Properties

Label 285.2.k.d.77.6
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.6
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.d.248.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.637774 + 0.637774i) q^{2} +(-1.73195 - 0.0191055i) q^{3} +1.18649i q^{4} +(1.18060 + 1.89899i) q^{5} +(1.11677 - 1.09240i) q^{6} +(2.03027 + 2.03027i) q^{7} +(-2.03226 - 2.03226i) q^{8} +(2.99927 + 0.0661793i) q^{9} +O(q^{10})\) \(q+(-0.637774 + 0.637774i) q^{2} +(-1.73195 - 0.0191055i) q^{3} +1.18649i q^{4} +(1.18060 + 1.89899i) q^{5} +(1.11677 - 1.09240i) q^{6} +(2.03027 + 2.03027i) q^{7} +(-2.03226 - 2.03226i) q^{8} +(2.99927 + 0.0661793i) q^{9} +(-1.96409 - 0.458173i) q^{10} -2.29381i q^{11} +(0.0226684 - 2.05493i) q^{12} +(-2.17577 + 2.17577i) q^{13} -2.58970 q^{14} +(-2.00846 - 3.31151i) q^{15} +0.219268 q^{16} +(-4.12474 + 4.12474i) q^{17} +(-1.95506 + 1.87065i) q^{18} +1.00000i q^{19} +(-2.25314 + 1.40077i) q^{20} +(-3.47752 - 3.55510i) q^{21} +(1.46293 + 1.46293i) q^{22} +(-0.124927 - 0.124927i) q^{23} +(3.48094 + 3.55859i) q^{24} +(-2.21236 + 4.48391i) q^{25} -2.77531i q^{26} +(-5.19331 - 0.171921i) q^{27} +(-2.40889 + 2.40889i) q^{28} -3.99654 q^{29} +(3.39294 + 0.831056i) q^{30} +8.55462 q^{31} +(3.92468 - 3.92468i) q^{32} +(-0.0438244 + 3.97276i) q^{33} -5.26130i q^{34} +(-1.45853 + 6.25240i) q^{35} +(-0.0785209 + 3.55860i) q^{36} +(-7.98529 - 7.98529i) q^{37} +(-0.637774 - 0.637774i) q^{38} +(3.80989 - 3.72675i) q^{39} +(1.45996 - 6.25854i) q^{40} +4.02151i q^{41} +(4.48522 + 0.0494775i) q^{42} +(5.82320 - 5.82320i) q^{43} +2.72158 q^{44} +(3.41527 + 5.77373i) q^{45} +0.159350 q^{46} +(-2.25866 + 2.25866i) q^{47} +(-0.379761 - 0.00418923i) q^{48} +1.24396i q^{49} +(-1.44873 - 4.27071i) q^{50} +(7.22262 - 7.06501i) q^{51} +(-2.58153 - 2.58153i) q^{52} +(6.79771 + 6.79771i) q^{53} +(3.42180 - 3.20251i) q^{54} +(4.35594 - 2.70808i) q^{55} -8.25205i q^{56} +(0.0191055 - 1.73195i) q^{57} +(2.54889 - 2.54889i) q^{58} +0.588293 q^{59} +(3.92907 - 2.38301i) q^{60} +4.76206 q^{61} +(-5.45592 + 5.45592i) q^{62} +(5.95495 + 6.22368i) q^{63} +5.44465i q^{64} +(-6.70051 - 1.56306i) q^{65} +(-2.50577 - 2.56167i) q^{66} +(3.10232 + 3.10232i) q^{67} +(-4.89395 - 4.89395i) q^{68} +(0.213980 + 0.218753i) q^{69} +(-3.05740 - 4.91783i) q^{70} +4.72734i q^{71} +(-5.96080 - 6.22979i) q^{72} +(-2.06364 + 2.06364i) q^{73} +10.1856 q^{74} +(3.91736 - 7.72362i) q^{75} -1.18649 q^{76} +(4.65705 - 4.65705i) q^{77} +(-0.0530235 + 4.80668i) q^{78} +11.8036i q^{79} +(0.258868 + 0.416390i) q^{80} +(8.99124 + 0.396979i) q^{81} +(-2.56482 - 2.56482i) q^{82} +(10.2676 + 10.2676i) q^{83} +(4.21808 - 4.12604i) q^{84} +(-12.7025 - 2.96319i) q^{85} +7.42777i q^{86} +(6.92179 + 0.0763558i) q^{87} +(-4.66163 + 4.66163i) q^{88} -0.931525 q^{89} +(-5.86050 - 1.50417i) q^{90} -8.83480 q^{91} +(0.148224 - 0.148224i) q^{92} +(-14.8161 - 0.163440i) q^{93} -2.88103i q^{94} +(-1.89899 + 1.18060i) q^{95} +(-6.87231 + 6.72234i) q^{96} +(12.3183 + 12.3183i) q^{97} +(-0.793364 - 0.793364i) q^{98} +(0.151803 - 6.87977i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7} - 4 q^{10} - 18 q^{12} - 8 q^{13} - 8 q^{15} - 84 q^{16} + 8 q^{21} + 40 q^{22} - 20 q^{25} - 14 q^{27} + 36 q^{28} + 28 q^{30} - 28 q^{33} + 92 q^{36} - 4 q^{37} - 20 q^{40} - 100 q^{42} + 16 q^{43} + 28 q^{45} - 24 q^{46} - 58 q^{48} + 32 q^{51} + 148 q^{52} - 72 q^{55} - 2 q^{57} - 12 q^{58} + 58 q^{60} - 112 q^{61} - 64 q^{63} + 92 q^{66} - 8 q^{67} + 8 q^{70} - 88 q^{72} + 76 q^{73} + 80 q^{75} + 36 q^{76} - 36 q^{78} + 4 q^{81} + 20 q^{82} - 28 q^{85} - 4 q^{87} + 140 q^{88} + 76 q^{90} - 24 q^{91} - 48 q^{93} + 32 q^{96} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.637774 + 0.637774i −0.450974 + 0.450974i −0.895678 0.444703i \(-0.853309\pi\)
0.444703 + 0.895678i \(0.353309\pi\)
\(3\) −1.73195 0.0191055i −0.999939 0.0110305i
\(4\) 1.18649i 0.593244i
\(5\) 1.18060 + 1.89899i 0.527981 + 0.849256i
\(6\) 1.11677 1.09240i 0.455921 0.445972i
\(7\) 2.03027 + 2.03027i 0.767368 + 0.767368i 0.977642 0.210274i \(-0.0674357\pi\)
−0.210274 + 0.977642i \(0.567436\pi\)
\(8\) −2.03226 2.03226i −0.718512 0.718512i
\(9\) 2.99927 + 0.0661793i 0.999757 + 0.0220598i
\(10\) −1.96409 0.458173i −0.621099 0.144887i
\(11\) 2.29381i 0.691611i −0.938306 0.345805i \(-0.887606\pi\)
0.938306 0.345805i \(-0.112394\pi\)
