i
\(79\) 13.1425i 1.47865i −0.673349 0.739325i \(-0.735145\pi\)
0.673349 0.739325i \(-0.264855\pi\)
\(80\) −0.871909 + 1.70546i −0.0974824 + 0.190676i
\(81\) −2.57531 + 8.62368i −0.286145 + 0.958186i
\(82\) −4.30858 4.30858i −0.475804 0.475804i
\(83\) 5.76879 + 5.76879i 0.633207 + 0.633207i 0.948871 0.315664i \(-0.102227\pi\)
−0.315664 + 0.948871i \(0.602227\pi\)
\(84\) −6.21284 + 2.05990i −0.677877 + 0.224753i
\(85\) 1.38790 + 4.29143i 0.150539 + 0.465471i
\(86\) 5.48049i 0.590976i
\(87\) −7.07414 3.55125i −0.758427 0.380734i
\(88\) −2.50193 + 2.50193i −0.266707 + 0.266707i
\(89\) −15.3007 −1.62187 −0.810935 0.585137i \(-0.801041\pi\)
−0.810935 + 0.585137i \(0.801041\pi\)
\(90\) −2.95874 + 4.16461i −0.311879 + 0.438988i
\(91\) 3.91149 0.410035
\(92\) 1.63357 1.63357i 0.170311 0.170311i
\(93\) −7.45673 3.74331i −0.773227 0.388163i
\(94\) 7.15749i 0.738238i
\(95\) 1.99096 + 1.01787i 0.204269 + 0.104431i
\(96\) 9.63641 3.19499i 0.983512 0.326088i
\(97\) −6.91795 6.91795i −0.702412 0.702412i 0.262516 0.964928i \(-0.415448\pi\)
−0.964928 + 0.262516i \(0.915448\pi\)
\(98\) −0.0441265 0.0441265i −0.00445745 0.00445745i
\(99\) 3.26823 2.43485i 0.328469 0.244711i
\(100\) 5.75556 4.15770i 0.575556 0.415770i
\(101\) 10.3771i 1.03256i 0.856420 + 0.516280i \(0.172684\pi\)
−0.856420 + 0.516280i \(0.827316\pi\)
\(102\) 1.19366 2.37780i 0.118190 0.235437i
\(103\) 12.0754 12.0754i 1.18983 1.18983i 0.212711 0.977115i \(-0.431771\pi\)
0.977115 0.212711i \(-0.0682292\pi\)
\(104\) −3.82821 −0.375387
\(105\) 10.1872 + 1.56524i 0.994170 + 0.152751i
\(106\) 7.91356 0.768633
\(107\) −2.52880 + 2.52880i −0.244468 + 0.244468i −0.818696 0.574227i \(-0.805303\pi\)
0.574227 + 0.818696i \(0.305303\pi\)
\(108\) −7.26599 + 1.28505i −0.699170 + 0.123654i
\(109\) 16.1197i 1.54399i 0.635631 + 0.771993i \(0.280740\pi\)
−0.635631 + 0.771993i \(0.719260\pi\)
\(110\) 2.20111 0.711866i 0.209868 0.0678737i
\(111\) 2.30564 + 6.95402i 0.218841 + 0.660046i
\(112\) −1.61190 1.61190i −0.152311 0.152311i
\(113\) 3.45958 + 3.45958i 0.325449 + 0.325449i 0.850853 0.525404i \(-0.176086\pi\)
−0.525404 + 0.850853i \(0.676086\pi\)
\(114\) −0.415113 1.25202i −0.0388789 0.117263i
\(115\) −3.46126 + 1.11941i −0.322764 + 0.104386i
\(116\) 6.48959i 0.602544i
\(117\) 4.36314 + 0.637575i 0.403372 + 0.0589438i
\(118\) −0.779826 + 0.779826i −0.0717888 + 0.0717888i
\(119\) −5.36779 −0.492064
\(120\) −9.97031 1.53191i −0.910161 0.139844i
\(121\) 9.15447 0.832224
\(122\) 4.77445 4.77445i 0.432258 0.432258i
\(123\) −6.21749 + 12.3853i −0.560612 + 1.11675i
\(124\) 6.84057i 0.614301i
\(125\) −11.0498 + 1.70376i −0.988321 + 0.152389i
\(126\) −3.63234 4.87558i −0.323594 0.434351i
\(127\) 5.66599 + 5.66599i 0.502775 + 0.502775i 0.912299 0.409524i \(-0.134305\pi\)
−0.409524 + 0.912299i \(0.634305\pi\)
\(128\) 6.80812 + 6.80812i 0.601758 + 0.601758i
\(129\) 11.8313 3.92273i 1.04169 0.345377i
\(130\) 2.22858 + 1.13935i 0.195459 + 0.0999276i
\(131\) 2.41624i 0.211108i 0.994414 + 0.105554i \(0.0336616\pi\)
−0.994414 + 0.105554i \(0.966338\pi\)
\(132\) 2.98620 + 1.49908i 0.259915 + 0.130478i
\(133\) −1.88175 + 1.88175i −0.163168 + 0.163168i
\(134\) 2.84164 0.245480
\(135\) 11.1084 + 3.40649i 0.956056 + 0.293184i
\(136\) 5.25350 0.450484
\(137\) −8.01837 + 8.01837i −0.685056 + 0.685056i −0.961135 0.276079i \(-0.910965\pi\)
0.276079 + 0.961135i \(0.410965\pi\)
\(138\) 1.91781 + 0.962750i 0.163255 + 0.0819547i
\(139\) 12.9146i 1.09540i 0.836673 + 0.547702i \(0.184497\pi\)
−0.836673 + 0.547702i \(0.815503\pi\)
\(140\) 2.60026 + 8.04009i 0.219762 + 0.679511i
\(141\) 15.4517 5.12307i 1.30126 0.431440i
\(142\) 2.23927 + 2.23927i 0.187915 + 0.187915i
\(143\) −1.41192 1.41192i −0.118071 0.118071i
\(144\) −1.53529 2.06077i −0.127940 0.171731i
\(145\) −4.65168 + 9.09871i −0.386301 + 0.755607i
\(146\) 11.2984i 0.935066i
\(147\) −0.0636766 + 0.126845i −0.00525196 + 0.0104620i
\(148\) −4.24726 + 4.24726i −0.349123 + 0.349123i
\(149\) 20.4717 1.67711 0.838553 0.544820i \(-0.183402\pi\)
0.838553 + 0.544820i \(0.183402\pi\)
\(150\) 5.34825 + 3.85916i 0.436683 + 0.315099i
\(151\) −20.5637 −1.67345 −0.836727 0.547620i \(-0.815534\pi\)
−0.836727 + 0.547620i \(0.815534\pi\)
\(152\) 1.84168 1.84168i 0.149380 0.149380i
\(153\) −5.98759 0.874953i −0.484068 0.0707358i
\(154\) 2.75319i 0.221858i
\(155\) −4.90325 + 9.59080i −0.393839 + 0.770351i
\(156\) 1.13772 + 3.43147i 0.0910903 + 0.274737i
\(157\) 13.4944 + 13.4944i 1.07697 + 1.07697i 0.996779 + 0.0801951i \(0.0255543\pi\)
0.0801951 + 0.996779i \(0.474446\pi\)
\(158\) 7.07722 + 7.07722i 0.563033 + 0.563033i
\(159\) −5.66424 17.0839i −0.449203 1.35484i
\(160\) −4.03312 12.4705i −0.318846 0.985883i
\(161\) 4.32939i 0.341204i
\(162\) −3.25703 6.03062i −0.255896 0.473810i
