Properties

Label 285.2.k.d.77.7
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.7
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.d.248.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.631220 + 0.631220i) q^{2} +(-1.41501 + 0.998873i) q^{3} +1.20312i q^{4} +(1.34140 - 1.78903i) q^{5} +(0.262674 - 1.52369i) q^{6} +(-3.10938 - 3.10938i) q^{7} +(-2.02187 - 2.02187i) q^{8} +(1.00451 - 2.82683i) q^{9} +O(q^{10})\) \(q+(-0.631220 + 0.631220i) q^{2} +(-1.41501 + 0.998873i) q^{3} +1.20312i q^{4} +(1.34140 - 1.78903i) q^{5} +(0.262674 - 1.52369i) q^{6} +(-3.10938 - 3.10938i) q^{7} +(-2.02187 - 2.02187i) q^{8} +(1.00451 - 2.82683i) q^{9} +(0.282552 + 1.97599i) q^{10} -0.484934i q^{11} +(-1.20177 - 1.70243i) q^{12} +(-1.71998 + 1.71998i) q^{13} +3.92540 q^{14} +(-0.111085 + 3.87139i) q^{15} +0.146246 q^{16} +(5.25692 - 5.25692i) q^{17} +(1.15029 + 2.41841i) q^{18} +1.00000i q^{19} +(2.15243 + 1.61387i) q^{20} +(7.50568 + 1.29393i) q^{21} +(0.306100 + 0.306100i) q^{22} +(-2.66096 - 2.66096i) q^{23} +(4.88057 + 0.841377i) q^{24} +(-1.40127 - 4.79963i) q^{25} -2.17137i q^{26} +(1.40226 + 5.00337i) q^{27} +(3.74097 - 3.74097i) q^{28} -6.46492 q^{29} +(-2.37358 - 2.51382i) q^{30} +3.84489 q^{31} +(3.95144 - 3.95144i) q^{32} +(0.484388 + 0.686187i) q^{33} +6.63654i q^{34} +(-9.73372 + 1.39185i) q^{35} +(3.40103 + 1.20855i) q^{36} +(-1.24679 - 1.24679i) q^{37} +(-0.631220 - 0.631220i) q^{38} +(0.715749 - 4.15184i) q^{39} +(-6.32935 + 0.905048i) q^{40} -10.2468i q^{41} +(-5.55449 + 3.92098i) q^{42} +(-1.78437 + 1.78437i) q^{43} +0.583436 q^{44} +(-3.70984 - 5.58902i) q^{45} +3.35930 q^{46} +(-4.00816 + 4.00816i) q^{47} +(-0.206939 + 0.146081i) q^{48} +12.3365i q^{49} +(3.91413 + 2.14511i) q^{50} +(-2.18760 + 12.6896i) q^{51} +(-2.06935 - 2.06935i) q^{52} +(2.13230 + 2.13230i) q^{53} +(-4.04335 - 2.27309i) q^{54} +(-0.867563 - 0.650493i) q^{55} +12.5736i q^{56} +(-0.998873 - 1.41501i) q^{57} +(4.08078 - 4.08078i) q^{58} -4.08854 q^{59} +(-4.65776 - 0.133649i) q^{60} -0.395747 q^{61} +(-2.42697 + 2.42697i) q^{62} +(-11.9131 + 5.66630i) q^{63} +5.28094i q^{64} +(0.769913 + 5.38430i) q^{65} +(-0.738890 - 0.127380i) q^{66} +(-0.787783 - 0.787783i) q^{67} +(6.32472 + 6.32472i) q^{68} +(6.42324 + 1.10732i) q^{69} +(5.26555 - 7.02267i) q^{70} -7.63110i q^{71} +(-7.74648 + 3.68451i) q^{72} +(-0.661154 + 0.661154i) q^{73} +1.57399 q^{74} +(6.77703 + 5.39183i) q^{75} -1.20312 q^{76} +(-1.50785 + 1.50785i) q^{77} +(2.16893 + 3.07252i) q^{78} -7.50129i q^{79} +(0.196174 - 0.261638i) q^{80} +(-6.98193 - 5.67914i) q^{81} +(6.46798 + 6.46798i) q^{82} +(-6.64986 - 6.64986i) q^{83} +(-1.55676 + 9.03026i) q^{84} +(-2.35314 - 16.4564i) q^{85} -2.25266i q^{86} +(9.14792 - 6.45763i) q^{87} +(-0.980476 + 0.980476i) q^{88} +8.36904 q^{89} +(5.86962 + 1.18617i) q^{90} +10.6962 q^{91} +(3.20146 - 3.20146i) q^{92} +(-5.44056 + 3.84055i) q^{93} -5.06005i q^{94} +(1.78903 + 1.34140i) q^{95} +(-1.64434 + 9.53830i) q^{96} +(-7.06303 - 7.06303i) q^{97} +(-7.78704 - 7.78704i) q^{98} +(-1.37083 - 0.487120i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7} - 4 q^{10} - 18 q^{12} - 8 q^{13} - 8 q^{15} - 84 q^{16} + 8 q^{21} + 40 q^{22} - 20 q^{25} - 14 q^{27} + 36 q^{28} + 28 q^{30} - 28 q^{33} + 92 q^{36} - 4 q^{37} - 20 q^{40} - 100 q^{42} + 16 q^{43} + 28 q^{45} - 24 q^{46} - 58 q^{48} + 32 q^{51} + 148 q^{52} - 72 q^{55} - 2 q^{57} - 12 q^{58} + 58 q^{60} - 112 q^{61} - 64 q^{63} + 92 q^{66} - 8 q^{67} + 8 q^{70} - 88 q^{72} + 76 q^{73} + 80 q^{75} + 36 q^{76} - 36 q^{78} + 4 q^{81} + 20 q^{82} - 28 q^{85} - 4 q^{87} + 140 q^{88} + 76 q^{90} - 24 q^{91} - 48 q^{93} + 32 q^{96} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.631220 + 0.631220i −0.446340 + 0.446340i −0.894136 0.447796i \(-0.852209\pi\)
0.447796 + 0.894136i \(0.352209\pi\)
\(3\) −1.41501 + 0.998873i −0.816956 + 0.576699i
\(4\) 1.20312i 0.601562i
\(5\) 1.34140 1.78903i 0.599894 0.800079i
\(6\) 0.262674 1.52369i 0.107236 0.622044i
\(7\) −3.10938 3.10938i −1.17524 1.17524i −0.980944 0.194292i \(-0.937759\pi\)
−0.194292 0.980944i \(-0.562241\pi\)
\(8\) −2.02187 2.02187i −0.714841 0.714841i
\(9\) 1.00451 2.82683i 0.334836 0.942277i
\(10\) 0.282552 + 1.97599i 0.0893507 + 0.624864i
\(11\) 0.484934i 0.146213i −0.997324 0.0731066i \(-0.976709\pi\)
0.997324 0.0731066i \(-0.0232913\pi\)
\(12\) −1.20177 1.70243i −0.346920 0.491450i
\(13\) −1.71998 + 1.71998i −0.477037 + 0.477037i −0.904183 0.427146i \(-0.859519\pi\)
0.427146 + 0.904183i \(0.359519\pi\)
\(14\) 3.92540 1.04911
\(15\) −0.111085 + 3.87139i −0.0286820 + 0.999589i
\(16\) 0.146246 0.0365614
\(17\) 5.25692 5.25692i 1.27499 1.27499i 0.331553 0.943437i \(-0.392428\pi\)
0.943437 0.331553i \(-0.107572\pi\)
\(18\) 1.15029 + 2.41841i 0.271125 + 0.570026i
\(19\) 1.00000i 0.229416i
\(20\) 2.15243 + 1.61387i 0.481297 + 0.360873i
\(21\) 7.50568 + 1.29393i 1.63787 + 0.282359i
\(22\) 0.306100 + 0.306100i 0.0652607 + 0.0652607i
\(23\) −2.66096 2.66096i −0.554848 0.554848i 0.372988 0.927836i \(-0.378333\pi\)
−0.927836 + 0.372988i \(0.878333\pi\)
\(24\) 4.88057 + 0.841377i 0.996242 + 0.171745i
\(25\) −1.40127 4.79963i −0.280254 0.959926i
\(26\) 2.17137i 0.425841i
\(27\) 1.40226 + 5.00337i 0.269864 + 0.962898i
\(28\) 3.74097 3.74097i 0.706977 0.706977i
\(29\) −6.46492 −1.20050 −0.600252 0.799811i \(-0.704933\pi\)
−0.600252 + 0.799811i \(0.704933\pi\)
\(30\) −2.37358 2.51382i −0.433354 0.458958i
\(31\) 3.84489 0.690562 0.345281 0.938499i \(-0.387784\pi\)
0.345281 + 0.938499i \(0.387784\pi\)
\(32\) 3.95144 3.95144i 0.698522 0.698522i
\(33\) 0.484388 + 0.686187i 0.0843211 + 0.119450i
\(34\) 6.63654i 1.13816i
\(35\) −9.73372 + 1.39185i −1.64530 + 0.235265i
\(36\) 3.40103 + 1.20855i 0.566838 + 0.201424i
\(37\) −1.24679 1.24679i −0.204971 0.204971i 0.597155 0.802126i \(-0.296298\pi\)