\(12\) 0.0226684 2.05493i 0.00654381 0.593208i
\(13\) −2.17577 + 2.17577i −0.603451 + 0.603451i −0.941227 0.337775i \(-0.890326\pi\)
0.337775 + 0.941227i \(0.390326\pi\)
\(14\) −2.58970 −0.692127
\(15\) −2.00846 3.31151i −0.518581 0.855029i
\(16\) 0.219268 0.0548171
\(17\) −4.12474 + 4.12474i −1.00040 + 1.00040i −0.000395802 1.00000i \(0.500126\pi\)
−1.00000 0.000395802i \(0.999874\pi\)
\(18\) −1.95506 + 1.87065i −0.460813 + 0.440916i
\(19\) 1.00000i 0.229416i
\(20\) −2.25314 + 1.40077i −0.503816 + 0.313222i
\(21\) −3.47752 3.55510i −0.758857 0.775786i
\(22\) 1.46293 + 1.46293i 0.311899 + 0.311899i
\(23\) −0.124927 0.124927i −0.0260490 0.0260490i 0.693962 0.720011i \(-0.255863\pi\)
−0.720011 + 0.693962i \(0.755863\pi\)
\(24\) 3.48094 + 3.55859i 0.710543 + 0.726394i
\(25\) −2.21236 + 4.48391i −0.442473 + 0.896782i
\(26\) 2.77531i 0.544282i
\(27\) −5.19331 0.171921i −0.999452 0.0330863i
\(28\) −2.40889 + 2.40889i −0.455237 + 0.455237i
\(29\) −3.99654 −0.742139 −0.371070 0.928605i \(-0.621009\pi\)
−0.371070 + 0.928605i \(0.621009\pi\)
\(30\) 3.39294 + 0.831056i 0.619463 + 0.151729i
\(31\) 8.55462 1.53646 0.768228 0.640177i \(-0.221139\pi\)
0.768228 + 0.640177i \(0.221139\pi\)
\(32\) 3.92468 3.92468i 0.693791 0.693791i
\(33\) −0.0438244 + 3.97276i −0.00762885 + 0.691569i
\(34\) 5.26130i 0.902306i
\(35\) −1.45853 + 6.25240i −0.246537 + 1.05685i
\(36\) −0.0785209 + 3.55860i −0.0130868 + 0.593100i
\(37\) −7.98529 7.98529i −1.31277 1.31277i −0.919362 0.393412i \(-0.871295\pi\)
−0.393412 0.919362i \(-0.628705\pi\)
\(38\) −0.637774 0.637774i −0.103461 0.103461i
\(39\) 3.80989 3.72675i 0.610071 0.596758i
\(40\) 1.45996 6.25854i 0.230840 0.989562i
\(41\) 4.02151i 0.628055i 0.949414 + 0.314027i \(0.101678\pi\)
−0.949414 + 0.314027i \(0.898322\pi\)
\(42\) 4.48522 + 0.0494775i 0.692085 + 0.00763454i
\(43\) 5.82320 5.82320i 0.888030 0.888030i −0.106304 0.994334i \(-0.533902\pi\)
0.994334 + 0.106304i \(0.0339017\pi\)
\(44\) 2.72158 0.410294
\(45\) 3.41527 + 5.77373i 0.509118 + 0.860697i
\(46\) 0.159350 0.0234949
\(47\) −2.25866 + 2.25866i −0.329460 + 0.329460i −0.852381 0.522921i \(-0.824842\pi\)
0.522921 + 0.852381i \(0.324842\pi\)
\(48\) −0.379761 0.00418923i −0.0548138 0.000604663i
\(49\) 1.24396i 0.177708i
\(50\) −1.44873 4.27071i −0.204882 0.603970i
\(51\) 7.22262 7.06501i 1.01137 0.989300i
\(52\) −2.58153 2.58153i −0.357994 0.357994i
\(53\) 6.79771 + 6.79771i 0.933738 + 0.933738i 0.997937 0.0641994i \(-0.0204494\pi\)
−0.0641994 + 0.997937i \(0.520449\pi\)
\(54\) 3.42180 3.20251i 0.465649 0.435806i
\(55\) 4.35594 2.70808i 0.587355 0.365157i
\(56\) 8.25205i 1.10273i
\(57\) 0.0191055 1.73195i 0.00253058 0.229402i
\(58\) 2.54889 2.54889i 0.334686 0.334686i
\(59\) 0.588293 0.0765892 0.0382946 0.999266i \(-0.487807\pi\)
0.0382946 + 0.999266i \(0.487807\pi\)
\(60\) 3.92907 2.38301i 0.507241 0.307645i
\(61\) 4.76206 0.609720 0.304860 0.952397i \(-0.401390\pi\)
0.304860 + 0.952397i \(0.401390\pi\)
\(62\) −5.45592 + 5.45592i −0.692902 + 0.692902i
\(63\) 5.95495 + 6.22368i 0.750254 + 0.784109i
\(64\) 5.44465i 0.680581i
\(65\) −6.70051 1.56306i −0.831096 0.193874i
\(66\) −2.50577 2.56167i −0.308439 0.315320i
\(67\) 3.10232 + 3.10232i 0.379009 + 0.379009i 0.870744 0.491736i \(-0.163637\pi\)
−0.491736 + 0.870744i \(0.663637\pi\)
\(68\) −4.89395 4.89395i −0.593479 0.593479i
\(69\) 0.213980 + 0.218753i 0.0257601 + 0.0263348i
\(70\) −3.05740 4.91783i −0.365430 0.587793i
\(71\) 4.72734i 0.561032i 0.959849 + 0.280516i \(0.0905056\pi\)
−0.959849 + 0.280516i \(0.909494\pi\)
\(72\) −5.96080 6.22979i −0.702487 0.734188i
\(73\) −2.06364 + 2.06364i −0.241531 + 0.241531i −0.817483 0.575952i \(-0.804631\pi\)
0.575952 + 0.817483i \(0.304631\pi\)
\(74\) 10.1856 1.18405
\(75\) 3.91736 7.72362i 0.452338 0.891847i
\(76\) −1.18649 −0.136100
\(77\) 4.65705 4.65705i 0.530720 0.530720i
\(78\) −0.0530235 + 4.80668i −0.00600373 + 0.544249i
\(79\) 11.8036i 1.32800i 0.747731 + 0.664002i \(0.231143\pi\)
−0.747731 + 0.664002i \(0.768857\pi\)
\(80\) 0.258868 + 0.416390i 0.0289424 + 0.0465538i
\(81\) 8.99124 + 0.396979i 0.999027 + 0.0441088i
\(82\) −2.56482 2.56482i −0.283237 0.283237i
\(83\) 10.2676 + 10.2676i 1.12702 + 1.12702i 0.990660 + 0.136357i \(0.0435395\pi\)
0.136357 + 0.990660i \(0.456460\pi\)
\(84\) 4.21808 4.12604i 0.460231 0.450188i
\(85\) −12.7025 2.96319i −1.37778 0.321403i