\(163\) −17.7892 + 17.7892i −1.39336 + 1.39336i −0.575692 + 0.817667i \(0.695267\pi\)
−0.817667 + 0.575692i \(0.804733\pi\)
\(164\) −11.3619 −0.887218
\(165\) −3.11226 4.24226i −0.242289 0.330260i
\(166\) −6.21295 −0.482219
\(167\) −11.9087 + 11.9087i −0.921524 + 0.921524i −0.997137 0.0756134i \(-0.975909\pi\)
0.0756134 + 0.997137i \(0.475909\pi\)
\(168\) 5.38605 10.7291i 0.415543 0.827768i
\(169\) 10.8396i 0.833817i
\(170\) −3.05830 1.56355i −0.234561 0.119918i
\(171\) −2.40575 + 1.79230i −0.183973 + 0.137061i
\(172\) 7.22615 + 7.22615i 0.550989 + 0.550989i
\(173\) −11.4812 11.4812i −0.872902 0.872902i 0.119886 0.992788i \(-0.461747\pi\)
−0.992788 + 0.119886i \(0.961747\pi\)
\(174\) 5.72174 1.89707i 0.433764 0.143816i
\(175\) 2.11738 13.1364i 0.160059 0.993019i
\(176\) 1.16369i 0.0877167i
\(177\) 2.24167 + 1.12533i 0.168494 + 0.0845847i
\(178\) 8.23938 8.23938i 0.617567 0.617567i
\(179\) −0.0965741 −0.00721829 −0.00360914 0.999993i \(-0.501149\pi\)
−0.00360914 + 0.999993i \(0.501149\pi\)
\(180\) 1.58996 + 9.39230i 0.118509 + 0.700061i
\(181\) 5.94681 0.442023 0.221011 0.975271i \(-0.429064\pi\)
0.221011 + 0.975271i \(0.429064\pi\)
\(182\) −2.10632 + 2.10632i −0.156131 + 0.156131i
\(183\) −13.7245 6.88976i −1.01455 0.509306i
\(184\) 4.23722i 0.312372i
\(185\) 8.99925 2.91046i 0.661638 0.213981i
\(186\) 6.03119 1.99967i 0.442228 0.146623i
\(187\) 1.93760 + 1.93760i 0.141691 + 0.141691i
\(188\) 9.43730 + 9.43730i 0.688286 + 0.688286i
\(189\) −7.92556 + 11.3313i −0.576499 + 0.824230i
\(190\) −1.62025 + 0.524007i −0.117545 + 0.0380155i
\(191\) 14.8626i 1.07542i −0.843130 0.537710i \(-0.819290\pi\)
0.843130 0.537710i \(-0.180710\pi\)
\(192\) −2.13740 + 4.25773i −0.154253 + 0.307275i
\(193\) 6.65613 6.65613i 0.479119 0.479119i −0.425731 0.904850i \(-0.639983\pi\)
0.904850 + 0.425731i \(0.139983\pi\)
\(194\) 7.45060 0.534922
\(195\) 0.864509 5.62658i 0.0619088 0.402928i
\(196\) −0.116364 −0.00831168
\(197\) −8.57331 + 8.57331i −0.610823 + 0.610823i −0.943161 0.332338i \(-0.892163\pi\)
0.332338 + 0.943161i \(0.392163\pi\)
\(198\) −0.448771 + 3.07109i −0.0318928 + 0.218253i
\(199\) 11.7684i 0.834236i −0.908852 0.417118i \(-0.863040\pi\)
0.908852 0.417118i \(-0.136960\pi\)
\(200\) −2.07230 + 12.8567i −0.146534 + 0.909108i
\(201\) −2.03394 6.13456i −0.143463 0.432699i
\(202\) −5.58804 5.58804i −0.393173 0.393173i
\(203\) −8.59959 8.59959i −0.603573 0.603573i
\(204\) −1.56131 4.70905i −0.109313 0.329699i
\(205\) 15.9300 + 8.14412i 1.11260 + 0.568810i
\(206\) 13.0052i 0.906112i
\(207\) 0.705694 4.82930i 0.0490491 0.335659i
\(208\) −0.890284 + 0.890284i −0.0617301 + 0.0617301i
\(209\) 1.35850 0.0939696
\(210\) −6.32866 + 4.64291i −0.436719 + 0.320391i
\(211\) −7.35863 −0.506589 −0.253295 0.967389i \(-0.581514\pi\)
−0.253295 + 0.967389i \(0.581514\pi\)
\(212\) 10.4342 10.4342i 0.716624 0.716624i
\(213\) 3.23137 6.43695i 0.221410 0.441053i
\(214\) 2.72350i 0.186175i
\(215\) −4.95176 15.3110i −0.337707 1.04420i
\(216\) 7.75682 11.0900i 0.527784 0.754581i
\(217\) −9.06468 9.06468i −0.615351 0.615351i
\(218\) −8.68041 8.68041i −0.587911 0.587911i
\(219\) 24.3912 8.08701i 1.64820 0.546470i
\(220\) 1.96361 3.84083i 0.132386 0.258949i
\(221\) 2.96472i 0.199429i
\(222\) −4.98630 2.50314i −0.334659 0.168000i
\(223\) 3.88777 3.88777i 0.260344 0.260344i −0.564850 0.825194i \(-0.691066\pi\)
0.825194 + 0.564850i \(0.191066\pi\)
\(224\) 15.5983 1.04221
\(225\) 4.50311 14.3081i 0.300207 0.953874i
\(226\) −3.72594 −0.247846
\(227\) −4.24472 + 4.24472i −0.281732 + 0.281732i −0.833799 0.552068i \(-0.813839\pi\)
0.552068 + 0.833799i \(0.313839\pi\)
\(228\) −2.19815 1.10348i −0.145576 0.0730799i
\(229\) 0.797154i 0.0526774i −0.999653 0.0263387i \(-0.991615\pi\)
0.999653 0.0263387i \(-0.00838484\pi\)
\(230\) 1.26108 2.46668i 0.0831531 0.162648i
\(231\) 5.94361 1.97063i 0.391061 0.129658i
\(232\) 8.41650 + 8.41650i 0.552570 + 0.552570i
\(233\) 4.73483 + 4.73483i 0.310189 + 0.310189i 0.844983 0.534794i \(-0.179611\pi\)
−0.534794 + 0.844983i \(0.679611\pi\)
\(234\) −2.69287 + 2.00620i −0.176038 + 0.131150i
\(235\) −6.46697 19.9961i −0.421858 1.30440i
\(236\) 2.05644i 0.133863i
\(237\) 10.2128 20.3440i 0.663390 1.32148i
\(238\) 2.89054 2.89054i 0.187366 0.187366i
\(239\) 19.0557 1.23261 0.616305 0.787508i \(-0.288629\pi\)
0.616305 + 0.787508i \(0.288629\pi\)
\(240\) −2.67495 + 1.96243i −0.172667 + 0.126674i
\(241\) −22.0109 −1.41785 −0.708923 0.705286i \(-0.750818\pi\)
−0.708923 + 0.705286i \(0.750818\pi\)
\(242\) −4.92966 + 4.92966i −0.316890 + 0.316890i
\(243\) −10.6877 + 11.3478i −0.685617 + 0.727962i
\(244\) 12.5904i 0.806020i
\(245\) 0.163147 + 0.0834083i 0.0104231 + 0.00532876i
\(246\) −3.32137 10.0176i −0.211763 0.638698i