−0.802126 + 0.597155i \(0.796298\pi\)
\(38\) −0.631220 0.631220i −0.102397 0.102397i
\(39\) 0.715749 4.15184i 0.114612 0.664826i
\(40\) −6.32935 + 0.905048i −1.00076 + 0.143101i
\(41\) 10.2468i 1.60028i −0.599812 0.800141i \(-0.704758\pi\)
0.599812 0.800141i \(-0.295242\pi\)
\(42\) −5.55449 + 3.92098i −0.857076 + 0.605020i
\(43\) −1.78437 + 1.78437i −0.272115 + 0.272115i −0.829951 0.557836i \(-0.811632\pi\)
0.557836 + 0.829951i \(0.311632\pi\)
\(44\) 0.583436 0.0879563
\(45\) −3.70984 5.58902i −0.553030 0.833161i
\(46\) 3.35930 0.495301
\(47\) −4.00816 + 4.00816i −0.584650 + 0.584650i −0.936177 0.351528i \(-0.885662\pi\)
0.351528 + 0.936177i \(0.385662\pi\)
\(48\) −0.206939 + 0.146081i −0.0298691 + 0.0210849i
\(49\) 12.3365i 1.76236i
\(50\) 3.91413 + 2.14511i 0.553541 + 0.303364i
\(51\) −2.18760 + 12.6896i −0.306325 + 1.77690i
\(52\) −2.06935 2.06935i −0.286968 0.286968i
\(53\) 2.13230 + 2.13230i 0.292893 + 0.292893i 0.838222 0.545329i \(-0.183595\pi\)
−0.545329 + 0.838222i \(0.683595\pi\)
\(54\) −4.04335 2.27309i −0.550231 0.309329i
\(55\) −0.867563 0.650493i −0.116982 0.0877124i
\(56\) 12.5736i 1.68021i
\(57\) −0.998873 1.41501i −0.132304 0.187423i
\(58\) 4.08078 4.08078i 0.535833 0.535833i
\(59\) −4.08854 −0.532283 −0.266141 0.963934i \(-0.585749\pi\)
−0.266141 + 0.963934i \(0.585749\pi\)
\(60\) −4.65776 0.133649i −0.601314 0.0172540i
\(61\) −0.395747 −0.0506703 −0.0253351 0.999679i \(-0.508065\pi\)
−0.0253351 + 0.999679i \(0.508065\pi\)
\(62\) −2.42697 + 2.42697i −0.308225 + 0.308225i
\(63\) −11.9131 + 5.66630i −1.50091 + 0.713886i
\(64\) 5.28094i 0.660117i
\(65\) 0.769913 + 5.38430i 0.0954959 + 0.667840i
\(66\) −0.738890 0.127380i −0.0909510 0.0156794i
\(67\) −0.787783 0.787783i −0.0962430 0.0962430i 0.657346 0.753589i \(-0.271679\pi\)
−0.753589 + 0.657346i \(0.771679\pi\)
\(68\) 6.32472 + 6.32472i 0.766985 + 0.766985i
\(69\) 6.42324 + 1.10732i 0.773267 + 0.133306i
\(70\) 5.26555 7.02267i 0.629354 0.839370i
\(71\) 7.63110i 0.905645i −0.891601 0.452822i \(-0.850417\pi\)
0.891601 0.452822i \(-0.149583\pi\)
\(72\) −7.74648 + 3.68451i −0.912932 + 0.434223i
\(73\) −0.661154 + 0.661154i −0.0773822 + 0.0773822i −0.744739 0.667356i \(-0.767426\pi\)
0.667356 + 0.744739i \(0.267426\pi\)
\(74\) 1.57399 0.182973
\(75\) 6.77703 + 5.39183i 0.782544 + 0.622595i
\(76\) −1.20312 −0.138008
\(77\) −1.50785 + 1.50785i −0.171835 + 0.171835i
\(78\) 2.16893 + 3.07252i 0.245582 + 0.347894i
\(79\) 7.50129i 0.843961i −0.906605 0.421980i \(-0.861335\pi\)
0.906605 0.421980i \(-0.138665\pi\)
\(80\) 0.196174 0.261638i 0.0219330 0.0292520i
\(81\) −6.98193 5.67914i −0.775770 0.631015i
\(82\) 6.46798 + 6.46798i 0.714269 + 0.714269i
\(83\) −6.64986 6.64986i −0.729917 0.729917i 0.240686 0.970603i \(-0.422628\pi\)
−0.970603 + 0.240686i \(0.922628\pi\)
\(84\) −1.55676 + 9.03026i −0.169856 + 0.985283i
\(85\) −2.35314 16.4564i −0.255234 1.78495i
\(86\) 2.25266i 0.242911i
\(87\) 9.14792 6.45763i 0.980760 0.692330i
\(88\) −0.980476 + 0.980476i −0.104519 + 0.104519i
\(89\) 8.36904 0.887116 0.443558 0.896246i \(-0.353716\pi\)
0.443558 + 0.896246i \(0.353716\pi\)
\(90\) 5.86962 + 1.18617i 0.618712 + 0.125034i
\(91\) 10.6962 1.12126
\(92\) 3.20146 3.20146i 0.333775 0.333775i
\(93\) −5.44056 + 3.84055i −0.564159 + 0.398247i
\(94\) 5.06005i 0.521904i
\(95\) 1.78903 + 1.34140i 0.183551 + 0.137625i
\(96\) −1.64434 + 9.53830i −0.167825 + 0.973499i
\(97\) −7.06303 7.06303i −0.717142 0.717142i 0.250877 0.968019i \(-0.419281\pi\)
−0.968019 + 0.250877i \(0.919281\pi\)
\(98\) −7.78704 7.78704i −0.786610 0.786610i
\(99\) −1.37083 0.487120i −0.137773 0.0489574i
\(100\) 5.77455 1.68590i 0.577455 0.168590i
\(101\) 0.402110i 0.0400115i −0.999800 0.0200057i \(-0.993632\pi\)
0.999800 0.0200057i \(-0.00636845\pi\)
\(102\) −6.62905 9.39077i −0.656374 0.929824i
\(103\) −9.11315 + 9.11315i −0.897946 + 0.897946i −0.995254 0.0973085i \(-0.968977\pi\)
0.0973085 + 0.995254i \(0.468977\pi\)
\(104\) 6.95518 0.682011
\(105\) 12.3830 11.6922i 1.20846 1.14104i
\(106\) −2.69189 −0.261460
\(107\) −8.57439 + 8.57439i −0.828918 + 0.828918i −0.987367 0.158449i \(-0.949351\pi\)
0.158449 + 0.987367i \(0.449351\pi\)
\(108\) −6.01967 + 1.68709i −0.579243 + 0.162340i
\(109\) 2.94223i 0.281814i 0.990023 + 0.140907i \(0.0450019\pi\)
−0.990023 + 0.140907i \(0.954998\pi\)
\(110\) 0.958226 0.137019i 0.0913633 0.0130642i
\(111\) 3.00960 + 0.518835i 0.285659 + 0.0492457i
\(112\) −0.454733 0.454733i −0.0429683 0.0429683i
\(113\) 13.6558 + 13.6558i 1.28463 + 1.28463i 0.938001 + 0.346632i \(0.112675\pi\)
0.346632 + 0.938001i \(0.387325\pi\)
\(114\) 1.52369 + 0.262674i 0.142707 + 0.0246017i
\(115\) −8.32995 + 1.19112i −0.776772 + 0.111072i
\(116\) 7.77809i 0.722178i
\(117\) 3.13436 + 6.58983i 0.289772 + 0.609230i
\(118\) 2.58077 2.58077i 0.237579 0.237579i
\(119\) −32.6915 −2.99683
\(120\) 8.05206 7.60286i 0.735049 0.694043i
\(121\) 10.7648 0.978622
\(122\) 0.249803 0.249803i 0.0226161 0.0226161i
\(123\) 10.2353 + 14.4993i 0.922882 + 1.30736i
\(124\) 4.62588i 0.415416i
\(125\) −10.4664 3.93132i −0.936140 0.351628i
\(126\) 3.94310 11.0964i 0.351279 0.988550i
\(127\) 12.4056 + 12.4056i 1.10082 + 1.10082i 0.994312 + 0.106507i \(0.0339665\pi\)
0.106507 + 0.994312i \(0.466033\pi\)
\(128\) 4.56944 + 4.56944i 0.403885 + 0.403885i
\(129\) 0.742545 4.30727i 0.0653774 0.379234i
\(130\) −3.88466 2.91269i −0.340707 0.255460i
\(131\) 2.18846i 0.191206i 0.995420 + 0.0956032i \(0.0304780\pi\)
−0.995420 + 0.0956032i \(0.969522\pi\)
\(132\) −0.825568 + 0.582778i −0.0718565 + 0.0507243i
\(133\) 3.10938 3.10938i 0.269618 0.269618i
\(134\) 0.994528 0.0859141
\(135\) 10.8322 + 4.20286i 0.932285 + 0.361724i
\(136\) −21.2576 −1.82283
\(137\) 13.4491 13.4491i 1.14903 1.14903i 0.162287 0.986744i \(-0.448113\pi\)