\(86\) 7.42777i 0.800957i
\(87\) 6.92179 + 0.0763558i 0.742094 + 0.00818620i
\(88\) −4.66163 + 4.66163i −0.496931 + 0.496931i
\(89\) −0.931525 −0.0987414 −0.0493707 0.998781i \(-0.515722\pi\)
−0.0493707 + 0.998781i \(0.515722\pi\)
\(90\) −5.86050 1.50417i −0.617751 0.158553i
\(91\) −8.83480 −0.926139
\(92\) 0.148224 0.148224i 0.0154534 0.0154534i
\(93\) −14.8161 0.163440i −1.53636 0.0169479i
\(94\) 2.88103i 0.297156i
\(95\) −1.89899 + 1.18060i −0.194833 + 0.121127i
\(96\) −6.87231 + 6.72234i −0.701402 + 0.686096i
\(97\) 12.3183 + 12.3183i 1.25073 + 1.25073i 0.955393 + 0.295336i \(0.0954316\pi\)
0.295336 + 0.955393i \(0.404568\pi\)
\(98\) −0.793364 0.793364i −0.0801418 0.0801418i
\(99\) 0.151803 6.87977i 0.0152568 0.691443i
\(100\) −5.32011 2.62494i −0.532011 0.262494i
\(101\) 5.72866i 0.570023i −0.958524 0.285011i \(-0.908003\pi\)
0.958524 0.285011i \(-0.0919973\pi\)
\(102\) −0.100520 + 9.11229i −0.00995293 + 0.902251i
\(103\) 6.94144 6.94144i 0.683960 0.683960i −0.276930 0.960890i \(-0.589317\pi\)
0.960890 + 0.276930i \(0.0893170\pi\)
\(104\) 8.84348 0.867174
\(105\) 2.64555 10.8009i 0.258179 1.05406i
\(106\) −8.67081 −0.842184
\(107\) 8.48061 8.48061i 0.819851 0.819851i −0.166235 0.986086i \(-0.553161\pi\)
0.986086 + 0.166235i \(0.0531610\pi\)
\(108\) 0.203983 6.16180i 0.0196282 0.592919i
\(109\) 6.21028i 0.594837i 0.954747 + 0.297419i \(0.0961257\pi\)
−0.954747 + 0.297419i \(0.903874\pi\)
\(110\) −1.05096 + 4.50525i −0.100205 + 0.429559i
\(111\) 13.6775 + 13.9827i 1.29821 + 1.32717i
\(112\) 0.445173 + 0.445173i 0.0420649 + 0.0420649i
\(113\) −0.342062 0.342062i −0.0321785 0.0321785i 0.690834 0.723013i \(-0.257243\pi\)
−0.723013 + 0.690834i \(0.757243\pi\)
\(114\) 1.09240 + 1.11677i 0.102313 + 0.104596i
\(115\) 0.0897467 0.384724i 0.00836892 0.0358757i
\(116\) 4.74185i 0.440270i
\(117\) −6.66973 + 6.38174i −0.616617 + 0.589993i
\(118\) −0.375198 + 0.375198i −0.0345398 + 0.0345398i
\(119\) −16.7486 −1.53534
\(120\) −2.64815 + 10.8116i −0.241742 + 0.986955i
\(121\) 5.73842 0.521674
\(122\) −3.03712 + 3.03712i −0.274968 + 0.274968i
\(123\) 0.0768329 6.96504i 0.00692779 0.628017i
\(124\) 10.1500i 0.911493i
\(125\) −11.1268 + 1.09244i −0.995215 + 0.0977109i
\(126\) −7.76721 0.171385i −0.691958 0.0152681i
\(127\) −11.1652 11.1652i −0.990753 0.990753i 0.00920430 0.999958i \(-0.497070\pi\)
−0.999958 + 0.00920430i \(0.997070\pi\)
\(128\) 4.37689 + 4.37689i 0.386867 + 0.386867i
\(129\) −10.1967 + 9.97421i −0.897771 + 0.878180i
\(130\) 5.27029 3.27653i 0.462235 0.287371i
\(131\) 21.3472i 1.86512i −0.361019 0.932559i \(-0.617571\pi\)
0.361019 0.932559i \(-0.382429\pi\)
\(132\) −4.71363 0.0519971i −0.410269 0.00452577i
\(133\) −2.03027 + 2.03027i −0.176046 + 0.176046i
\(134\) −3.95716 −0.341846
\(135\) −5.80475 10.0650i −0.499593 0.866260i
\(136\) 16.7651 1.43759
\(137\) 4.96629 4.96629i 0.424298 0.424298i −0.462382 0.886681i \(-0.653005\pi\)
0.886681 + 0.462382i \(0.153005\pi\)
\(138\) −0.275986 0.00304446i −0.0234935 0.000259162i
\(139\) 3.61309i 0.306458i 0.988191 + 0.153229i \(0.0489673\pi\)
−0.988191 + 0.153229i \(0.951033\pi\)
\(140\) −7.41840 1.73053i −0.626969 0.146256i
\(141\) 3.95503 3.86873i 0.333074 0.325806i
\(142\) −3.01498 3.01498i −0.253011 0.253011i
\(143\) 4.99082 + 4.99082i 0.417353 + 0.417353i
\(144\) 0.657645 + 0.0145110i 0.0548038 + 0.00120925i
\(145\) −4.71832 7.58941i −0.391835 0.630267i
\(146\) 2.63228i 0.217849i
\(147\) 0.0237664 2.15447i 0.00196022 0.177697i
\(148\) 9.47446 9.47446i 0.778796 0.778796i
\(149\) −6.48681 −0.531420 −0.265710 0.964053i \(-0.585606\pi\)
−0.265710 + 0.964053i \(0.585606\pi\)
\(150\) 2.42753 + 7.42431i 0.198207 + 0.606193i
\(151\) −20.4721 −1.66600 −0.832999 0.553275i \(-0.813378\pi\)
−0.832999 + 0.553275i \(0.813378\pi\)
\(152\) 2.03226 2.03226i 0.164838 0.164838i
\(153\) −12.6442 + 12.0982i −1.02222 + 0.978084i
\(154\) 5.94029i 0.478682i
\(155\) 10.0996 + 16.2452i 0.811219 + 1.30484i
\(156\) 4.42175 + 4.52039i 0.354023 + 0.361921i
\(157\) 0.360697 + 0.360697i 0.0287867 + 0.0287867i 0.721354 0.692567i \(-0.243520\pi\)
−0.692567 + 0.721354i \(0.743520\pi\)
\(158\) −7.52800 7.52800i −0.598896 0.598896i
\(159\) −11.6434 11.9031i −0.923381 0.943980i
\(160\) 12.0864 + 2.81946i 0.955515 + 0.222898i
\(161\) 0.507269i 0.0399784i
\(162\) −5.98756 + 5.48120i −0.470427 + 0.430644i