\(247\) 1.03932 + 1.03932i 0.0661305 + 0.0661305i
\(248\) 8.87169 + 8.87169i 0.563353 + 0.563353i
\(249\) 4.44700 + 13.4126i 0.281817 + 0.849988i
\(250\) 5.03280 6.86774i 0.318302 0.434354i
\(251\) 16.8840i 1.06571i −0.846206 0.532856i \(-0.821119\pi\)
0.846206 0.532856i \(-0.178881\pi\)
\(252\) −11.2179 1.63924i −0.706659 0.103263i
\(253\) −1.56277 + 1.56277i −0.0982508 + 0.0982508i
\(254\) −6.10224 −0.382889
\(255\) −1.18638 + 7.72143i −0.0742938 + 0.483535i
\(256\) −12.8334 −0.802089
\(257\) −2.37821 + 2.37821i −0.148349 + 0.148349i −0.777380 0.629031i \(-0.783452\pi\)
0.629031 + 0.777380i \(0.283452\pi\)
\(258\) −4.25876 + 8.48353i −0.265139 + 0.528161i
\(259\) 11.2564i 0.699438i
\(260\) 4.44069 1.43617i 0.275400 0.0890674i
\(261\) −8.19083 10.9943i −0.506999 0.680531i
\(262\) −1.30114 1.30114i −0.0803846 0.0803846i
\(263\) 7.09700 + 7.09700i 0.437620 + 0.437620i 0.891210 0.453590i \(-0.149857\pi\)
−0.453590 + 0.891210i \(0.649857\pi\)
\(264\) −5.81706 + 1.92867i −0.358015 + 0.118702i
\(265\) −22.1084 + 7.15010i −1.35811 + 0.439227i
\(266\) 2.02663i 0.124261i
\(267\) −23.6847 11.8898i −1.44948 0.727645i
\(268\) 3.74676 3.74676i 0.228870 0.228870i
\(269\) −13.1757 −0.803338 −0.401669 0.915785i \(-0.631570\pi\)
−0.401669 + 0.915785i \(0.631570\pi\)
\(270\) −7.81621 + 4.14744i −0.475680 + 0.252405i
\(271\) 4.75635 0.288927 0.144464 0.989510i \(-0.453854\pi\)
0.144464 + 0.989510i \(0.453854\pi\)
\(272\) 1.22175 1.22175i 0.0740794 0.0740794i
\(273\) 6.05479 + 3.03953i 0.366452 + 0.183961i
\(274\) 8.63574i 0.521704i
\(275\) −5.50614 + 3.97753i −0.332033 + 0.239854i
\(276\) 3.79809 1.25927i 0.228618 0.0757993i
\(277\) 3.20574 + 3.20574i 0.192614 + 0.192614i 0.796825 0.604210i \(-0.206511\pi\)
−0.604210 + 0.796825i \(0.706511\pi\)
\(278\) −6.95449 6.95449i −0.417103 0.417103i
\(279\) −8.63381 11.5889i −0.516893 0.693810i
\(280\) −13.7997 7.05504i −0.824689 0.421619i
\(281\) 22.4973i 1.34208i 0.741422 + 0.671039i \(0.234152\pi\)
−0.741422 + 0.671039i \(0.765848\pi\)
\(282\) −5.56192 + 11.0794i −0.331207 + 0.659771i
\(283\) 1.27507 1.27507i 0.0757948 0.0757948i −0.668193 0.743988i \(-0.732932\pi\)
0.743988 + 0.668193i \(0.232932\pi\)
\(284\) 5.90506 0.350401
\(285\) 2.29095 + 3.12275i 0.135704 + 0.184976i
\(286\) 1.52063 0.0899170
\(287\) −15.0561 + 15.0561i −0.888733 + 0.888733i
\(288\) 17.3994 + 2.54254i 1.02527 + 0.149821i
\(289\) 12.9315i 0.760675i
\(290\) −2.39472 7.40455i −0.140623 0.434810i
\(291\) −5.33286 16.0844i −0.312618 0.942886i
\(292\) 14.8972 + 14.8972i 0.871796 + 0.871796i
\(293\) 22.3002 + 22.3002i 1.30279 + 1.30279i 0.926504 + 0.376285i \(0.122799\pi\)
0.376285 + 0.926504i \(0.377201\pi\)
\(294\) −0.0340159 0.102595i −0.00198385 0.00598348i
\(295\) 1.47403 2.88322i 0.0858216 0.167868i
\(296\) 11.0167i 0.640334i
\(297\) 6.95112 1.22936i 0.403345 0.0713348i
\(298\) −11.0239 + 11.0239i −0.638600 + 0.638600i
\(299\) −2.39120 −0.138287
\(300\) 12.1402 1.96340i 0.700913 0.113357i
\(301\) 19.1512 1.10386
\(302\) 11.0735 11.0735i 0.637210 0.637210i
\(303\) −8.06381 + 16.0632i −0.463254 + 0.922809i
\(304\) 0.856600i 0.0491294i
\(305\) −9.02471 + 17.6524i −0.516753 + 1.01077i
\(306\) 3.69546 2.75314i 0.211255 0.157387i
\(307\) −16.7879 16.7879i −0.958136 0.958136i 0.0410218 0.999158i \(-0.486939\pi\)
−0.999158 + 0.0410218i \(0.986939\pi\)
\(308\) 3.63014 + 3.63014i 0.206846 + 0.206846i
\(309\) 28.0757 9.30862i 1.59717 0.529549i
\(310\) −2.52423 7.80501i −0.143367 0.443295i
\(311\) 18.7091i 1.06090i −0.847717 0.530449i \(-0.822023\pi\)
0.847717 0.530449i \(-0.177977\pi\)
\(312\) −5.92588 2.97481i −0.335487 0.168416i
\(313\) −19.9866 + 19.9866i −1.12971 + 1.12971i −0.139485 + 0.990224i \(0.544545\pi\)
−0.990224 + 0.139485i \(0.955455\pi\)
\(314\) −14.5334 −0.820170
\(315\) 14.5530 + 10.3392i 0.819968 + 0.582545i
\(316\) 18.6629 1.04987
\(317\) 15.6450 15.6450i 0.878712 0.878712i −0.114690 0.993401i \(-0.536587\pi\)
0.993401 + 0.114690i \(0.0365874\pi\)
\(318\) 12.2498 + 6.14945i 0.686935 + 0.344844i
\(319\) 6.20837i 0.347602i
\(320\) 5.47626 + 2.79972i 0.306132 + 0.156509i
\(321\) −5.87953 + 1.94938i −0.328163 + 0.108804i
\(322\) 2.33137 + 2.33137i 0.129922 + 0.129922i
\(323\) −1.42628 1.42628i −0.0793602 0.0793602i
\(324\) −12.2460 3.65704i −0.680332 0.203169i
\(325\) −7.25548 1.16947i −0.402461 0.0648703i
\(326\) 19.1589i 1.06111i
\(327\) −12.5262 + 24.9525i −0.692703 + 1.37988i
\(328\) 14.7355 14.7355i 0.813634 0.813634i
\(329\) 25.0114 1.37892
\(330\) 3.96039 + 0.608503i 0.218012 + 0.0334970i
\(331\) −7.58564 −0.416944 −0.208472 0.978028i \(-0.566849\pi\)
−0.208472 + 0.978028i \(0.566849\pi\)
\(332\) −8.19192 + 8.19192i −0.449590 + 0.449590i
\(333\) −1.83480 + 12.5561i −0.100546 + 0.688072i