0.986744 0.162287i \(-0.0518870\pi\)
\(138\) −4.75344 + 3.35551i −0.404639 + 0.285640i
\(139\) 19.8345i 1.68234i −0.540769 0.841171i \(-0.681867\pi\)
0.540769 0.841171i \(-0.318133\pi\)
\(140\) −1.67456 11.7109i −0.141526 0.989749i
\(141\) 1.66794 9.67522i 0.140466 0.814800i
\(142\) 4.81690 + 4.81690i 0.404225 + 0.404225i
\(143\) 0.834079 + 0.834079i 0.0697492 + 0.0697492i
\(144\) 0.146905 0.413411i 0.0122421 0.0344510i
\(145\) −8.67206 + 11.5659i −0.720176 + 0.960499i
\(146\) 0.834667i 0.0690775i
\(147\) −12.3226 17.4563i −1.01635 1.43977i
\(148\) 1.50004 1.50004i 0.123303 0.123303i
\(149\) 0.129352 0.0105970 0.00529848 0.999986i \(-0.498313\pi\)
0.00529848 + 0.999986i \(0.498313\pi\)
\(150\) −7.68122 + 0.874364i −0.627169 + 0.0713916i
\(151\) 9.09129 0.739839 0.369920 0.929064i \(-0.379385\pi\)
0.369920 + 0.929064i \(0.379385\pi\)
\(152\) 2.02187 2.02187i 0.163996 0.163996i
\(153\) −9.57980 20.1410i −0.774481 1.62830i
\(154\) 1.90356i 0.153394i
\(155\) 5.15755 6.87863i 0.414264 0.552505i
\(156\) 4.99517 + 0.861135i 0.399934 + 0.0689460i
\(157\) 17.5751 + 17.5751i 1.40265 + 1.40265i 0.791571 + 0.611078i \(0.209264\pi\)
0.611078 + 0.791571i \(0.290736\pi\)
\(158\) 4.73496 + 4.73496i 0.376693 + 0.376693i
\(159\) −5.14711 0.887328i −0.408193 0.0703697i
\(160\) −1.76877 12.3697i −0.139834 0.977912i
\(161\) 16.5479i 1.30415i
\(162\) 7.99192 0.822348i 0.627904 0.0646098i
\(163\) 11.1001 11.1001i 0.869425 0.869425i −0.122984 0.992409i \(-0.539246\pi\)
0.992409 + 0.122984i \(0.0392463\pi\)
\(164\) 12.3282 0.962669
\(165\) 1.87737 + 0.0538689i 0.146153 + 0.00419369i
\(166\) 8.39505 0.651582
\(167\) 2.27559 2.27559i 0.176091 0.176091i −0.613559 0.789649i \(-0.710263\pi\)
0.789649 + 0.613559i \(0.210263\pi\)
\(168\) −12.5594 17.7917i −0.968977 1.37266i
\(169\) 7.08332i 0.544871i
\(170\) 11.8730 + 8.90228i 0.910616 + 0.682773i
\(171\) 2.82683 + 1.00451i 0.216173 + 0.0768166i
\(172\) −2.14682 2.14682i −0.163694 0.163694i
\(173\) 8.75419 + 8.75419i 0.665568 + 0.665568i 0.956687 0.291119i \(-0.0940274\pi\)
−0.291119 + 0.956687i \(0.594027\pi\)
\(174\) −1.69817 + 9.85053i −0.128738 + 0.746767i
\(175\) −10.5668 + 19.2810i −0.798774 + 1.45750i
\(176\) 0.0709195i 0.00534576i
\(177\) 5.78533 4.08393i 0.434852 0.306967i
\(178\) −5.28270 + 5.28270i −0.395955 + 0.395955i
\(179\) 10.7138 0.800787 0.400394 0.916343i \(-0.368873\pi\)
0.400394 + 0.916343i \(0.368873\pi\)
\(180\) 6.72428 4.46340i 0.501198 0.332682i
\(181\) −21.0414 −1.56400 −0.781999 0.623280i \(-0.785800\pi\)
−0.781999 + 0.623280i \(0.785800\pi\)
\(182\) −6.75163 + 6.75163i −0.500464 + 0.500464i
\(183\) 0.559987 0.395301i 0.0413954 0.0292215i
\(184\) 10.7602i 0.793255i
\(185\) −3.90299 + 0.558098i −0.286954 + 0.0410322i
\(186\) 1.00995 5.85842i 0.0740533 0.429560i
\(187\) −2.54926 2.54926i −0.186420 0.186420i
\(188\) −4.82231 4.82231i −0.351703 0.351703i
\(189\) 11.1972 19.9175i 0.814478 1.44879i
\(190\) −1.97599 + 0.282552i −0.143354 + 0.0204984i
\(191\) 2.14074i 0.154899i −0.996996 0.0774493i \(-0.975322\pi\)
0.996996 0.0774493i \(-0.0246776\pi\)
\(192\) −5.27498 7.47258i −0.380689 0.539287i
\(193\) 6.90598 6.90598i 0.497104 0.497104i −0.413432 0.910535i \(-0.635670\pi\)
0.910535 + 0.413432i \(0.135670\pi\)
\(194\) 8.91665 0.640178
\(195\) −6.46766 6.84979i −0.463159 0.490523i
\(196\) −14.8423 −1.06017
\(197\) −4.53867 + 4.53867i −0.323367 + 0.323367i −0.850057 0.526690i \(-0.823433\pi\)
0.526690 + 0.850057i \(0.323433\pi\)
\(198\) 1.17277 0.557813i 0.0833453 0.0396420i
\(199\) 2.36288i 0.167500i 0.996487 + 0.0837499i \(0.0266897\pi\)
−0.996487 + 0.0837499i \(0.973310\pi\)
\(200\) −6.87105 + 12.5374i −0.485857 + 0.886531i
\(201\) 1.90162 + 0.327826i 0.134130 + 0.0231231i
\(202\) 0.253820 + 0.253820i 0.0178587 + 0.0178587i
\(203\) 20.1019 + 20.1019i 1.41088 + 1.41088i
\(204\) −15.2671 2.63195i −1.06891 0.184274i
\(205\) −18.3319 13.7451i −1.28035 0.960000i
\(206\) 11.5048i 0.801578i
\(207\) −10.1950 + 4.84912i −0.708603 + 0.337037i
\(208\) −0.251540 + 0.251540i −0.0174412 + 0.0174412i
\(209\) 0.484934 0.0335436
\(210\) −0.436053 + 15.1968i −0.0300905 + 1.04868i
\(211\) 8.32645 0.573217 0.286608 0.958048i \(-0.407472\pi\)
0.286608 + 0.958048i \(0.407472\pi\)
\(212\) −2.56542 + 2.56542i −0.176193 + 0.176193i
\(213\) 7.62249 + 10.7981i 0.522285 + 0.739872i
\(214\) 10.8247i 0.739958i
\(215\) 0.798736 + 5.58587i 0.0544733 + 0.380953i
\(216\) 7.28099 12.9514i 0.495409 0.881229i
\(217\) −11.9552 11.9552i −0.811574 0.811574i
\(218\) −1.85719 1.85719i −0.125785 0.125785i
\(219\) 0.275131 1.59595i 0.0185916 0.107844i
\(220\) 0.782623 1.04379i 0.0527645 0.0703720i
\(221\) 18.0836i 1.21644i
\(222\) −2.22722 + 1.57222i −0.149481 + 0.105521i
\(223\) 0.192204 0.192204i 0.0128709 0.0128709i −0.700642 0.713513i \(-0.747103\pi\)
0.713513 + 0.700642i \(0.247103\pi\)
\(224\) −24.5730 −1.64186
\(225\) −14.9753 0.860106i −0.998355 0.0573404i
\(226\) −17.2397 −1.14677
\(227\) 7.27049 7.27049i 0.482559 0.482559i −0.423389 0.905948i \(-0.639160\pi\)
0.905948 + 0.423389i \(0.139160\pi\)
\(228\) 1.70243 1.20177i 0.112746 0.0795890i
\(229\) 19.9414i 1.31776i 0.752246 + 0.658882i \(0.228970\pi\)
−0.752246 + 0.658882i \(0.771030\pi\)
\(230\) 4.50617 6.00989i 0.297128 0.396280i
\(231\) 0.627471 3.63976i 0.0412846 0.239479i
\(232\) 13.0712 + 13.0712i 0.858169 + 0.858169i
\(233\) −8.00181 8.00181i −0.524216 0.524216i 0.394626 0.918842i \(-0.370874\pi\)
−0.918842 + 0.394626i \(0.870874\pi\)
\(234\) −6.13810 2.18116i −0.401260 0.142587i
\(235\) 1.79416 + 12.5473i 0.117038 + 0.818494i
\(236\) 4.91902i 0.320201i
\(237\) 7.49283 + 10.6144i 0.486712 + 0.689479i
\(238\) 20.6355 20.6355i 1.33760 1.33760i
\(239\) 8.06309 0.521558 0.260779 0.965399i \(-0.416021\pi\)
0.260779 + 0.965399i \(0.416021\pi\)