\(163\) 10.2962 10.2962i 0.806461 0.806461i −0.177635 0.984096i \(-0.556845\pi\)
0.984096 + 0.177635i \(0.0568447\pi\)
\(164\) −4.77148 −0.372590
\(165\) −7.59599 + 4.60702i −0.591347 + 0.358656i
\(166\) −13.0968 −1.01651
\(167\) 2.57267 2.57267i 0.199079 0.199079i −0.600526 0.799605i \(-0.705042\pi\)
0.799605 + 0.600526i \(0.205042\pi\)
\(168\) −0.157659 + 14.2921i −0.0121637 + 1.10266i
\(169\) 3.53201i 0.271693i
\(170\) 9.99118 6.21150i 0.766289 0.476400i
\(171\) −0.0661793 + 2.99927i −0.00506085 + 0.229360i
\(172\) 6.90916 + 6.90916i 0.526818 + 0.526818i
\(173\) 14.2282 + 14.2282i 1.08175 + 1.08175i 0.996347 + 0.0854004i \(0.0272169\pi\)
0.0854004 + 0.996347i \(0.472783\pi\)
\(174\) −4.46324 + 4.36584i −0.338357 + 0.330974i
\(175\) −13.5952 + 4.61184i −1.02770 + 0.348623i
\(176\) 0.502961i 0.0379121i
\(177\) −1.01889 0.0112396i −0.0765846 0.000844821i
\(178\) 0.594102 0.594102i 0.0445299 0.0445299i
\(179\) 4.36903 0.326557 0.163278 0.986580i \(-0.447793\pi\)
0.163278 + 0.986580i \(0.447793\pi\)
\(180\) −6.85046 + 4.05217i −0.510603 + 0.302031i
\(181\) 3.79911 0.282385 0.141193 0.989982i \(-0.454906\pi\)
0.141193 + 0.989982i \(0.454906\pi\)
\(182\) 5.63461 5.63461i 0.417665 0.417665i
\(183\) −8.24764 0.0909815i −0.609683 0.00672554i
\(184\) 0.507767i 0.0374331i
\(185\) 5.73659 24.5915i 0.421762 1.80800i
\(186\) 9.55359 9.34511i 0.700503 0.685217i
\(187\) 9.46138 + 9.46138i 0.691885 + 0.691885i
\(188\) −2.67988 2.67988i −0.195450 0.195450i
\(189\) −10.1947 10.8928i −0.741559 0.792338i
\(190\) 0.458173 1.96409i 0.0332394 0.142490i
\(191\) 12.1483i 0.879020i 0.898238 + 0.439510i \(0.144848\pi\)
−0.898238 + 0.439510i \(0.855152\pi\)
\(192\) 0.104023 9.42984i 0.00750718 0.680540i
\(193\) 1.23332 1.23332i 0.0887764 0.0887764i −0.661324 0.750100i \(-0.730005\pi\)
0.750100 + 0.661324i \(0.230005\pi\)
\(194\) −15.7125 −1.12809
\(195\) 11.5750 + 2.83516i 0.828907 + 0.203030i
\(196\) −1.47594 −0.105424
\(197\) −15.3377 + 15.3377i −1.09276 + 1.09276i −0.0975316 + 0.995232i \(0.531095\pi\)
−0.995232 + 0.0975316i \(0.968905\pi\)
\(198\) 4.29092 + 4.48455i 0.304942 + 0.318703i
\(199\) 5.29217i 0.375152i −0.982250 0.187576i \(-0.939937\pi\)
0.982250 0.187576i \(-0.0600630\pi\)
\(200\) 13.6086 4.61637i 0.962271 0.326427i
\(201\) −5.31378 5.43232i −0.374805 0.383166i
\(202\) 3.65359 + 3.65359i 0.257066 + 0.257066i
\(203\) −8.11404 8.11404i −0.569494 0.569494i
\(204\) 8.38256 + 8.56956i 0.586896 + 0.599989i
\(205\) −7.63683 + 4.74780i −0.533379 + 0.331601i
\(206\) 8.85414i 0.616897i
\(207\) −0.366422 0.382957i −0.0254681 0.0266173i
\(208\) −0.477079 + 0.477079i −0.0330795 + 0.0330795i
\(209\) 2.29381 0.158666
\(210\) 5.20130 + 8.57583i 0.358924 + 0.591788i
\(211\) −12.0490 −0.829485 −0.414743 0.909939i \(-0.636128\pi\)
−0.414743 + 0.909939i \(0.636128\pi\)
\(212\) −8.06541 + 8.06541i −0.553934 + 0.553934i
\(213\) 0.0903181 8.18750i 0.00618849 0.560998i
\(214\) 10.8174i 0.739464i
\(215\) 17.9331 + 4.18335i 1.22303 + 0.285302i
\(216\) 10.2048 + 10.9035i 0.694346 + 0.741892i
\(217\) 17.3682 + 17.3682i 1.17903 + 1.17903i
\(218\) −3.96076 3.96076i −0.268256 0.268256i
\(219\) 3.61354 3.53469i 0.244181 0.238852i
\(220\) 3.21310 + 5.16827i 0.216627 + 0.348445i
\(221\) 17.9490i 1.20738i
\(222\) −17.6409 0.194601i −1.18398 0.0130608i
\(223\) 0.621435 0.621435i 0.0416144 0.0416144i −0.685993 0.727608i \(-0.740632\pi\)
0.727608 + 0.685993i \(0.240632\pi\)
\(224\) 15.9363 1.06479
\(225\) −6.93222 + 13.3020i −0.462148 + 0.886803i
\(226\) 0.436316 0.0290233
\(227\) 12.0969 12.0969i 0.802900 0.802900i −0.180648 0.983548i \(-0.557820\pi\)
0.983548 + 0.180648i \(0.0578195\pi\)
\(228\) 2.05493 + 0.0226684i 0.136091 + 0.00150125i
\(229\) 20.8610i 1.37853i −0.724509 0.689265i \(-0.757933\pi\)
0.724509 0.689265i \(-0.242067\pi\)
\(230\) 0.188129 + 0.302605i 0.0124049 + 0.0199532i
\(231\) −8.15473 + 7.97678i −0.536542 + 0.524834i
\(232\) 8.12201 + 8.12201i 0.533236 + 0.533236i
\(233\) 15.4684 + 15.4684i 1.01337 + 1.01337i 0.999909 + 0.0134596i \(0.00428446\pi\)
0.0134596 + 0.999909i \(0.495716\pi\)
\(234\) 0.183668 8.32389i 0.0120067 0.544150i
\(235\) −6.95577 1.62261i −0.453744 0.105847i
\(236\) 0.698003i 0.0454361i
\(237\) 0.225512 20.4431i 0.0146486 1.32792i
\(238\) 10.6818 10.6818i 0.692401 0.692401i
\(239\) 16.5896 1.07309 0.536547 0.843870i \(-0.319728\pi\)
0.536547 + 0.843870i \(0.319728\pi\)