\(334\) 12.8256i 0.701787i
\(335\) −7.93878 + 2.56749i −0.433742 + 0.140277i
\(336\) −1.24257 3.74772i −0.0677880 0.204455i
\(337\) 12.6842 + 12.6842i 0.690954 + 0.690954i 0.962442 0.271488i \(-0.0875157\pi\)
−0.271488 + 0.962442i \(0.587516\pi\)
\(338\) −5.83710 5.83710i −0.317497 0.317497i
\(339\) 2.66689 + 8.04361i 0.144846 + 0.436869i
\(340\) −6.09401 + 1.97087i −0.330494 + 0.106886i
\(341\) 6.54413i 0.354385i
\(342\) 0.330342 2.26064i 0.0178629 0.122242i
\(343\) 13.0180 13.0180i 0.702908 0.702908i
\(344\) −18.7435 −1.01058
\(345\) −6.22773 0.956873i −0.335290 0.0515163i
\(346\) 12.3652 0.664759
\(347\) −1.73182 + 1.73182i −0.0929691 + 0.0929691i −0.752062 0.659093i \(-0.770940\pi\)
0.659093 + 0.752062i \(0.270940\pi\)
\(348\) 5.04292 10.0456i 0.270329 0.538499i
\(349\) 21.0315i 1.12579i −0.826529 0.562894i \(-0.809688\pi\)
0.826529 0.562894i \(-0.190312\pi\)
\(350\) 5.93372 + 8.21412i 0.317171 + 0.439063i
\(351\) 6.25847 + 4.37743i 0.334053 + 0.233650i
\(352\) −5.63051 5.63051i −0.300107 0.300107i
\(353\) −10.4959 10.4959i −0.558642 0.558642i 0.370279 0.928921i \(-0.379262\pi\)
−0.928921 + 0.370279i \(0.879262\pi\)
\(354\) −1.81312 + 0.601147i −0.0963662 + 0.0319506i
\(355\) −8.27916 4.23269i −0.439412 0.224648i
\(356\) 21.7276i 1.15156i
\(357\) −8.30907 4.17118i −0.439762 0.220762i
\(358\) 0.0520049 0.0520049i 0.00274854 0.00274854i
\(359\) 9.49391 0.501070 0.250535 0.968108i \(-0.419394\pi\)
0.250535 + 0.968108i \(0.419394\pi\)
\(360\) −14.2431 10.1190i −0.750679 0.533320i
\(361\) −1.00000 −0.0526316
\(362\) −3.20234 + 3.20234i −0.168311 + 0.168311i
\(363\) 14.1707 + 7.11373i 0.743767 + 0.373374i
\(364\) 5.55447i 0.291133i
\(365\) −10.2084 31.5648i −0.534334 1.65218i
\(366\) 11.1007 3.68050i 0.580244 0.192383i
\(367\) 6.92348 + 6.92348i 0.361403 + 0.361403i 0.864329 0.502927i \(-0.167743\pi\)
−0.502927 + 0.864329i \(0.667743\pi\)
\(368\) 0.985402 + 0.985402i 0.0513677 + 0.0513677i
\(369\) −19.2487 + 14.3404i −1.00205 + 0.746533i
\(370\) −3.27880 + 6.41335i −0.170457 + 0.333414i
\(371\) 27.6535i 1.43570i
\(372\) 5.31565 10.5889i 0.275604 0.549007i
\(373\) −1.99286 + 1.99286i −0.103186 + 0.103186i −0.756815 0.653629i \(-0.773246\pi\)
0.653629 + 0.756815i \(0.273246\pi\)
\(374\) −2.08679 −0.107905
\(375\) −18.4284 5.94918i −0.951640 0.307214i
\(376\) −24.4789 −1.26240
\(377\) −4.74971 + 4.74971i −0.244623 + 0.244623i
\(378\) −1.83398 10.3698i −0.0943295 0.533363i
\(379\) 15.8461i 0.813957i 0.913438 + 0.406979i \(0.133418\pi\)
−0.913438 + 0.406979i \(0.866582\pi\)
\(380\) −1.44542 + 2.82725i −0.0741485 + 0.145035i
\(381\) 4.36776 + 13.1736i 0.223767 + 0.674903i
\(382\) 8.00347 + 8.00347i 0.409493 + 0.409493i
\(383\) 8.84581 + 8.84581i 0.452000 + 0.452000i 0.896018 0.444018i \(-0.146447\pi\)
−0.444018 + 0.896018i \(0.646447\pi\)
\(384\) 5.24820 + 15.8291i 0.267821 + 0.807773i
\(385\) −2.48757 7.69167i −0.126778 0.392004i
\(386\) 7.16862i 0.364873i
\(387\) 21.3626 + 3.12167i 1.08592 + 0.158683i
\(388\) 9.82378 9.82378i 0.498727 0.498727i
\(389\) −23.6010 −1.19662 −0.598310 0.801265i \(-0.704161\pi\)
−0.598310 + 0.801265i \(0.704161\pi\)
\(390\) 2.56436 + 3.49543i 0.129852 + 0.176998i
\(391\) 3.28148 0.165952
\(392\) 0.150914 0.150914i 0.00762233 0.00762233i
\(393\) −1.87760 + 3.74022i −0.0947126 + 0.188669i
\(394\) 9.23341i 0.465172i
\(395\) −26.1663 13.3774i −1.31657 0.673091i
\(396\) 3.45758 + 4.64101i 0.173750 + 0.233220i
\(397\) 1.76659 + 1.76659i 0.0886627 + 0.0886627i 0.750047 0.661384i \(-0.230031\pi\)
−0.661384 + 0.750047i \(0.730031\pi\)
\(398\) 6.33723 + 6.33723i 0.317656 + 0.317656i
\(399\) −4.37511 + 1.45059i −0.219030 + 0.0726203i
\(400\) 2.50802 + 3.47188i 0.125401 + 0.173594i
\(401\) 9.59474i 0.479139i 0.970879 + 0.239569i \(0.0770062\pi\)
−0.970879 + 0.239569i \(0.922994\pi\)
\(402\) 4.39872 + 2.20817i 0.219388 + 0.110134i
\(403\) −5.00659 + 5.00659i −0.249396 + 0.249396i
\(404\) −14.7359 −0.733139
\(405\) 14.5481 + 13.9051i 0.722901 + 0.690952i
\(406\) 9.26171 0.459651
\(407\) 4.06320 4.06320i 0.201405 0.201405i
\(408\) 8.13216 + 4.08238i 0.402602 + 0.202108i
\(409\) 8.72806i 0.431575i 0.976440 + 0.215787i \(0.0692318\pi\)
−0.976440 + 0.215787i \(0.930768\pi\)
\(410\) −12.9638 + 4.19265i −0.640238 + 0.207060i
\(411\) −18.6429 + 6.18115i −0.919588 + 0.304894i
\(412\) 17.1476 + 17.1476i 0.844801 + 0.844801i
\(413\) 2.72506 + 2.72506i 0.134091 + 0.134091i
\(414\) 2.22055 + 2.98058i 0.109134 + 0.146487i
\(415\) 17.3573 5.61356i 0.852038 0.275559i
\(416\) 8.61524i 0.422397i
\(417\) −10.0357 + 19.9912i −0.491448 + 0.978973i
\(418\) −0.731550 + 0.731550i −0.0357813 + 0.0357813i
\(419\) 29.4005 1.43631 0.718153 0.695885i \(-0.244988\pi\)
0.718153 + 0.695885i \(0.244988\pi\)
\(420\) −2.22270 + 14.4663i −0.108457 + 0.705881i