\(240\) −0.0162457 + 0.566174i −0.00104865 + 0.0365464i
\(241\) −3.28544 −0.211634 −0.105817 0.994386i \(-0.533746\pi\)
−0.105817 + 0.994386i \(0.533746\pi\)
\(242\) −6.79498 + 6.79498i −0.436798 + 0.436798i
\(243\) 15.5522 + 1.06198i 0.997677 + 0.0681259i
\(244\) 0.476133i 0.0304813i
\(245\) 22.0704 + 16.5482i 1.41003 + 1.05723i
\(246\) −15.6130 2.69157i −0.995446 0.171608i
\(247\) −1.71998 1.71998i −0.109440 0.109440i
\(248\) −7.77388 7.77388i −0.493642 0.493642i
\(249\) 16.0520 + 2.76726i 1.01725 + 0.175368i
\(250\) 9.08810 4.12504i 0.574782 0.260891i
\(251\) 5.94266i 0.375097i 0.982255 + 0.187549i \(0.0600542\pi\)
−0.982255 + 0.187549i \(0.939946\pi\)
\(252\) −6.81726 14.3329i −0.429447 0.902889i
\(253\) −1.29039 + 1.29039i −0.0811261 + 0.0811261i
\(254\) −15.6613 −0.982678
\(255\) 19.7676 + 20.9355i 1.23790 + 1.31103i
\(256\) −16.3305 −1.02066
\(257\) −6.45234 + 6.45234i −0.402486 + 0.402486i −0.879108 0.476622i \(-0.841861\pi\)
0.476622 + 0.879108i \(0.341861\pi\)
\(258\) 2.25012 + 3.18754i 0.140087 + 0.198448i
\(259\) 7.75348i 0.481778i
\(260\) −6.47797 + 0.926300i −0.401747 + 0.0574467i
\(261\) −6.49405 + 18.2752i −0.401972 + 1.13121i
\(262\) −1.38140 1.38140i −0.0853430 0.0853430i
\(263\) −16.6563 16.6563i −1.02707 1.02707i −0.999623 0.0274500i \(-0.991261\pi\)
−0.0274500 0.999623i \(-0.508739\pi\)
\(264\) 0.408013 2.36675i 0.0251115 0.145664i
\(265\) 6.67502 0.954475i 0.410043 0.0586330i
\(266\) 3.92540i 0.240682i
\(267\) −11.8423 + 8.35960i −0.724735 + 0.511599i
\(268\) 0.947801 0.947801i 0.0578961 0.0578961i
\(269\) −23.6314 −1.44083 −0.720416 0.693543i \(-0.756049\pi\)
−0.720416 + 0.693543i \(0.756049\pi\)
\(270\) −9.49040 + 4.18456i −0.577568 + 0.254664i
\(271\) −1.21408 −0.0737504 −0.0368752 0.999320i \(-0.511740\pi\)
−0.0368752 + 0.999320i \(0.511740\pi\)
\(272\) 0.768801 0.768801i 0.0466154 0.0466154i
\(273\) −15.1352 + 10.6841i −0.916023 + 0.646632i
\(274\) 16.9786i 1.02572i
\(275\) −2.32750 + 0.679524i −0.140354 + 0.0409769i
\(276\) −1.33225 + 7.72795i −0.0801919 + 0.465168i
\(277\) 9.65826 + 9.65826i 0.580309 + 0.580309i 0.934988 0.354679i \(-0.115410\pi\)
−0.354679 + 0.934988i \(0.615410\pi\)
\(278\) 12.5199 + 12.5199i 0.750896 + 0.750896i
\(279\) 3.86222 10.8688i 0.231225 0.650701i
\(280\) 22.4945 + 16.8662i 1.34430 + 1.00795i
\(281\) 9.22464i 0.550296i −0.961402 0.275148i \(-0.911273\pi\)
0.961402 0.275148i \(-0.0887268\pi\)
\(282\) 5.05435 + 7.16002i 0.300982 + 0.426373i
\(283\) 20.8970 20.8970i 1.24220 1.24220i 0.283112 0.959087i \(-0.408633\pi\)
0.959087 0.283112i \(-0.0913668\pi\)
\(284\) 9.18115 0.544801
\(285\) −3.87139 0.111085i −0.229321 0.00658010i
\(286\) −1.05297 −0.0622636
\(287\) −31.8612 + 31.8612i −1.88071 + 1.88071i
\(288\) −7.20079 15.1393i −0.424311 0.892091i
\(289\) 38.2703i 2.25120i
\(290\) −1.82667 12.7746i −0.107266 0.750152i
\(291\) 17.0493 + 2.93919i 0.999450 + 0.172298i
\(292\) −0.795450 0.795450i −0.0465502 0.0465502i
\(293\) −18.8428 18.8428i −1.10081 1.10081i −0.994313 0.106498i \(-0.966036\pi\)
−0.106498 0.994313i \(-0.533964\pi\)
\(294\) 18.7970 + 3.24048i 1.09626 + 0.188989i
\(295\) −5.48439 + 7.31453i −0.319313 + 0.425869i
\(296\) 5.04170i 0.293043i
\(297\) 2.42630 0.680002i 0.140788 0.0394577i
\(298\) −0.0816498 + 0.0816498i −0.00472985 + 0.00472985i
\(299\) 9.15360 0.529366
\(300\) −6.48704 + 8.15361i −0.374530 + 0.470749i
\(301\) 11.0966 0.639597
\(302\) −5.73860 + 5.73860i −0.330219 + 0.330219i
\(303\) 0.401657 + 0.568990i 0.0230746 + 0.0326876i
\(304\) 0.146246i 0.00838776i
\(305\) −0.530857 + 0.708005i −0.0303968 + 0.0405402i
\(306\) 18.7604 + 6.66645i 1.07246 + 0.381095i
\(307\) 1.57533 + 1.57533i 0.0899088 + 0.0899088i 0.750631 0.660722i \(-0.229750\pi\)
−0.660722 + 0.750631i \(0.729750\pi\)
\(308\) −1.81412 1.81412i −0.103369 0.103369i
\(309\) 3.79232 21.9981i 0.215738 1.25143i
\(310\) 1.08638 + 7.59747i 0.0617022 + 0.431507i
\(311\) 17.6141i 0.998804i 0.866370 + 0.499402i \(0.166447\pi\)
−0.866370 + 0.499402i \(0.833553\pi\)
\(312\) −9.84165 + 6.94734i −0.557174 + 0.393316i
\(313\) −7.57967 + 7.57967i −0.428428 + 0.428428i −0.888093 0.459664i \(-0.847970\pi\)
0.459664 + 0.888093i \(0.347970\pi\)
\(314\) −22.1875 −1.25212
\(315\) −5.84307 + 28.9137i −0.329220 + 1.62910i
\(316\) 9.02498 0.507695
\(317\) 6.04760 6.04760i 0.339667 0.339667i −0.516575 0.856242i \(-0.672793\pi\)
0.856242 + 0.516575i \(0.172793\pi\)
\(318\) 3.80906 2.68886i 0.213601 0.150784i
\(319\) 3.13506i 0.175530i
\(320\) 9.44777 + 7.08387i 0.528146 + 0.396000i
\(321\) 3.56813 20.6976i 0.199153 1.15523i
\(322\) −10.4453 10.4453i −0.582096 0.582096i
\(323\) 5.25692 + 5.25692i 0.292503 + 0.292503i
\(324\) 6.83271 8.40013i 0.379595 0.466674i
\(325\) 10.6654 + 5.84512i 0.591612 + 0.324229i
\(326\) 14.0132i 0.776118i
\(327\) −2.93891 4.16328i −0.162522 0.230230i
\(328\) −20.7178 + 20.7178i −1.14395 + 1.14395i
\(329\) 24.9258 1.37420
\(330\) −1.21904 + 1.15103i −0.0671057 + 0.0633621i
\(331\) −16.5043 −0.907157 −0.453579 0.891216i \(-0.649853\pi\)
−0.453579 + 0.891216i \(0.649853\pi\)
\(332\) 8.00061 8.00061i 0.439091 0.439091i
\(333\) −4.77687 + 2.27205i −0.261771 + 0.124508i
\(334\) 2.87280i 0.157192i
\(335\) −2.46610 + 0.352634i −0.134738 + 0.0192664i
\(336\) 1.09767 + 0.189232i 0.0598830 + 0.0103234i
\(337\) −15.0634 15.0634i −0.820555 0.820555i 0.165632 0.986188i \(-0.447034\pi\)
−0.986188 + 0.165632i \(0.947034\pi\)
\(338\) −4.47113 4.47113i −0.243197 0.243197i
\(339\) −32.9636 5.68270i −1.79034 0.308642i
\(340\) 19.7991 2.83112i 1.07376 0.153539i
\(341\) 1.86452i 0.100969i
\(342\) −2.41841 + 1.15029i −0.130773 + 0.0622003i
\(343\) 16.5932 16.5932i 0.895950 0.895950i
\(344\) 7.21556 0.389037
\(345\) 10.5972 10.0060i 0.570534 0.538705i
\(346\) −11.0516 −0.594139