\(240\) −0.440391 0.726110i −0.0284271 0.0468702i
\(241\) −3.40891 −0.219587 −0.109794 0.993954i \(-0.535019\pi\)
−0.109794 + 0.993954i \(0.535019\pi\)
\(242\) −3.65982 + 3.65982i −0.235262 + 0.235262i
\(243\) −15.5648 0.859328i −0.998479 0.0551259i
\(244\) 5.65013i 0.361713i
\(245\) −2.36227 + 1.46862i −0.150920 + 0.0938265i
\(246\) 4.39312 + 4.49112i 0.280095 + 0.286344i
\(247\) −2.17577 2.17577i −0.138441 0.138441i
\(248\) −17.3852 17.3852i −1.10396 1.10396i
\(249\) −17.5868 17.9791i −1.11452 1.13938i
\(250\) 6.39968 7.79314i 0.404751 0.492882i
\(251\) 3.05485i 0.192821i −0.995342 0.0964103i \(-0.969264\pi\)
0.995342 0.0964103i \(-0.0307361\pi\)
\(252\) −7.38432 + 7.06548i −0.465168 + 0.445084i
\(253\) −0.286559 + 0.286559i −0.0180158 + 0.0180158i
\(254\) 14.2418 0.893609
\(255\) 21.9435 + 5.37477i 1.37415 + 0.336581i
\(256\) −16.4722 −1.02952
\(257\) 8.10761 8.10761i 0.505739 0.505739i −0.407477 0.913215i \(-0.633591\pi\)
0.913215 + 0.407477i \(0.133591\pi\)
\(258\) 0.141911 12.8645i 0.00883500 0.800908i
\(259\) 32.4245i 2.01476i
\(260\) 1.85456 7.95007i 0.115015 0.493043i
\(261\) −11.9867 0.264488i −0.741959 0.0163714i
\(262\) 13.6147 + 13.6147i 0.841120 + 0.841120i
\(263\) −10.4446 10.4446i −0.644039 0.644039i 0.307507 0.951546i \(-0.400505\pi\)
−0.951546 + 0.307507i \(0.900505\pi\)
\(264\) 8.16274 7.98462i 0.502382 0.491419i
\(265\) −4.88344 + 20.9342i −0.299987 + 1.28598i
\(266\) 2.58970i 0.158785i
\(267\) 1.61335 + 0.0177972i 0.0987354 + 0.00108917i
\(268\) −3.68087 + 3.68087i −0.224845 + 0.224845i
\(269\) 7.82562 0.477136 0.238568 0.971126i \(-0.423322\pi\)
0.238568 + 0.971126i \(0.423322\pi\)
\(270\) 10.1213 + 2.71710i 0.615965 + 0.165358i
\(271\) 18.7009 1.13600 0.568000 0.823029i \(-0.307717\pi\)
0.568000 + 0.823029i \(0.307717\pi\)
\(272\) −0.904425 + 0.904425i −0.0548388 + 0.0548388i
\(273\) 15.3014 + 0.168793i 0.926083 + 0.0102158i
\(274\) 6.33474i 0.382695i
\(275\) 10.2853 + 5.07475i 0.620224 + 0.306019i
\(276\) −0.259548 + 0.253884i −0.0156230 + 0.0152820i
\(277\) −11.5143 11.5143i −0.691825 0.691825i 0.270808 0.962633i \(-0.412709\pi\)
−0.962633 + 0.270808i \(0.912709\pi\)
\(278\) −2.30434 2.30434i −0.138205 0.138205i
\(279\) 25.6576 + 0.566139i 1.53608 + 0.0338938i
\(280\) 15.6706 9.74238i 0.936498 0.582219i
\(281\) 10.1833i 0.607484i 0.952754 + 0.303742i \(0.0982361\pi\)
−0.952754 + 0.303742i \(0.901764\pi\)
\(282\) −0.0550435 + 4.98979i −0.00327779 + 0.297138i
\(283\) 4.08268 4.08268i 0.242690 0.242690i −0.575272 0.817962i \(-0.695104\pi\)
0.817962 + 0.575272i \(0.195104\pi\)
\(284\) −5.60894 −0.332829
\(285\) 3.31151 2.00846i 0.196157 0.118971i
\(286\) −6.36603 −0.376431
\(287\) −8.16474 + 8.16474i −0.481949 + 0.481949i
\(288\) 12.0309 11.5114i 0.708927 0.678318i
\(289\) 17.0269i 1.00158i
\(290\) 7.84956 + 1.83111i 0.460942 + 0.107526i
\(291\) −21.0992 21.5699i −1.23686 1.26445i
\(292\) −2.44849 2.44849i −0.143287 0.143287i
\(293\) −7.60672 7.60672i −0.444389 0.444389i 0.449095 0.893484i \(-0.351747\pi\)
−0.893484 + 0.449095i \(0.851747\pi\)
\(294\) 1.35890 + 1.38922i 0.0792529 + 0.0810210i
\(295\) 0.694539 + 1.11717i 0.0404376 + 0.0650439i
\(296\) 32.4564i 1.88649i
\(297\) −0.394355 + 11.9125i −0.0228828 + 0.691232i
\(298\) 4.13712 4.13712i 0.239657 0.239657i
\(299\) 0.543625 0.0314387
\(300\) 9.16398 + 4.64790i 0.529083 + 0.268347i
\(301\) 23.6453 1.36289
\(302\) 13.0566 13.0566i 0.751322 0.751322i
\(303\) −0.109449 + 9.92172i −0.00628766 + 0.569988i
\(304\) 0.219268i 0.0125759i
\(305\) 5.62210 + 9.04314i 0.321920 + 0.517808i
\(306\) 0.348189 15.7801i 0.0199046 0.902086i
\(307\) 5.70331 + 5.70331i 0.325505 + 0.325505i 0.850874 0.525369i \(-0.176073\pi\)
−0.525369 + 0.850874i \(0.676073\pi\)
\(308\) 5.52554 + 5.52554i 0.314847 + 0.314847i
\(309\) −12.1548 + 11.8896i −0.691463 + 0.676374i
\(310\) −16.8020 3.91950i −0.954290 0.222613i
\(311\) 30.4720i 1.72791i 0.503570 + 0.863954i \(0.332020\pi\)
−0.503570 + 0.863954i \(0.667980\pi\)
\(312\) −15.3164 0.168959i −0.867122 0.00956541i
\(313\) 3.28886 3.28886i 0.185898 0.185898i −0.608022 0.793920i \(-0.708037\pi\)
0.793920 + 0.608022i \(0.208037\pi\)
\(314\) −0.460086 −0.0259642
\(315\) −4.78831 + 18.6561i −0.269791 + 1.05115i
\(316\) −14.0048 −0.787831
\(317\) 18.0228 18.0228i 1.01226 1.01226i 0.0123374 0.999924i \(-0.496073\pi\)