\(421\) 36.5632 1.78198 0.890991 0.454021i \(-0.150011\pi\)
0.890991 + 0.454021i \(0.150011\pi\)
\(422\) 3.96260 3.96260i 0.192897 0.192897i
\(423\) 27.8994 + 4.07688i 1.35652 + 0.198225i
\(424\) 27.0647i 1.31438i
\(425\) 9.95679 + 1.60487i 0.482975 + 0.0778478i
\(426\) 1.72619 + 5.20637i 0.0836344 + 0.252249i
\(427\) −16.6840 16.6840i −0.807397 0.807397i
\(428\) −3.59100 3.59100i −0.173578 0.173578i
\(429\) −1.08841 3.28276i −0.0525491 0.158493i
\(430\) 10.9115 + 5.57844i 0.526197 + 0.269016i
\(431\) 8.93679i 0.430470i −0.976562 0.215235i \(-0.930948\pi\)
0.976562 0.215235i \(-0.0690518\pi\)
\(432\) −0.775170 4.38300i −0.0372954 0.210877i
\(433\) 17.0999 17.0999i 0.821769 0.821769i −0.164592 0.986362i \(-0.552631\pi\)
0.986362 + 0.164592i \(0.0526309\pi\)
\(434\) 9.76261 0.468620
\(435\) −14.2710 + 10.4696i −0.684241 + 0.501981i
\(436\) −22.8906 −1.09626
\(437\) 1.15037 1.15037i 0.0550294 0.0550294i
\(438\) −8.77976 + 17.4894i −0.419513 + 0.835677i
\(439\) 25.4047i 1.21250i 0.795273 + 0.606251i \(0.207327\pi\)
−0.795273 + 0.606251i \(0.792673\pi\)
\(440\) 2.43461 + 7.52790i 0.116065 + 0.358879i
\(441\) −0.197137 + 0.146868i −0.00938746 + 0.00699371i
\(442\) −1.59650 1.59650i −0.0759376 0.0759376i
\(443\) −24.4950 24.4950i −1.16379 1.16379i −0.983638 0.180157i \(-0.942339\pi\)
−0.180157 0.983638i \(-0.557661\pi\)
\(444\) −9.87499 + 3.27410i −0.468646 + 0.155382i
\(445\) −15.5741 + 30.4631i −0.738285 + 1.44409i
\(446\) 4.18711i 0.198265i
\(447\) 31.6892 + 15.9081i 1.49885 + 0.752426i
\(448\) −5.17585 + 5.17585i −0.244536 + 0.244536i
\(449\) 35.4891 1.67483 0.837417 0.546564i \(-0.184065\pi\)
0.837417 + 0.546564i \(0.184065\pi\)
\(450\) 5.27996 + 10.1298i 0.248900 + 0.477523i
\(451\) 10.8696 0.511827
\(452\) −4.91274 + 4.91274i −0.231076 + 0.231076i
\(453\) −31.8317 15.9796i −1.49558 0.750788i
\(454\) 4.57154i 0.214553i
\(455\) 3.98139 7.78763i 0.186651 0.365090i
\(456\) 4.28196 1.41970i 0.200521 0.0664837i
\(457\) −11.0478 11.0478i −0.516797 0.516797i 0.399804 0.916601i \(-0.369078\pi\)
−0.916601 + 0.399804i \(0.869078\pi\)
\(458\) 0.429265 + 0.429265i 0.0200582 + 0.0200582i
\(459\) −8.58859 6.00721i −0.400881 0.280392i
\(460\) −1.58961 4.91513i −0.0741159 0.229169i
\(461\) 12.3684i 0.576055i 0.957622 + 0.288028i \(0.0929995\pi\)
−0.957622 + 0.288028i \(0.907001\pi\)
\(462\) −2.13944 + 4.26180i −0.0995357 + 0.198277i
\(463\) 13.1567 13.1567i 0.611444 0.611444i −0.331878 0.943322i \(-0.607682\pi\)
0.943322 + 0.331878i \(0.107682\pi\)
\(464\) 3.91466 0.181734
\(465\) −15.0428 + 11.0359i −0.697592 + 0.511776i
\(466\) −5.09938 −0.236224
\(467\) 4.49454 4.49454i 0.207982 0.207982i −0.595427 0.803409i \(-0.703017\pi\)
0.803409 + 0.595427i \(0.203017\pi\)
\(468\) −0.905383 + 6.19583i −0.0418513 + 0.286403i
\(469\) 9.92994i 0.458522i
\(470\) 14.2503 + 7.28540i 0.657317 + 0.336051i
\(471\) 10.4025 + 31.3750i 0.479322 + 1.44568i
\(472\) −2.66704 2.66704i −0.122760 0.122760i
\(473\) −6.91300 6.91300i −0.317860 0.317860i
\(474\) 5.45564 + 16.4547i 0.250586 + 0.755791i
\(475\) 4.05309 2.92787i 0.185969 0.134340i
\(476\) 7.62248i 0.349376i
\(477\) 4.50754 30.8466i 0.206386 1.41237i
\(478\) −10.2614 + 10.2614i −0.469347 + 0.469347i
\(479\) 36.0986 1.64939 0.824693 0.565580i \(-0.191348\pi\)
0.824693 + 0.565580i \(0.191348\pi\)
\(480\) 3.44751 22.4378i 0.157357 1.02414i
\(481\) 6.21711 0.283476
\(482\) 11.8528 11.8528i 0.539880 0.539880i
\(483\) 3.36427 6.70168i 0.153080 0.304937i
\(484\) 12.9997i 0.590897i
\(485\) −20.8150 + 6.73180i −0.945160 + 0.305675i
\(486\) −0.355462 11.8661i −0.0161241 0.538256i
\(487\) −17.2732 17.2732i −0.782724 0.782724i 0.197565 0.980290i \(-0.436697\pi\)
−0.980290 + 0.197565i \(0.936697\pi\)
\(488\) 16.3288 + 16.3288i 0.739171 + 0.739171i
\(489\) −41.3604 + 13.7132i −1.87038 + 0.620134i
\(490\) −0.132769 + 0.0429391i −0.00599791 + 0.00193979i
\(491\) 15.1161i 0.682178i 0.940031 + 0.341089i \(0.110796\pi\)
−0.940031 + 0.341089i \(0.889204\pi\)
\(492\) −17.5877 8.82910i −0.792915 0.398046i
\(493\) 6.51809 6.51809i 0.293560 0.293560i
\(494\) −1.11935 −0.0503617
\(495\) −1.52106 8.98528i −0.0683665 0.403858i
\(496\) 4.12638 0.185280
\(497\) 7.82500 7.82500i 0.350999 0.350999i
\(498\) −9.61734 4.82794i −0.430963 0.216345i
\(499\) 23.4062i 1.04781i 0.851778 + 0.523903i \(0.175524\pi\)
−0.851778 + 0.523903i \(0.824476\pi\)
\(500\) −2.41941 15.6911i −0.108199 0.701728i
\(501\) −27.6881 + 9.18011i −1.23701 + 0.410137i
\(502\) 9.09201 + 9.09201i 0.405796 + 0.405796i
\(503\) −9.30918 9.30918i −0.415076 0.415076i 0.468427 0.883502i \(-0.344821\pi\)
−0.883502 + 0.468427i \(0.844821\pi\)
\(504\) 16.6747 12.4227i 0.742749 0.553353i
\(505\) 20.6604 + 10.5626i 0.919378 + 0.470028i