\(347\) 16.3236 16.3236i 0.876298 0.876298i −0.116851 0.993149i \(-0.537280\pi\)
0.993149 + 0.116851i \(0.0372800\pi\)
\(348\) 7.76933 + 11.0061i 0.416480 + 0.589988i
\(349\) 7.06087i 0.377960i 0.981981 + 0.188980i \(0.0605181\pi\)
−0.981981 + 0.188980i \(0.939482\pi\)
\(350\) −5.50056 18.8405i −0.294017 1.00707i
\(351\) −11.0176 6.19385i −0.588074 0.330603i
\(352\) −1.91619 1.91619i −0.102133 0.102133i
\(353\) −15.7883 15.7883i −0.840325 0.840325i 0.148576 0.988901i \(-0.452531\pi\)
−0.988901 + 0.148576i \(0.952531\pi\)
\(354\) −1.07395 + 6.22967i −0.0570800 + 0.331103i
\(355\) −13.6523 10.2364i −0.724588 0.543291i
\(356\) 10.0690i 0.533655i
\(357\) 46.2588 32.6547i 2.44828 1.72827i
\(358\) −6.76276 + 6.76276i −0.357423 + 0.357423i
\(359\) 25.8168 1.36256 0.681278 0.732025i \(-0.261424\pi\)
0.681278 + 0.732025i \(0.261424\pi\)
\(360\) −3.79946 + 18.8011i −0.200249 + 0.990906i
\(361\) −1.00000 −0.0526316
\(362\) 13.2818 13.2818i 0.698074 0.698074i
\(363\) −15.2324 + 10.7527i −0.799491 + 0.564371i
\(364\) 12.8688i 0.674509i
\(365\) 0.295951 + 2.06970i 0.0154908 + 0.108333i
\(366\) −0.103953 + 0.602996i −0.00543369 + 0.0315191i
\(367\) 14.0056 + 14.0056i 0.731086 + 0.731086i 0.970835 0.239749i \(-0.0770651\pi\)
−0.239749 + 0.970835i \(0.577065\pi\)
\(368\) −0.389153 0.389153i −0.0202860 0.0202860i
\(369\) −28.9660 10.2930i −1.50791 0.535831i
\(370\) 2.11136 2.81593i 0.109765 0.146393i
\(371\) 13.2602i 0.688437i
\(372\) −4.62066 6.54566i −0.239570 0.339377i
\(373\) 18.1829 18.1829i 0.941476 0.941476i −0.0569035 0.998380i \(-0.518123\pi\)
0.998380 + 0.0569035i \(0.0181227\pi\)
\(374\) 3.21828 0.166414
\(375\) 18.7369 4.89170i 0.967569 0.252606i
\(376\) 16.2080 0.835862
\(377\) 11.1195 11.1195i 0.572686 0.572686i
\(378\) 5.50442 + 19.6402i 0.283117 + 1.01018i
\(379\) 9.67090i 0.496761i −0.968663 0.248380i \(-0.920102\pi\)
0.968663 0.248380i \(-0.0798983\pi\)
\(380\) −1.61387 + 2.15243i −0.0827900 + 0.110417i
\(381\) −29.9457 5.16243i −1.53416 0.264479i
\(382\) 1.35128 + 1.35128i 0.0691374 + 0.0691374i
\(383\) −6.50293 6.50293i −0.332284 0.332284i 0.521169 0.853453i \(-0.325496\pi\)
−0.853453 + 0.521169i \(0.825496\pi\)
\(384\) −11.0301 1.90151i −0.562877 0.0970363i
\(385\) 0.674954 + 4.72021i 0.0343988 + 0.240564i
\(386\) 8.71838i 0.443754i
\(387\) 3.25171 + 6.83654i 0.165294 + 0.347521i
\(388\) 8.49770 8.49770i 0.431406 0.431406i
\(389\) −7.26031 −0.368112 −0.184056 0.982916i \(-0.558923\pi\)
−0.184056 + 0.982916i \(0.558923\pi\)
\(390\) 8.40623 + 0.241207i 0.425666 + 0.0122140i
\(391\) −27.9768 −1.41485
\(392\) 24.9429 24.9429i 1.25980 1.25980i
\(393\) −2.18599 3.09669i −0.110269 0.156207i
\(394\) 5.72979i 0.288663i
\(395\) −13.4200 10.0623i −0.675236 0.506287i
\(396\) 0.586065 1.64927i 0.0294509 0.0828791i
\(397\) 13.5745 + 13.5745i 0.681287 + 0.681287i 0.960290 0.279003i \(-0.0900040\pi\)
−0.279003 + 0.960290i \(0.590004\pi\)
\(398\) −1.49149 1.49149i −0.0747618 0.0747618i
\(399\) −1.29393 + 7.50568i −0.0647775 + 0.375754i
\(400\) −0.204930 0.701925i −0.0102465 0.0350962i
\(401\) 26.8858i 1.34261i −0.741181 0.671306i \(-0.765734\pi\)
0.741181 0.671306i \(-0.234266\pi\)
\(402\) −1.40727 + 0.993407i −0.0701881 + 0.0495466i
\(403\) −6.61314 + 6.61314i −0.329424 + 0.329424i
\(404\) 0.483789 0.0240694
\(405\) −19.5258 + 4.87288i −0.970242 + 0.242135i
\(406\) −25.3774 −1.25946
\(407\) −0.604611 + 0.604611i −0.0299694 + 0.0299694i
\(408\) 30.0798 21.2337i 1.48917 1.05122i
\(409\) 9.24979i 0.457373i 0.973500 + 0.228686i \(0.0734430\pi\)
−0.973500 + 0.228686i \(0.926557\pi\)
\(410\) 20.2476 2.89525i 0.999958 0.142986i
\(411\) −5.59666 + 32.4644i −0.276063 + 1.60135i
\(412\) −10.9643 10.9643i −0.540170 0.540170i
\(413\) 12.7128 + 12.7128i 0.625558 + 0.625558i
\(414\) 3.37444 9.49616i 0.165844 0.466711i
\(415\) −20.8170 + 2.97667i −1.02187 + 0.146119i
\(416\) 13.5928i 0.666442i
\(417\) 19.8122 + 28.0660i 0.970206 + 1.37440i
\(418\) −0.306100 + 0.306100i −0.0149718 + 0.0149718i
\(419\) 27.3581 1.33653 0.668264 0.743924i \(-0.267038\pi\)
0.668264 + 0.743924i \(0.267038\pi\)
\(420\) 14.0672 + 14.8983i 0.686409 + 0.726964i
\(421\) −13.7170 −0.668525 −0.334263 0.942480i \(-0.608487\pi\)
−0.334263 + 0.942480i \(0.608487\pi\)
\(422\) −5.25582 + 5.25582i −0.255849 + 0.255849i
\(423\) 7.30415 + 15.3566i 0.355140 + 0.746663i
\(424\) 8.62247i 0.418744i
\(425\) −32.5976 17.8649i −1.58122 0.866574i
\(426\) −11.6274 2.00449i −0.563351 0.0971179i
\(427\) 1.23053 + 1.23053i 0.0595495 + 0.0595495i
\(428\) −10.3161 10.3161i −0.498645 0.498645i
\(429\) −2.01337 0.347091i −0.0972063 0.0167577i
\(430\) −4.03009 3.02173i −0.194348 0.145721i
\(431\) 13.6763i 0.658766i 0.944196 + 0.329383i \(0.106841\pi\)
−0.944196 + 0.329383i \(0.893159\pi\)
\(432\) 0.205074 + 0.731720i 0.00986661 + 0.0352049i
\(433\) −3.55520 + 3.55520i −0.170852 + 0.170852i −0.787354 0.616502i \(-0.788549\pi\)
0.616502 + 0.787354i \(0.288549\pi\)
\(434\) 15.0927 0.724475
\(435\) 0.718155 25.0282i 0.0344329 1.20001i
\(436\) −3.53986 −0.169529
\(437\) 2.66096 2.66096i 0.127291 0.127291i
\(438\) 0.833726 + 1.18106i 0.0398370 + 0.0564333i
\(439\) 30.0669i 1.43502i −0.696551 0.717508i \(-0.745283\pi\)
0.696551 0.717508i \(-0.254717\pi\)
\(440\) 0.438889 + 3.06932i 0.0209232 + 0.146324i
\(441\) 34.8732 + 12.3921i 1.66063 + 0.590100i
\(442\) −11.4147 11.4147i −0.542943 0.542943i
\(443\) 11.3303 + 11.3303i 0.538319 + 0.538319i 0.923035 0.384716i \(-0.125700\pi\)
−0.384716 + 0.923035i \(0.625700\pi\)
\(444\) −0.624223 + 3.62092i −0.0296243 + 0.171841i
\(445\) 11.2263 14.9725i 0.532176 0.709763i
\(446\) 0.242646i 0.0114896i
\(447\) −0.183035 + 0.129207i −0.00865726 + 0.00611126i
\(448\) 16.4204 16.4204i 0.775793 0.775793i
\(449\) 4.52307 0.213457 0.106728 0.994288i \(-0.465962\pi\)
0.106728 + 0.994288i \(0.465962\pi\)