0.999924 0.0123374i \(-0.00392721\pi\)
\(318\) 15.0174 + 0.165660i 0.842132 + 0.00928975i
\(319\) 9.16732i 0.513272i
\(320\) −10.3394 + 6.42796i −0.577988 + 0.359334i
\(321\) −14.8500 + 14.5259i −0.828845 + 0.810758i
\(322\) 0.323523 + 0.323523i 0.0180292 + 0.0180292i
\(323\) −4.12474 4.12474i −0.229507 0.229507i
\(324\) −0.471011 + 10.6680i −0.0261673 + 0.592667i
\(325\) −4.94237 14.5696i −0.274154 0.808175i
\(326\) 13.1333i 0.727387i
\(327\) 0.118650 10.7559i 0.00656138 0.594801i
\(328\) 8.17276 8.17276i 0.451265 0.451265i
\(329\) −9.17137 −0.505634
\(330\) 1.90629 7.78276i 0.104938 0.428427i
\(331\) −10.9420 −0.601427 −0.300713 0.953715i \(-0.597225\pi\)
−0.300713 + 0.953715i \(0.597225\pi\)
\(332\) −12.1824 + 12.1824i −0.668596 + 0.668596i
\(333\) −23.4216 24.4785i −1.28350 1.34141i
\(334\) 3.28156i 0.179559i
\(335\) −2.22869 + 9.55389i −0.121766 + 0.521985i
\(336\) −0.762510 0.779521i −0.0415983 0.0425263i
\(337\) −7.52790 7.52790i −0.410071 0.410071i 0.471692 0.881763i \(-0.343643\pi\)
−0.881763 + 0.471692i \(0.843643\pi\)
\(338\) −2.25262 2.25262i −0.122527 0.122527i
\(339\) 0.585897 + 0.598968i 0.0318216 + 0.0325315i
\(340\) 3.51579 15.0714i 0.190670 0.817361i
\(341\) 19.6227i 1.06263i
\(342\) −1.87065 1.95506i −0.101153 0.105718i
\(343\) 11.6863 11.6863i 0.631001 0.631001i
\(344\) −23.6685 −1.27612
\(345\) −0.162787 + 0.664606i −0.00876414 + 0.0357812i
\(346\) −18.1487 −0.975680
\(347\) −11.7751 + 11.7751i −0.632118 + 0.632118i −0.948599 0.316481i \(-0.897499\pi\)
0.316481 + 0.948599i \(0.397499\pi\)
\(348\) −0.0905953 + 8.21263i −0.00485642 + 0.440243i
\(349\) 17.0224i 0.911187i 0.890188 + 0.455593i \(0.150573\pi\)
−0.890188 + 0.455593i \(0.849427\pi\)
\(350\) 5.72936 11.6120i 0.306247 0.620687i
\(351\) 11.6735 10.9254i 0.623087 0.583155i
\(352\) −9.00247 9.00247i −0.479834 0.479834i
\(353\) −8.53113 8.53113i −0.454066 0.454066i 0.442636 0.896702i \(-0.354044\pi\)
−0.896702 + 0.442636i \(0.854044\pi\)
\(354\) 0.656991 0.642654i 0.0349187 0.0341567i
\(355\) −8.97720 + 5.58110i −0.476460 + 0.296214i
\(356\) 1.10524i 0.0585778i
\(357\) 29.0077 + 0.319990i 1.53525 + 0.0169357i
\(358\) −2.78646 + 2.78646i −0.147269 + 0.147269i
\(359\) −11.7214 −0.618633 −0.309316 0.950959i \(-0.600100\pi\)
−0.309316 + 0.950959i \(0.600100\pi\)
\(360\) 4.79301 18.6744i 0.252614 0.984229i
\(361\) −1.00000 −0.0526316
\(362\) −2.42297 + 2.42297i −0.127349 + 0.127349i
\(363\) −9.93863 0.109635i −0.521643 0.00575435i
\(364\) 10.4824i 0.549427i
\(365\) −6.35519 1.48251i −0.332646 0.0775981i
\(366\) 5.31815 5.20210i 0.277984 0.271918i
\(367\) 3.18782 + 3.18782i 0.166403 + 0.166403i 0.785396 0.618993i \(-0.212459\pi\)
−0.618993 + 0.785396i \(0.712459\pi\)
\(368\) −0.0273925 0.0273925i −0.00142793 0.00142793i
\(369\) −0.266141 + 12.0616i −0.0138547 + 0.627902i
\(370\) 12.0252 + 19.3425i 0.625158 + 1.00557i
\(371\) 27.6023i 1.43304i
\(372\) 0.193920 17.5792i 0.0100543 0.911438i
\(373\) −2.92989 + 2.92989i −0.151704 + 0.151704i −0.778879 0.627175i \(-0.784211\pi\)
0.627175 + 0.778879i \(0.284211\pi\)
\(374\) −12.0684 −0.624044
\(375\) 19.2920 1.67946i 0.996232 0.0867272i
\(376\) 9.18038 0.473442
\(377\) 8.69558 8.69558i 0.447845 0.447845i
\(378\) 13.4491 + 0.445225i 0.691748 + 0.0228999i
\(379\) 19.5754i 1.00552i 0.864426 + 0.502761i \(0.167682\pi\)
−0.864426 + 0.502761i \(0.832318\pi\)
\(380\) −1.40077 2.25314i −0.0718579 0.115583i
\(381\) 19.1242 + 19.5509i 0.979765 + 1.00162i
\(382\) −7.74787 7.74787i −0.396416 0.396416i
\(383\) −14.5270 14.5270i −0.742295 0.742295i 0.230724 0.973019i \(-0.425891\pi\)
−0.973019 + 0.230724i \(0.925891\pi\)
\(384\) −7.49692 7.66417i −0.382576 0.391110i
\(385\) 14.3418 + 3.34560i 0.730928 + 0.170507i
\(386\) 1.57316i 0.0800717i
\(387\) 17.8507 17.0800i 0.907403 0.868224i
\(388\) −14.6155 + 14.6155i −0.741988 + 0.741988i
\(389\) 12.8569 0.651872 0.325936 0.945392i \(-0.394321\pi\)
0.325936 + 0.945392i \(0.394321\pi\)
\(390\) −9.19046 + 5.57408i −0.465377 + 0.282254i
\(391\) 1.03058 0.0521187
\(392\) 2.52804 2.52804i 0.127685 0.127685i
\(393\) −0.407849 + 36.9723i −0.0205733 + 1.86500i
\(394\) 19.5639i 0.985617i
\(395\) −22.4149 + 13.9353i −1.12782 + 0.701161i
\(396\) 8.16276 + 0.180112i 0.410194 + 0.00905099i
\(397\) −24.0013 24.0013i −1.20459 1.20459i −0.972755 0.231835i \(-0.925527\pi\)
−0.231835 0.972755i \(-0.574473\pi\)