\(506\) 1.68310i 0.0748229i
\(507\) −8.42322 + 16.7792i −0.374088 + 0.745190i
\(508\) −8.04594 + 8.04594i −0.356981 + 0.356981i
\(509\) 0.204055 0.00904456 0.00452228 0.999990i \(-0.498561\pi\)
0.00452228 + 0.999990i \(0.498561\pi\)
\(510\) −3.51911 4.79683i −0.155829 0.212407i
\(511\) 39.4817 1.74657
\(512\) −6.70547 + 6.70547i −0.296343 + 0.296343i
\(513\) −5.11675 + 0.904938i −0.225910 + 0.0399540i
\(514\) 2.56132i 0.112975i
\(515\) −11.7505 36.3329i −0.517788 1.60102i
\(516\) 5.57044 + 16.8010i 0.245225 + 0.739622i
\(517\) −9.02833 9.02833i −0.397066 0.397066i
\(518\) −6.06153 6.06153i −0.266328 0.266328i
\(519\) −8.85058 26.6942i −0.388497 1.17174i
\(520\) −3.89662 + 7.62182i −0.170878 + 0.334239i
\(521\) 10.4402i 0.457391i 0.973498 + 0.228696i \(0.0734461\pi\)
−0.973498 + 0.228696i \(0.926554\pi\)
\(522\) 10.3311 + 1.50967i 0.452182 + 0.0660763i
\(523\) 0.714367 0.714367i 0.0312371 0.0312371i −0.691316 0.722553i \(-0.742969\pi\)
0.722553 + 0.691316i \(0.242969\pi\)
\(524\) −3.43116 −0.149891
\(525\) 13.4856 18.6891i 0.588560 0.815661i
\(526\) −7.64344 −0.333270
\(527\) 6.87061 6.87061i 0.299288 0.299288i
\(528\) −0.904280 + 1.80134i −0.0393537 + 0.0783933i
\(529\) 20.3533i 0.884927i
\(530\) 8.05499 15.7556i 0.349887 0.684380i
\(531\) 2.59553 + 3.48390i 0.112636 + 0.151188i
\(532\) −2.67216 2.67216i −0.115853 0.115853i
\(533\) 8.31575 + 8.31575i 0.360195 + 0.360195i
\(534\) 19.1568 6.35152i 0.828995 0.274857i
\(535\) 2.46076 + 7.60875i 0.106388 + 0.328955i
\(536\) 9.71852i 0.419776i
\(537\) −0.149492 0.0750455i −0.00645105 0.00323845i
\(538\) 7.09509 7.09509i 0.305891 0.305891i
\(539\) 0.111321 0.00479493
\(540\) −4.83736 + 15.7743i −0.208167 + 0.678819i
\(541\) 0.689057 0.0296249 0.0148124 0.999890i \(-0.495285\pi\)
0.0148124 + 0.999890i \(0.495285\pi\)
\(542\) −2.56128 + 2.56128i −0.110016 + 0.110016i
\(543\) 9.20537 + 4.62113i 0.395040 + 0.198312i
\(544\) 11.8228i 0.506899i
\(545\) 32.0937 + 16.4078i 1.37474 + 0.702832i
\(546\) −4.89726 + 1.62371i −0.209584 + 0.0694883i
\(547\) −3.45744 3.45744i −0.147829 0.147829i 0.629318 0.777148i \(-0.283334\pi\)
−0.777148 + 0.629318i \(0.783334\pi\)
\(548\) −11.3864 11.3864i −0.486404 0.486404i
\(549\) −15.8910 21.3300i −0.678211 0.910343i
\(550\) 0.823155 5.10693i 0.0350994 0.217760i
\(551\) 4.57000i 0.194689i
\(552\) −3.29264 + 6.55900i −0.140144 + 0.279170i
\(553\) 24.7309 24.7309i 1.05167 1.05167i
\(554\) −3.45257 −0.146686
\(555\) 16.1920 + 2.48786i 0.687314 + 0.105604i
\(556\) −18.3393 −0.777760
\(557\) −16.2110 + 16.2110i −0.686881 + 0.686881i −0.961541 0.274660i \(-0.911435\pi\)
0.274660 + 0.961541i \(0.411435\pi\)
\(558\) 10.8899 + 1.59131i 0.461005 + 0.0673657i
\(559\) 10.5776i 0.447384i
\(560\) −4.84995 + 1.56853i −0.204948 + 0.0662825i
\(561\) 1.49365 + 4.50498i 0.0630618 + 0.190200i
\(562\) −12.1147 12.1147i −0.511030 0.511030i
\(563\) 12.6620 + 12.6620i 0.533639 + 0.533639i 0.921653 0.388014i \(-0.126839\pi\)
−0.388014 + 0.921653i \(0.626839\pi\)
\(564\) 7.27497 + 21.9420i 0.306331 + 0.923925i
\(565\) 10.4093 3.36648i 0.437922 0.141629i
\(566\) 1.37324i 0.0577215i
\(567\) −21.0737 + 11.3815i −0.885010 + 0.477978i
\(568\) −7.65840 + 7.65840i −0.321339 + 0.321339i
\(569\) −16.6123 −0.696424 −0.348212 0.937416i \(-0.613211\pi\)
−0.348212 + 0.937416i \(0.613211\pi\)
\(570\) −2.91526 0.447922i −0.122107 0.0187614i
\(571\) 8.75730 0.366482 0.183241 0.983068i \(-0.441341\pi\)
0.183241 + 0.983068i \(0.441341\pi\)
\(572\) 2.00499 2.00499i 0.0838328 0.0838328i
\(573\) 11.5494 23.0066i 0.482482 0.961113i
\(574\) 16.2153i 0.676815i
\(575\) −1.29441 + 8.03066i −0.0539807 + 0.334902i
\(576\) −6.61717 + 4.92983i −0.275715 + 0.205410i
\(577\) −8.00995 8.00995i −0.333459 0.333459i 0.520440 0.853898i \(-0.325768\pi\)
−0.853898 + 0.520440i \(0.825768\pi\)
\(578\) −6.96356 6.96356i −0.289646 0.289646i
\(579\) 15.4757 5.13104i 0.643148 0.213239i
\(580\) −12.9205 6.60558i −0.536497 0.274282i
\(581\) 21.7108i 0.900716i
\(582\) 11.5332 + 5.78969i 0.478065 + 0.239990i
\(583\) −9.98204 + 9.98204i −0.413414 + 0.413414i
\(584\) −38.6411 −1.59898
\(585\) 5.71050 8.03788i 0.236100 0.332325i
\(586\) −24.0171 −0.992139
\(587\) 6.86560 6.86560i 0.283373 0.283373i −0.551079 0.834453i \(-0.685784\pi\)
0.834453 + 0.551079i \(0.185784\pi\)
\(588\) −0.180125 0.0904235i −0.00742823 0.00372900i
\(589\) 4.81716i 0.198488i
\(590\) 0.758843 + 2.34637i 0.0312411 + 0.0965985i
\(591\) −19.9332 + 6.60894i −0.819942 + 0.271855i
\(592\) −2.56204 2.56204i −0.105299 0.105299i
\(593\) 14.3489 + 14.3489i 0.589237 + 0.589237i 0.937425 0.348188i \(-0.113203\pi\)
−0.348188 + 0.937425i \(0.613203\pi\)
\(594\) −3.08115 + 4.40516i −0.126421 + 0.180746i
\(595\) −5.46372 + 10.6871i −0.223991 + 0.438127i
\(596\) 29.0706i 1.19078i