\(450\) 9.99563 8.90980i 0.471199 0.420012i
\(451\) −4.96903 −0.233982
\(452\) −16.4297 + 16.4297i −0.772786 + 0.772786i
\(453\) −12.8643 + 9.08105i −0.604416 + 0.426665i
\(454\) 9.17855i 0.430771i
\(455\) 14.3479 19.1358i 0.672639 0.897099i
\(456\) −0.841377 + 4.88057i −0.0394011 + 0.228554i
\(457\) 24.3285 + 24.3285i 1.13804 + 1.13804i 0.988801 + 0.149240i \(0.0476828\pi\)
0.149240 + 0.988801i \(0.452317\pi\)
\(458\) −12.5874 12.5874i −0.588170 0.588170i
\(459\) 33.6738 + 18.9307i 1.57176 + 0.883611i
\(460\) −1.43306 10.0220i −0.0668169 0.467277i
\(461\) 19.0723i 0.888284i −0.895957 0.444142i \(-0.853509\pi\)
0.895957 0.444142i \(-0.146491\pi\)
\(462\) 1.90142 + 2.69356i 0.0884619 + 0.125316i
\(463\) 27.0456 27.0456i 1.25692 1.25692i 0.304360 0.952557i \(-0.401558\pi\)
0.952557 0.304360i \(-0.0984425\pi\)
\(464\) −0.945466 −0.0438921
\(465\) −0.427109 + 14.8851i −0.0198067 + 0.690278i
\(466\) 10.1018 0.467957
\(467\) 14.7797 14.7797i 0.683924 0.683924i −0.276958 0.960882i \(-0.589326\pi\)
0.960882 + 0.276958i \(0.0893262\pi\)
\(468\) −7.92838 + 3.77103i −0.366490 + 0.174316i
\(469\) 4.89904i 0.226216i
\(470\) −9.05259 6.78757i −0.417565 0.313087i
\(471\) −42.4243 7.31367i −1.95481 0.336996i
\(472\) 8.26652 + 8.26652i 0.380497 + 0.380497i
\(473\) 0.865304 + 0.865304i 0.0397867 + 0.0397867i
\(474\) −11.4296 1.97039i −0.524981 0.0905032i
\(475\) 4.79963 1.40127i 0.220222 0.0642947i
\(476\) 39.3319i 1.80278i
\(477\) 8.16954 3.88573i 0.374058 0.177915i
\(478\) −5.08958 + 5.08958i −0.232792 + 0.232792i
\(479\) −28.2939 −1.29278 −0.646391 0.763006i \(-0.723723\pi\)
−0.646391 + 0.763006i \(0.723723\pi\)
\(480\) 14.8586 + 15.7365i 0.678199 + 0.718269i
\(481\) 4.28891 0.195557
\(482\) 2.07384 2.07384i 0.0944606 0.0944606i
\(483\) −16.5292 23.4154i −0.752105 1.06544i
\(484\) 12.9514i 0.588702i
\(485\) −22.1104 + 3.16161i −1.00398 + 0.143561i
\(486\) −10.4872 + 9.14654i −0.475710 + 0.414895i
\(487\) 0.608543 + 0.608543i 0.0275757 + 0.0275757i 0.720760 0.693184i \(-0.243793\pi\)
−0.693184 + 0.720760i \(0.743793\pi\)
\(488\) 0.800152 + 0.800152i 0.0362212 + 0.0362212i
\(489\) −4.61916 + 26.7943i −0.208885 + 1.21168i
\(490\) −24.3768 + 3.48570i −1.10123 + 0.157468i
\(491\) 25.7171i 1.16060i −0.814403 0.580299i \(-0.802936\pi\)
0.814403 0.580299i \(-0.197064\pi\)
\(492\) −17.4445 + 12.3143i −0.786458 + 0.555171i
\(493\) −33.9855 + 33.9855i −1.53063 + 1.53063i
\(494\) 2.17137 0.0976947
\(495\) −2.71031 + 1.79903i −0.121819 + 0.0808603i
\(496\) 0.562298 0.0252479
\(497\) −23.7280 + 23.7280i −1.06435 + 1.06435i
\(498\) −11.8791 + 8.38558i −0.532314 + 0.375767i
\(499\) 8.12902i 0.363905i 0.983307 + 0.181952i \(0.0582417\pi\)
−0.983307 + 0.181952i \(0.941758\pi\)
\(500\) 4.72987 12.5923i 0.211526 0.563146i
\(501\) −0.946959 + 5.49301i −0.0423070 + 0.245410i
\(502\) −3.75112 3.75112i −0.167421 0.167421i
\(503\) −24.4871 24.4871i −1.09182 1.09182i −0.995334 0.0964901i \(-0.969238\pi\)
−0.0964901 0.995334i \(-0.530762\pi\)
\(504\) 35.5433 + 12.6302i 1.58322 + 0.562595i
\(505\) −0.719388 0.539393i −0.0320124 0.0240027i
\(506\) 1.62904i 0.0724196i
\(507\) −7.07533 10.0230i −0.314227 0.445136i
\(508\) −14.9255 + 14.9255i −0.662211 + 0.662211i
\(509\) 16.4424 0.728796 0.364398 0.931243i \(-0.381275\pi\)
0.364398 + 0.931243i \(0.381275\pi\)
\(510\) −25.6926 0.737219i −1.13769 0.0326446i
\(511\) 4.11156 0.181885
\(512\) 1.16926 1.16926i 0.0516745 0.0516745i
\(513\) −5.00337 + 1.40226i −0.220904 + 0.0619111i
\(514\) 8.14569i 0.359291i
\(515\) 4.07930 + 28.5281i 0.179756 + 1.25710i
\(516\) 5.18218 + 0.893373i 0.228133 + 0.0393286i
\(517\) 1.94369 + 1.94369i 0.0854835 + 0.0854835i
\(518\) −4.89415 4.89415i −0.215037 0.215037i
\(519\) −21.1316 3.64294i −0.927573 0.159907i
\(520\) 9.32970 12.4430i 0.409135 0.545663i
\(521\) 12.9898i 0.569094i −0.958662 0.284547i \(-0.908157\pi\)
0.958662 0.284547i \(-0.0918432\pi\)
\(522\) −7.43650 15.6348i −0.325487 0.684319i
\(523\) 3.68860 3.68860i 0.161291 0.161291i −0.621847 0.783138i \(-0.713618\pi\)
0.783138 + 0.621847i \(0.213618\pi\)
\(524\) −2.63298 −0.115022
\(525\) −4.30711 37.8376i −0.187978 1.65137i
\(526\) 21.0276 0.916847
\(527\) 20.2123 20.2123i 0.880460 0.880460i
\(528\) 0.0708396 + 0.100352i 0.00308290 + 0.00436725i
\(529\) 8.83862i 0.384288i
\(530\) −3.61092 + 4.81588i −0.156848 + 0.209189i
\(531\) −4.10697 + 11.5576i −0.178227 + 0.501558i
\(532\) 3.74097 + 3.74097i 0.162192 + 0.162192i
\(533\) 17.6243 + 17.6243i 0.763394 + 0.763394i
\(534\) 2.19833 12.7518i 0.0951310 0.551825i
\(535\) 3.83814 + 26.8416i 0.165937 + 1.16046i
\(536\) 3.18560i 0.137597i
\(537\) −15.1601 + 10.7017i −0.654208 + 0.461813i
\(538\) 14.9166 14.9166i 0.643100 0.643100i
\(539\) 5.98239 0.257680
\(540\) −5.05656 + 13.0324i −0.217600 + 0.560827i
\(541\) 29.6270 1.27377 0.636883 0.770961i \(-0.280223\pi\)
0.636883 + 0.770961i \(0.280223\pi\)
\(542\) 0.766354 0.766354i 0.0329177 0.0329177i
\(543\) 29.7739 21.0177i 1.27772 0.901957i
\(544\) 41.5447i 1.78122i
\(545\) 5.26374 + 3.94671i 0.225474 + 0.169059i
\(546\) 2.80960 16.2976i 0.120240 0.697474i
\(547\) 24.9591 + 24.9591i 1.06717 + 1.06717i 0.997575 + 0.0695973i \(0.0221714\pi\)
0.0695973 + 0.997575i \(0.477829\pi\)
\(548\) 16.1809 + 16.1809i 0.691213 + 0.691213i
\(549\) −0.397531 + 1.11871i −0.0169662 + 0.0477454i
\(550\) 1.04024 1.89810i 0.0443559 0.0809351i
\(551\) 6.46492i 0.275415i
\(552\) −10.7481 15.2258i −0.457470 0.648055i
\(553\) −23.3244 + 23.3244i −0.991853 + 0.991853i
\(554\) −12.1930 −0.518030
\(555\) 4.96531 4.68831i 0.210765 0.199008i
\(556\) 23.8634 1.01203
\(557\) −11.3659 + 11.3659i −0.481590 + 0.481590i −0.905639 0.424049i \(-0.860608\pi\)
0.424049 + 0.905639i \(0.360608\pi\)
\(558\) 4.42272 + 9.29853i 0.187229 + 0.393638i
\(559\) 6.13819i 0.259618i