\(398\) 3.37521 + 3.37521i 0.169184 + 0.169184i
\(399\) 3.55510 3.47752i 0.177978 0.174094i
\(400\) −0.485101 + 0.983180i −0.0242551 + 0.0491590i
\(401\) 14.8276i 0.740455i −0.928941 0.370227i \(-0.879280\pi\)
0.928941 0.370227i \(-0.120720\pi\)
\(402\) 6.85358 + 0.0756034i 0.341826 + 0.00377075i
\(403\) −18.6129 + 18.6129i −0.927176 + 0.927176i
\(404\) 6.79698 0.338163
\(405\) 9.86121 + 17.5430i 0.490007 + 0.871718i
\(406\) 10.3499 0.513655
\(407\) −18.3168 + 18.3168i −0.907929 + 0.907929i
\(408\) −29.0362 0.320305i −1.43751 0.0158574i
\(409\) 27.9372i 1.38140i 0.723140 + 0.690702i \(0.242698\pi\)
−0.723140 + 0.690702i \(0.757302\pi\)
\(410\) 1.84255 7.89860i 0.0909970 0.390084i
\(411\) −8.69622 + 8.50645i −0.428953 + 0.419592i
\(412\) 8.23594 + 8.23594i 0.405755 + 0.405755i
\(413\) 1.19439 + 1.19439i 0.0587722 + 0.0587722i
\(414\) 0.477934 + 0.0105457i 0.0234892 + 0.000518292i
\(415\) −7.37619 + 31.6201i −0.362083 + 1.55217i
\(416\) 17.0784i 0.837339i
\(417\) 0.0690298 6.25768i 0.00338040 0.306440i
\(418\) −1.46293 + 1.46293i −0.0715545 + 0.0715545i
\(419\) 5.63967 0.275516 0.137758 0.990466i \(-0.456010\pi\)
0.137758 + 0.990466i \(0.456010\pi\)
\(420\) 12.8152 + 3.13892i 0.625318 + 0.153163i
\(421\) −24.2140 −1.18012 −0.590059 0.807360i \(-0.700895\pi\)
−0.590059 + 0.807360i \(0.700895\pi\)
\(422\) 7.68452 7.68452i 0.374077 0.374077i
\(423\) −6.92382 + 6.62487i −0.336648 + 0.322112i
\(424\) 27.6294i 1.34180i
\(425\) −9.36953 27.6204i −0.454489 1.33978i
\(426\) 5.16417 + 5.27938i 0.250205 + 0.255787i
\(427\) 9.66826 + 9.66826i 0.467880 + 0.467880i
\(428\) 10.0621 + 10.0621i 0.486372 + 0.486372i
\(429\) −8.54848 8.73918i −0.412724 0.421932i
\(430\) −14.1053 + 8.76923i −0.680218 + 0.422890i
\(431\) 0.754061i 0.0363218i 0.999835 + 0.0181609i \(0.00578112\pi\)
−0.999835 + 0.0181609i \(0.994219\pi\)
\(432\) −1.13873 0.0376969i −0.0547871 0.00181369i
\(433\) −12.2233 + 12.2233i −0.587414 + 0.587414i −0.936930 0.349516i \(-0.886346\pi\)
0.349516 + 0.936930i \(0.386346\pi\)
\(434\) −22.1539 −1.06342
\(435\) 8.02688 + 13.2346i 0.384859 + 0.634550i
\(436\) −7.36843 −0.352884
\(437\) 0.124927 0.124927i 0.00597606 0.00597606i
\(438\) −0.0502909 + 4.55896i −0.00240299 + 0.217835i
\(439\) 22.2076i 1.05991i −0.848026 0.529955i \(-0.822209\pi\)
0.848026 0.529955i \(-0.177791\pi\)
\(440\) −14.3559 3.34888i −0.684392 0.159652i
\(441\) −0.0823242 + 3.73096i −0.00392020 + 0.177665i
\(442\) 11.4474 + 11.4474i 0.544498 + 0.544498i
\(443\) −18.8286 18.8286i −0.894575 0.894575i 0.100375 0.994950i \(-0.467996\pi\)
−0.994950 + 0.100375i \(0.967996\pi\)
\(444\) −16.5903 + 16.2282i −0.787339 + 0.770158i
\(445\) −1.09976 1.76896i −0.0521336 0.0838568i
\(446\) 0.792671i 0.0375340i
\(447\) 11.2348 + 0.123934i 0.531388 + 0.00586186i
\(448\) −11.0541 + 11.0541i −0.522256 + 0.522256i
\(449\) 23.6261 1.11498 0.557492 0.830182i \(-0.311764\pi\)
0.557492 + 0.830182i \(0.311764\pi\)
\(450\) −4.06251 12.9049i −0.191509 0.608342i
\(451\) 9.22460 0.434369
\(452\) 0.405852 0.405852i 0.0190897 0.0190897i
\(453\) 35.4566 + 0.391129i 1.66590 + 0.0183769i
\(454\) 15.4302i 0.724174i
\(455\) −10.4304 16.7772i −0.488983 0.786529i
\(456\) −3.55859 + 3.48094i −0.166646 + 0.163010i
\(457\) 25.3651 + 25.3651i 1.18653 + 1.18653i 0.978021 + 0.208509i \(0.0668609\pi\)
0.208509 + 0.978021i \(0.433139\pi\)
\(458\) 13.3046 + 13.3046i 0.621682 + 0.621682i
\(459\) 22.1302 20.7119i 1.03295 0.966749i
\(460\) 0.456471 + 0.106483i 0.0212831 + 0.00496481i
\(461\) 25.0861i 1.16838i 0.811619 + 0.584188i \(0.198587\pi\)
−0.811619 + 0.584188i \(0.801413\pi\)
\(462\) 0.113492 10.2883i 0.00528013 0.478653i
\(463\) 27.1306 27.1306i 1.26087 1.26087i 0.310193 0.950674i \(-0.399606\pi\)
0.950674 0.310193i \(-0.100394\pi\)
\(464\) −0.876316 −0.0406819
\(465\) −17.1816 28.3287i −0.796776 1.31371i
\(466\) −19.7307 −0.914007
\(467\) 8.81113 8.81113i 0.407730 0.407730i −0.473216 0.880946i \(-0.656907\pi\)
0.880946 + 0.473216i \(0.156907\pi\)
\(468\) −7.57187 7.91355i −0.350010 0.365804i
\(469\) 12.5971i 0.581678i
\(470\) 5.47107 3.40135i 0.252362 0.156893i
\(471\) −0.617816 0.631598i −0.0284674 0.0291025i
\(472\) −1.19556 1.19556i −0.0550303 0.0550303i
\(473\) −13.3573 13.3573i −0.614171 0.614171i
\(474\) 12.8943 + 13.1819i 0.592253 + 0.605465i
\(475\) −4.48391 2.21236i −0.205736 0.101510i
\(476\) 19.8720i 0.910834i