\(597\) 9.14492 18.2168i 0.374277 0.745565i
\(598\) 1.28766 1.28766i 0.0526562 0.0526562i
\(599\) −39.2061 −1.60192 −0.800959 0.598719i \(-0.795677\pi\)
−0.800959 + 0.598719i \(0.795677\pi\)
\(600\) −13.1985 + 18.2912i −0.538826 + 0.746737i
\(601\) 3.96904 0.161900 0.0809502 0.996718i \(-0.474205\pi\)
0.0809502 + 0.996718i \(0.474205\pi\)
\(602\) −10.3129 + 10.3129i −0.420322 + 0.420322i
\(603\) 1.61859 11.0765i 0.0659140 0.451071i
\(604\) 29.2014i 1.18819i
\(605\) 9.31808 18.2262i 0.378834 0.741001i
\(606\) −4.30767 12.9924i −0.174987 0.527778i
\(607\) −18.3365 18.3365i −0.744254 0.744254i 0.229139 0.973394i \(-0.426409\pi\)
−0.973394 + 0.229139i \(0.926409\pi\)
\(608\) 4.14464 + 4.14464i 0.168087 + 0.168087i
\(609\) −6.62920 19.9943i −0.268629 0.810210i
\(610\) −4.64598 14.3655i −0.188110 0.581644i
\(611\) 13.8143i 0.558865i
\(612\) 1.24247 8.50263i 0.0502239 0.343698i
\(613\) −4.77647 + 4.77647i −0.192920 + 0.192920i −0.796956 0.604037i \(-0.793558\pi\)
0.604037 + 0.796956i \(0.293558\pi\)
\(614\) 18.0805 0.729669
\(615\) 18.3302 + 24.9855i 0.739144 + 1.00751i
\(616\) −9.41601 −0.379382
\(617\) −9.18925 + 9.18925i −0.369945 + 0.369945i −0.867457 0.497512i \(-0.834247\pi\)
0.497512 + 0.867457i \(0.334247\pi\)
\(618\) −10.1060 + 20.1313i −0.406523 + 0.809801i
\(619\) 8.76775i 0.352406i −0.984354 0.176203i \(-0.943619\pi\)
0.984354 0.176203i \(-0.0563815\pi\)
\(620\) −13.6193 6.96282i −0.546965 0.279634i
\(621\) 4.84512 6.92713i 0.194428 0.277976i
\(622\) 10.0748 + 10.0748i 0.403964 + 0.403964i
\(623\) −28.7920 28.7920i −1.15353 1.15353i
\(624\) −2.06993 + 0.686296i −0.0828637 + 0.0274738i
\(625\) −7.85512 + 23.7339i −0.314205 + 0.949355i
\(626\) 21.5255i 0.860331i
\(627\) 2.10290 + 1.05566i 0.0839816 + 0.0421591i
\(628\) −19.1627 + 19.1627i −0.764674 + 0.764674i
\(629\) −8.53182 −0.340186
\(630\) −13.4044 + 2.26913i −0.534042 + 0.0904045i
\(631\) −32.6847 −1.30116 −0.650578 0.759440i \(-0.725473\pi\)
−0.650578 + 0.759440i \(0.725473\pi\)
\(632\) −24.2044 + 24.2044i −0.962798 + 0.962798i
\(633\) −11.3908 5.71823i −0.452744 0.227279i
\(634\) 16.8496i 0.669183i
\(635\) 17.0480 5.51353i 0.676530 0.218798i
\(636\) 24.2598 8.04345i 0.961965 0.318944i
\(637\) 0.0851661 + 0.0851661i 0.00337440 + 0.00337440i
\(638\) −3.34319 3.34319i −0.132358 0.132358i
\(639\) 10.0040 7.45305i 0.395753 0.294838i
\(640\) 20.4845 6.62492i 0.809721 0.261873i
\(641\) 20.3444i 0.803555i −0.915737 0.401777i \(-0.868393\pi\)
0.915737 0.401777i \(-0.131607\pi\)
\(642\) 2.11637 4.21585i 0.0835266 0.166386i
\(643\) −19.2371 + 19.2371i −0.758637 + 0.758637i −0.976074 0.217438i \(-0.930230\pi\)
0.217438 + 0.976074i \(0.430230\pi\)
\(644\) 6.14792 0.242262
\(645\) 4.23277 27.5486i 0.166665 1.08473i
\(646\) 1.53609 0.0604368
\(647\) 24.0469 24.0469i 0.945381 0.945381i −0.0532024 0.998584i \(-0.516943\pi\)
0.998584 + 0.0532024i \(0.0169428\pi\)
\(648\) 20.6250 11.1392i 0.810226 0.437588i
\(649\) 1.96732i 0.0772241i
\(650\) 4.53681 3.27730i 0.177948 0.128546i
\(651\) −6.98772 21.0756i −0.273870 0.826019i
\(652\) −25.2614 25.2614i −0.989313 0.989313i
\(653\) −7.09109 7.09109i −0.277496 0.277496i 0.554613 0.832109i \(-0.312866\pi\)
−0.832109 + 0.554613i \(0.812866\pi\)
\(654\) −6.69149 20.1822i −0.261658 0.789186i
\(655\) 4.81064 + 2.45942i 0.187967 + 0.0960976i
\(656\) 6.85376i 0.267594i
\(657\) 44.0406 + 6.43556i 1.71819 + 0.251075i
\(658\) −13.4686 + 13.4686i −0.525060 + 0.525060i
\(659\) 22.9119 0.892523 0.446261 0.894903i \(-0.352755\pi\)
0.446261 + 0.894903i \(0.352755\pi\)
\(660\) 6.02419 4.41954i 0.234491 0.172030i
\(661\) −13.9390 −0.542164 −0.271082 0.962556i \(-0.587382\pi\)
−0.271082 + 0.962556i \(0.587382\pi\)
\(662\) 4.08485 4.08485i 0.158762 0.158762i
\(663\) −2.30382 + 4.58925i −0.0894730 + 0.178232i
\(664\) 21.2486i 0.824604i
\(665\) 1.83111 + 5.66187i 0.0710075 + 0.219558i
\(666\) −5.77341 7.74948i −0.223715 0.300286i
\(667\) 5.25717 + 5.25717i 0.203559 + 0.203559i
\(668\) −16.9109 16.9109i −0.654301 0.654301i
\(669\) 9.03917 2.99698i 0.349475 0.115870i
\(670\) 2.89242 5.65760i 0.111744 0.218572i
\(671\) 12.0448i 0.464985i
\(672\) 24.1455 + 12.1211i 0.931431 + 0.467582i
\(673\) −6.98423 + 6.98423i −0.269222 + 0.269222i −0.828787 0.559565i \(-0.810968\pi\)
0.559565 + 0.828787i \(0.310968\pi\)
\(674\) −13.6608 −0.526196
\(675\) 18.0891 18.6490i 0.696250 0.717800i
\(676\) −15.3927 −0.592027
\(677\) 16.3797 16.3797i 0.629521 0.629521i −0.318426 0.947948i \(-0.603154\pi\)
0.947948 + 0.318426i \(0.103154\pi\)
\(678\) −5.76758 2.89535i −0.221502 0.111195i
\(679\) 26.0357i 0.999157i
\(680\) 5.34739 10.4595i 0.205063 0.401105i
\(681\) −9.86909 + 3.27214i −0.378184 + 0.125389i
\(682\) −3.52400 3.52400i −0.134941 0.134941i