\(560\) −1.42351 + 0.203551i −0.0601544 + 0.00860162i
\(561\) 6.15361 + 1.06084i 0.259806 + 0.0447888i
\(562\) 5.82277 + 5.82277i 0.245619 + 0.245619i
\(563\) −11.5917 11.5917i −0.488530 0.488530i 0.419312 0.907842i \(-0.362271\pi\)
−0.907842 + 0.419312i \(0.862271\pi\)
\(564\) 11.6405 + 2.00674i 0.490153 + 0.0844991i
\(565\) 42.7487 6.11274i 1.79845 0.257165i
\(566\) 26.3812i 1.10889i
\(567\) 4.05088 + 39.3681i 0.170121 + 1.65330i
\(568\) −15.4291 + 15.4291i −0.647391 + 0.647391i
\(569\) −16.0656 −0.673503 −0.336752 0.941593i \(-0.609328\pi\)
−0.336752 + 0.941593i \(0.609328\pi\)
\(570\) 2.51382 2.37358i 0.105292 0.0994182i
\(571\) −3.13996 −0.131403 −0.0657017 0.997839i \(-0.520929\pi\)
−0.0657017 + 0.997839i \(0.520929\pi\)
\(572\) −1.00350 + 1.00350i −0.0419584 + 0.0419584i
\(573\) 2.13833 + 3.02917i 0.0893299 + 0.126545i
\(574\) 40.2229i 1.67887i
\(575\) −9.04288 + 16.5003i −0.377114 + 0.688111i
\(576\) 14.9283 + 5.30474i 0.622013 + 0.221031i
\(577\) −26.5932 26.5932i −1.10709 1.10709i −0.993531 0.113558i \(-0.963775\pi\)
−0.113558 0.993531i \(-0.536225\pi\)
\(578\) 24.1570 + 24.1570i 1.00480 + 1.00480i
\(579\) −2.87384 + 16.6702i −0.119433 + 0.692791i
\(580\) −13.9153 10.4336i −0.577800 0.433230i
\(581\) 41.3539i 1.71565i
\(582\) −12.6171 + 8.90660i −0.522998 + 0.369190i
\(583\) 1.03402 1.03402i 0.0428249 0.0428249i
\(584\) 2.67354 0.110632
\(585\) 15.9939 + 3.23215i 0.661265 + 0.133633i
\(586\) 23.7879 0.982671
\(587\) 4.22727 4.22727i 0.174478 0.174478i −0.614465 0.788944i \(-0.710628\pi\)
0.788944 + 0.614465i \(0.210628\pi\)
\(588\) 21.0021 14.8256i 0.866110 0.611398i
\(589\) 3.84489i 0.158426i
\(590\) −1.15522 8.07893i −0.0475598 0.332604i
\(591\) 1.88871 10.9558i 0.0776911 0.450662i
\(592\) −0.182337 0.182337i −0.00749402 0.00749402i
\(593\) 29.5108 + 29.5108i 1.21186 + 1.21186i 0.970414 + 0.241447i \(0.0776221\pi\)
0.241447 + 0.970414i \(0.422378\pi\)
\(594\) −1.10230 + 1.96076i −0.0452279 + 0.0804510i
\(595\) −43.8525 + 58.4862i −1.79778 + 2.39770i
\(596\) 0.155627i 0.00637473i
\(597\) −2.36021 3.34349i −0.0965970 0.136840i
\(598\) −5.77793 + 5.77793i −0.236277 + 0.236277i
\(599\) 4.56114 0.186363 0.0931815 0.995649i \(-0.470296\pi\)
0.0931815 + 0.995649i \(0.470296\pi\)
\(600\) −2.80070 24.6039i −0.114338 1.00445i
\(601\) 22.5632 0.920371 0.460186 0.887823i \(-0.347783\pi\)
0.460186 + 0.887823i \(0.347783\pi\)
\(602\) −7.00439 + 7.00439i −0.285478 + 0.285478i
\(603\) −3.01826 + 1.43560i −0.122913 + 0.0584620i
\(604\) 10.9380i 0.445059i
\(605\) 14.4400 19.2586i 0.587069 0.782975i
\(606\) −0.612692 0.105624i −0.0248889 0.00429068i
\(607\) −29.4054 29.4054i −1.19353 1.19353i −0.976069 0.217461i \(-0.930223\pi\)
−0.217461 0.976069i \(-0.569777\pi\)
\(608\) 3.95144 + 3.95144i 0.160252 + 0.160252i
\(609\) −48.5236 8.36515i −1.96628 0.338973i
\(610\) −0.111819 0.781994i −0.00452742 0.0316620i
\(611\) 13.7879i 0.557799i
\(612\) 24.2321 11.5257i 0.979526 0.465898i
\(613\) 6.61155 6.61155i 0.267038 0.267038i −0.560868 0.827905i \(-0.689532\pi\)
0.827905 + 0.560868i \(0.189532\pi\)
\(614\) −1.98876 −0.0802597
\(615\) 39.6694 + 1.13827i 1.59962 + 0.0458993i
\(616\) 6.09735 0.245669
\(617\) −16.4346 + 16.4346i −0.661631 + 0.661631i −0.955764 0.294133i \(-0.904969\pi\)
0.294133 + 0.955764i \(0.404969\pi\)
\(618\) 11.4918 + 16.2794i 0.462269 + 0.654854i
\(619\) 1.62695i 0.0653928i 0.999465 + 0.0326964i \(0.0104094\pi\)
−0.999465 + 0.0326964i \(0.989591\pi\)
\(620\) 8.27584 + 6.20517i 0.332366 + 0.249206i
\(621\) 9.58240 17.0451i 0.384528 0.683996i
\(622\) −11.1184 11.1184i −0.445806 0.445806i
\(623\) −26.0225 26.0225i −1.04257 1.04257i
\(624\) 0.104675 0.607188i 0.00419036 0.0243070i
\(625\) −21.0729 + 13.4512i −0.842915 + 0.538046i
\(626\) 9.56888i 0.382449i
\(627\) −0.686187 + 0.484388i −0.0274037 + 0.0193446i
\(628\) −21.1451 + 21.1451i −0.843780 + 0.843780i
\(629\) −13.1085 −0.522671
\(630\) −14.5626 21.9391i −0.580189 0.874076i
\(631\) 6.15817 0.245153 0.122576 0.992459i \(-0.460884\pi\)
0.122576 + 0.992459i \(0.460884\pi\)
\(632\) −15.1667 + 15.1667i −0.603298 + 0.603298i
\(633\) −11.7820 + 8.31707i −0.468293 + 0.330574i
\(634\) 7.63472i 0.303214i
\(635\) 38.8349 5.55309i 1.54112 0.220368i
\(636\) 1.06757 6.19261i 0.0423317 0.245553i
\(637\) −21.2186 21.2186i −0.840710 0.840710i
\(638\) −1.97891 1.97891i −0.0783458 0.0783458i
\(639\) −21.5718 7.66549i −0.853368 0.303242i
\(640\) 14.3043 2.04541i 0.565429 0.0808519i
\(641\) 4.36725i 0.172496i −0.996274 0.0862481i \(-0.972512\pi\)
0.996274 0.0862481i \(-0.0274878\pi\)
\(642\) 10.8124 + 15.3170i 0.426733 + 0.604513i
\(643\) −7.15001 + 7.15001i −0.281969 + 0.281969i −0.833894 0.551925i \(-0.813893\pi\)
0.551925 + 0.833894i \(0.313893\pi\)
\(644\) −19.9091 −0.784529
\(645\) −6.70979 7.10623i −0.264198 0.279807i
\(646\) −6.63654 −0.261111
\(647\) −26.3863 + 26.3863i −1.03735 + 1.03735i −0.0380774 + 0.999275i \(0.512123\pi\)
−0.999275 + 0.0380774i \(0.987877\pi\)
\(648\) 2.63408 + 25.5991i 0.103477 + 1.00563i
\(649\) 1.98267i 0.0778268i
\(650\) −10.4218 + 3.04268i −0.408776 + 0.119344i
\(651\) 28.8585 + 4.97502i 1.13105 + 0.194986i
\(652\) 13.3548 + 13.3548i 0.523013 + 0.523013i
\(653\) 13.2064 + 13.2064i 0.516806 + 0.516806i 0.916604 0.399797i \(-0.130920\pi\)
−0.399797 + 0.916604i \(0.630920\pi\)
\(654\) 4.48304 + 0.772846i 0.175301 + 0.0302207i
\(655\) 3.91522 + 2.93560i 0.152980 + 0.114704i
\(656\) 1.49855i 0.0585086i
\(657\) 1.20484 + 2.53310i 0.0470051 + 0.0988258i
\(658\) −15.7336 + 15.7336i −0.613361 + 0.613361i
\(659\) −25.5826 −0.996557 −0.498278 0.867017i \(-0.666034\pi\)
−0.498278 + 0.867017i \(0.666034\pi\)
\(660\) −0.0648109 + 2.25871i −0.00252276 + 0.0879201i
\(661\) 31.6395 1.23063 0.615317 0.788279i \(-0.289028\pi\)
0.615317 + 0.788279i \(0.289028\pi\)