\(683\) 10.2786 + 10.2786i 0.393299 + 0.393299i 0.875861 0.482563i \(-0.160294\pi\)
−0.482563 + 0.875861i \(0.660294\pi\)
\(684\) −2.54514 3.41627i −0.0973160 0.130624i
\(685\) 7.80261 + 24.1260i 0.298122 + 0.921806i
\(686\) 14.0204i 0.535299i
\(687\) 0.619450 1.23395i 0.0236335 0.0470783i
\(688\) −4.35897 + 4.35897i −0.166184 + 0.166184i
\(689\) −15.2735 −0.581875
\(690\) 3.86889 2.83834i 0.147286 0.108054i
\(691\) −39.3216 −1.49586 −0.747931 0.663776i \(-0.768953\pi\)
−0.747931 + 0.663776i \(0.768953\pi\)
\(692\) 16.3038 16.3038i 0.619778 0.619778i
\(693\) 10.7317 + 1.56820i 0.407665 + 0.0595712i
\(694\) 1.86516i 0.0708006i
\(695\) 25.7125 + 13.1454i 0.975333 + 0.498635i
\(696\) 6.48805 + 19.5686i 0.245929 + 0.741746i
\(697\) −11.4118 11.4118i −0.432254 0.432254i
\(698\) 11.3254 + 11.3254i 0.428672 + 0.428672i
\(699\) 3.64995 + 11.0086i 0.138054 + 0.416383i
\(700\) 18.6542 + 3.00676i 0.705064 + 0.113645i
\(701\) 23.9242i 0.903606i 0.892118 + 0.451803i \(0.149219\pi\)
−0.892118 + 0.451803i \(0.850781\pi\)
\(702\) −5.72741 + 1.01294i −0.216167 + 0.0382309i
\(703\) −2.99094 + 2.99094i −0.112805 + 0.112805i
\(704\) 3.73664 0.140830
\(705\) 5.52797 35.9783i 0.208195 1.35502i
\(706\) 11.3041 0.425434
\(707\) −19.5271 + 19.5271i −0.734392 + 0.734392i
\(708\) −1.59801 + 3.18326i −0.0600569 + 0.119634i
\(709\) 16.8818i 0.634008i −0.948424 0.317004i \(-0.897323\pi\)
0.948424 0.317004i \(-0.102677\pi\)
\(710\) 6.73760 2.17902i 0.252858 0.0817770i
\(711\) 31.6177 23.5554i 1.18576 0.883396i
\(712\) 28.1790 + 28.1790i 1.05605 + 1.05605i
\(713\) 5.54150 + 5.54150i 0.207531 + 0.207531i
\(714\) 6.72058 2.22824i 0.251511 0.0833897i
\(715\) −4.24825 + 1.37393i −0.158875 + 0.0513821i
\(716\) 0.137139i 0.00512513i
\(717\) 29.4973 + 14.8077i 1.10160 + 0.553005i
\(718\) −5.11245 + 5.11245i −0.190795 + 0.190795i
\(719\) 50.5823 1.88640 0.943200 0.332225i \(-0.107799\pi\)
0.943200 + 0.332225i \(0.107799\pi\)
\(720\) −5.66564 + 0.959099i −0.211146 + 0.0357435i
\(721\) 45.4458 1.69249
\(722\) 0.538497 0.538497i 0.0200408 0.0200408i
\(723\) −34.0717 17.1041i −1.26714 0.636110i
\(724\) 8.44472i 0.313845i
\(725\) 13.3804 + 18.5226i 0.496935 + 0.687914i
\(726\) −11.4616 + 3.80014i −0.425379 + 0.141036i
\(727\) 19.8082 + 19.8082i 0.734647 + 0.734647i 0.971537 0.236889i \(-0.0761279\pi\)
−0.236889 + 0.971537i \(0.576128\pi\)
\(728\) −7.20372 7.20372i −0.266988 0.266988i
\(729\) −25.3622 + 9.26067i −0.939340 + 0.342988i
\(730\) 22.4948 + 11.5004i 0.832570 + 0.425648i
\(731\) 14.5158i 0.536885i
\(732\) 9.78374 19.4894i 0.361618 0.720348i
\(733\) −5.94719 + 5.94719i −0.219664 + 0.219664i −0.808357 0.588693i \(-0.799643\pi\)
0.588693 + 0.808357i \(0.299643\pi\)
\(734\) −7.45655 −0.275226
\(735\) 0.187729 + 0.255890i 0.00692449 + 0.00943864i
\(736\) −9.53570 −0.351491
\(737\) −3.58440 + 3.58440i −0.132033 + 0.132033i
\(738\) 2.64311 18.0877i 0.0972943 0.665817i
\(739\) 28.2435i 1.03895i 0.854485 + 0.519476i \(0.173873\pi\)
−0.854485 + 0.519476i \(0.826127\pi\)
\(740\) 4.13297 + 12.7793i 0.151931 + 0.469777i
\(741\) 0.801186 + 2.41645i 0.0294323 + 0.0887707i
\(742\) 14.8913 + 14.8913i 0.546678 + 0.546678i
\(743\) 8.64350 + 8.64350i 0.317099 + 0.317099i 0.847652 0.530553i \(-0.178016\pi\)
−0.530553 + 0.847652i \(0.678016\pi\)
\(744\) 6.83895 + 20.6269i 0.250728 + 0.756220i
\(745\) 20.8376 40.7584i 0.763429 1.49327i
\(746\) 2.14630i 0.0785816i
\(747\) −3.53888 + 24.2177i −0.129481 + 0.886079i
\(748\) −2.75147 + 2.75147i −0.100604 + 0.100604i
\(749\) −9.51713 −0.347748
\(750\) 13.1273 6.72005i 0.479341 0.245381i
\(751\) 37.9688 1.38550 0.692751 0.721177i \(-0.256398\pi\)
0.692751 + 0.721177i \(0.256398\pi\)
\(752\) −5.69279 + 5.69279i −0.207595 + 0.207595i
\(753\) 13.1202 26.1357i 0.478127 0.952437i
\(754\) 5.11541i 0.186292i
\(755\) −20.9313 + 40.9417i −0.761767 + 1.49002i
\(756\) −16.0909 11.2546i −0.585220 0.409327i
\(757\) −30.3088 30.3088i −1.10159 1.10159i −0.994219 0.107374i \(-0.965756\pi\)
−0.107374 0.994219i \(-0.534244\pi\)
\(758\) −8.53306 8.53306i −0.309935 0.309935i
\(759\) −3.63349 + 1.20470i −0.131887 + 0.0437279i
\(760\) −1.79213 5.54132i −0.0650073 0.201005i
\(761\) 32.4282i 1.17552i 0.809035 + 0.587760i \(0.199990\pi\)
−0.809035 + 0.587760i \(0.800010\pi\)
\(762\) −9.44597 4.74191i −0.342191 0.171781i
\(763\) −30.3332 + 30.3332i −1.09813 + 1.09813i
\(764\) 21.1055 0.763570
\(765\) −7.83660 + 11.0305i −0.283333 + 0.398808i
\(766\) −9.52689 −0.344221
\(767\) 1.50510 1.50510i 0.0543460 0.0543460i
\(768\) −19.8655 9.97256i −0.716835 0.359854i
\(769\) 44.0280i 1.58769i −0.608121 0.793844i \(-0.708077\pi\)
0.608121 0.793844i \(-0.291923\pi\)
\(770\) 5.48149 + 2.80239i 0.197539 + 0.100991i
\(771\) −5.52940 + 1.83330i −0.199137 + 0.0660246i