\(662\) 10.4178 10.4178i 0.404900 0.404900i
\(663\) −18.0632 25.5885i −0.701517 0.993775i
\(664\) 26.8904i 1.04355i
\(665\) −1.39185 9.73372i −0.0539735 0.377457i
\(666\) 1.58109 4.44942i 0.0612659 0.172411i
\(667\) 17.2029 + 17.2029i 0.666097 + 0.666097i
\(668\) 2.73782 + 2.73782i 0.105929 + 0.105929i
\(669\) −0.0799833 + 0.463958i −0.00309233 + 0.0179377i
\(670\) 1.33406 1.77924i 0.0515394 0.0687381i
\(671\) 0.191911i 0.00740866i
\(672\) 34.7711 24.5453i 1.34132 0.946857i
\(673\) −15.6709 + 15.6709i −0.604069 + 0.604069i −0.941390 0.337321i \(-0.890479\pi\)
0.337321 + 0.941390i \(0.390479\pi\)
\(674\) 19.0166 0.732493
\(675\) 22.0494 13.7414i 0.848680 0.528906i
\(676\) −8.52211 −0.327773
\(677\) −21.6627 + 21.6627i −0.832564 + 0.832564i −0.987867 0.155303i \(-0.950365\pi\)
0.155303 + 0.987867i \(0.450365\pi\)
\(678\) 24.3943 17.2202i 0.936857 0.661339i
\(679\) 43.9233i 1.68562i
\(680\) −28.5151 + 38.0306i −1.09350 + 1.45841i
\(681\) −3.02552 + 17.5501i −0.115938 + 0.672522i
\(682\) 1.17692 + 1.17692i 0.0450666 + 0.0450666i
\(683\) 22.3519 + 22.3519i 0.855271 + 0.855271i 0.990777 0.135506i \(-0.0432660\pi\)
−0.135506 + 0.990777i \(0.543266\pi\)
\(684\) −1.20855 + 3.40103i −0.0462099 + 0.130041i
\(685\) −6.02018 42.1014i −0.230019 1.60861i
\(686\) 20.9479i 0.799796i
\(687\) −19.9189 28.2173i −0.759954 1.07656i
\(688\) −0.260957 + 0.260957i −0.00994889 + 0.00994889i
\(689\) −7.33502 −0.279442
\(690\) −0.373167 + 13.0051i −0.0142062 + 0.495097i
\(691\) −26.6976 −1.01563 −0.507813 0.861468i \(-0.669546\pi\)
−0.507813 + 0.861468i \(0.669546\pi\)
\(692\) −10.5324 + 10.5324i −0.400381 + 0.400381i
\(693\) 2.74778 + 5.77706i 0.104380 + 0.219453i
\(694\) 20.6076i 0.782253i
\(695\) −35.4846 26.6061i −1.34601 1.00923i
\(696\) −31.5525 5.43943i −1.19599 0.206181i
\(697\) −53.8666 53.8666i −2.04034 2.04034i
\(698\) −4.45696 4.45696i −0.168698 0.168698i
\(699\) 19.3154 + 3.32985i 0.730576 + 0.125947i
\(700\) −23.1974 12.7132i −0.876779 0.480512i
\(701\) 7.96666i 0.300897i −0.988618 0.150448i \(-0.951928\pi\)
0.988618 0.150448i \(-0.0480717\pi\)
\(702\) 10.8642 3.04482i 0.410042 0.114919i
\(703\) 1.24679 1.24679i 0.0470235 0.0470235i
\(704\) 2.56091 0.0965179
\(705\) −15.0719 15.9624i −0.567640 0.601178i
\(706\) 19.9317 0.750141
\(707\) −1.25031 + 1.25031i −0.0470229 + 0.0470229i
\(708\) 4.91348 + 6.96047i 0.184660 + 0.261590i
\(709\) 9.48047i 0.356046i −0.984026 0.178023i \(-0.943030\pi\)
0.984026 0.178023i \(-0.0569702\pi\)
\(710\) 15.0790 2.15618i 0.565904 0.0809199i
\(711\) −21.2049 7.53510i −0.795245 0.282588i
\(712\) −16.9211 16.9211i −0.634147 0.634147i
\(713\) −10.2311 10.2311i −0.383157 0.383157i
\(714\) −8.58721 + 49.8117i −0.321368 + 1.86416i
\(715\) 2.61103 0.373357i 0.0976470 0.0139628i
\(716\) 12.8900i 0.481723i
\(717\) −11.4093 + 8.05400i −0.426090 + 0.300782i
\(718\) −16.2960 + 16.2960i −0.608163 + 0.608163i
\(719\) −1.99830 −0.0745241 −0.0372621 0.999306i \(-0.511864\pi\)
−0.0372621 + 0.999306i \(0.511864\pi\)
\(720\) −0.542548 0.817369i −0.0202196 0.0304615i
\(721\) 56.6725 2.11060
\(722\) 0.631220 0.631220i 0.0234916 0.0234916i
\(723\) 4.64893 3.28174i 0.172896 0.122049i
\(724\) 25.3155i 0.940842i
\(725\) 9.05910 + 31.0292i 0.336447 + 1.15240i
\(726\) 2.82764 16.4023i 0.104944 0.608746i
\(727\) −8.30098 8.30098i −0.307866 0.307866i 0.536215 0.844081i \(-0.319854\pi\)
−0.844081 + 0.536215i \(0.819854\pi\)
\(728\) −21.6263 21.6263i −0.801524 0.801524i
\(729\) −23.0674 + 14.0320i −0.854347 + 0.519704i
\(730\) −1.49325 1.11963i −0.0552675 0.0414392i
\(731\) 18.7606i 0.693886i
\(732\) 0.475596 + 0.673733i 0.0175785 + 0.0249019i
\(733\) −3.73842 + 3.73842i −0.138082 + 0.138082i −0.772769 0.634687i \(-0.781129\pi\)
0.634687 + 0.772769i \(0.281129\pi\)
\(734\) −17.6812 −0.652625
\(735\) −47.7594 1.37040i −1.76163 0.0505479i
\(736\) −21.0292 −0.775146
\(737\) −0.382023 + 0.382023i −0.0140720 + 0.0140720i
\(738\) 24.7810 11.7868i 0.912202 0.433876i
\(739\) 15.4108i 0.566895i 0.958988 + 0.283447i \(0.0914781\pi\)
−0.958988 + 0.283447i \(0.908522\pi\)
\(740\) −0.671461 4.69578i −0.0246834 0.172620i
\(741\) 4.15184 + 0.715749i 0.152522 + 0.0262937i
\(742\) 8.37012 + 8.37012i 0.307277 + 0.307277i
\(743\) −15.8667 15.8667i −0.582092 0.582092i 0.353386 0.935478i \(-0.385030\pi\)
−0.935478 + 0.353386i \(0.885030\pi\)
\(744\) 18.7652 + 3.23500i 0.687967 + 0.118601i
\(745\) 0.173514 0.231416i 0.00635706 0.00847842i
\(746\) 22.9548i 0.840436i
\(747\) −25.4779 + 12.1182i −0.932186 + 0.443382i
\(748\) 3.06707 3.06707i 0.112143 0.112143i
\(749\) 53.3221 1.94835
\(750\) −8.73936 + 14.9148i −0.319116 + 0.544613i
\(751\) −3.77036 −0.137583 −0.0687913 0.997631i \(-0.521914\pi\)
−0.0687913 + 0.997631i \(0.521914\pi\)
\(752\) −0.586175 + 0.586175i −0.0213756 + 0.0213756i
\(753\) −5.93596 8.40892i −0.216318 0.306438i
\(754\) 14.0377i 0.511225i
\(755\) 12.1951 16.2646i 0.443825 0.591930i
\(756\) 23.9632 + 13.4717i 0.871535 + 0.489959i
\(757\) 9.12642 + 9.12642i 0.331705 + 0.331705i 0.853234 0.521529i \(-0.174638\pi\)
−0.521529 + 0.853234i \(0.674638\pi\)
\(758\) 6.10446 + 6.10446i 0.221724 + 0.221724i
\(759\) 0.536979 3.11485i 0.0194911 0.113062i
\(760\) −0.905048 6.32935i −0.0328295 0.229590i
\(761\) 31.0451i 1.12538i 0.826666 + 0.562692i \(0.190234\pi\)
−0.826666 + 0.562692i \(0.809766\pi\)
\(762\) 22.1609 15.6437i 0.802805 0.566710i
\(763\) 9.14850 9.14850i 0.331198 0.331198i
\(764\) 2.57558 0.0931811
\(765\) −48.8833 9.87867i −1.76738 0.357164i
\(766\) 8.20955 0.296623
\(767\) 7.03222 7.03222i 0.253919 0.253919i
\(768\) 23.1078 16.3121i 0.833832 0.588612i
\(769\) 24.4566i 0.881927i 0.897525 + 0.440964i \(0.145363\pi\)
−0.897525 + 0.440964i \(0.854637\pi\)
\(770\) −3.40554 2.55345i −0.122727 0.0920199i
\(771\) 2.68506 15.5752i 0.0967001 0.560927i