\(477\) 19.9383 + 20.8380i 0.912912 + 0.954108i
\(478\) −10.5804 + 10.5804i −0.483938 + 0.483938i
\(479\) −36.0452 −1.64695 −0.823474 0.567353i \(-0.807967\pi\)
−0.823474 + 0.567353i \(0.807967\pi\)
\(480\) −20.8791 5.11407i −0.952998 0.233424i
\(481\) 34.7484 1.58439
\(482\) 2.17411 2.17411i 0.0990282 0.0990282i
\(483\) −0.00969162 + 0.878563i −0.000440984 + 0.0399760i
\(484\) 6.80857i 0.309480i
\(485\) −8.84936 + 37.9353i −0.401829 + 1.72255i
\(486\) 10.4749 9.37874i 0.475149 0.425428i
\(487\) −19.0234 19.0234i −0.862033 0.862033i 0.129541 0.991574i \(-0.458649\pi\)
−0.991574 + 0.129541i \(0.958649\pi\)
\(488\) −9.67775 9.67775i −0.438091 0.438091i
\(489\) −18.0292 + 17.6358i −0.815308 + 0.797517i
\(490\) 0.569948 2.44324i 0.0257476 0.110374i
\(491\) 39.9511i 1.80297i −0.432813 0.901484i \(-0.642479\pi\)
0.432813 0.901484i \(-0.357521\pi\)
\(492\) 8.26394 + 0.0911613i 0.372567 + 0.00410987i
\(493\) 16.4847 16.4847i 0.742433 0.742433i
\(494\) 2.77531 0.124867
\(495\) 13.2439 7.83398i 0.595267 0.352111i
\(496\) 1.87576 0.0842240
\(497\) −9.59776 + 9.59776i −0.430518 + 0.430518i
\(498\) 22.6830 + 0.250221i 1.01645 + 0.0112127i
\(499\) 40.7815i 1.82563i −0.408372 0.912815i \(-0.633903\pi\)
0.408372 0.912815i \(-0.366097\pi\)
\(500\) −1.29617 13.2019i −0.0579664 0.590405i
\(501\) −4.50488 + 4.40657i −0.201263 + 0.196871i
\(502\) 1.94831 + 1.94831i 0.0869571 + 0.0869571i
\(503\) 0.779468 + 0.779468i 0.0347548 + 0.0347548i 0.724271 0.689516i \(-0.242177\pi\)
−0.689516 + 0.724271i \(0.742177\pi\)
\(504\) 0.546115 24.7501i 0.0243259 1.10246i
\(505\) 10.8787 6.76326i 0.484095 0.300961i
\(506\) 0.365520i 0.0162493i
\(507\) 0.0674807 6.11724i 0.00299692 0.271676i
\(508\) 13.2474 13.2474i 0.587759 0.587759i
\(509\) −16.7332 −0.741685 −0.370843 0.928696i \(-0.620931\pi\)
−0.370843 + 0.928696i \(0.620931\pi\)
\(510\) −17.4229 + 10.5671i −0.771497 + 0.467918i
\(511\) −8.37949 −0.370687
\(512\) 1.75178 1.75178i 0.0774184 0.0774184i
\(513\) 0.171921 5.19331i 0.00759051 0.229290i
\(514\) 10.3416i 0.456150i
\(515\) 21.3768 + 4.98669i 0.941975 + 0.219740i
\(516\) −11.8343 12.0983i −0.520975 0.532597i
\(517\) 5.18095 + 5.18095i 0.227858 + 0.227858i
\(518\) 20.6795 + 20.6795i 0.908606 + 0.908606i
\(519\) −24.3706 24.9142i −1.06975 1.09361i
\(520\) 10.4406 + 16.7937i 0.457851 + 0.736453i
\(521\) 4.80697i 0.210597i 0.994441 + 0.105299i \(0.0335799\pi\)
−0.994441 + 0.105299i \(0.966420\pi\)
\(522\) 7.81350 7.47613i 0.341988 0.327221i
\(523\) −0.501892 + 0.501892i −0.0219462 + 0.0219462i −0.717995 0.696049i \(-0.754940\pi\)
0.696049 + 0.717995i \(0.254940\pi\)
\(524\) 25.3283 1.10647
\(525\) 23.6343 7.72772i 1.03148 0.337265i
\(526\) 13.3225 0.580891
\(527\) −35.2856 + 35.2856i −1.53706 + 1.53706i
\(528\) −0.00960930 + 0.871101i −0.000418191 + 0.0379098i
\(529\) 22.9688i 0.998643i
\(530\) −10.2368 16.4658i −0.444657 0.715230i
\(531\) 1.76445 + 0.0389328i 0.0765706 + 0.00168954i
\(532\) −2.40889 2.40889i −0.104438 0.104438i
\(533\) −8.74991 8.74991i −0.379000 0.379000i
\(534\) −1.04030 + 1.01760i −0.0450183 + 0.0440360i
\(535\) 26.1168 + 6.09242i 1.12913 + 0.263398i
\(536\) 12.6094i 0.544645i
\(537\) −7.56692 0.0834724i −0.326537 0.00360210i
\(538\) −4.99097 + 4.99097i −0.215176 + 0.215176i
\(539\) 2.85341 0.122905
\(540\) 11.9420 6.88726i 0.513904 0.296381i
\(541\) −3.93012 −0.168969 −0.0844845 0.996425i \(-0.526924\pi\)
−0.0844845 + 0.996425i \(0.526924\pi\)
\(542\) −11.9270 + 11.9270i −0.512307 + 0.512307i
\(543\) −6.57984 0.0725837i −0.282368 0.00311486i
\(544\) 32.3765i 1.38813i
\(545\) −11.7933 + 7.33187i −0.505169 + 0.314063i
\(546\) −9.86648 + 9.65118i −0.422247 + 0.413032i
\(547\) −14.0634 14.0634i −0.601307 0.601307i 0.339352 0.940659i \(-0.389792\pi\)
−0.940659 + 0.339352i \(0.889792\pi\)
\(548\) 5.89244 + 5.89244i 0.251713 + 0.251713i
\(549\) 14.2827 + 0.315150i 0.609571 + 0.0134503i
\(550\) −9.79621 + 3.32312i −0.417712 + 0.141699i
\(551\) 3.99654i 0.170258i
\(552\) 0.00970113 0.879426i 0.000412908 0.0374308i
\(553\) −23.9644 + 23.9644i −1.01907 + 1.01907i
\(554\) 14.6870 0.623991
\(555\) −10.4053 + 42.4815i −0.441680 + 1.80324i
\(556\) −4.28689 −0.181805
\(557\) 8.49708 8.49708i 0.360033 0.360033i −0.503792 0.863825i \(-0.668062\pi\)
0.863825 + 0.503792i \(0.168062\pi\)
\(558\) −16.7248 + 16.0027i −0.708019 + 0.677448i
\(559\) 25.3399i 1.07177i
\(560\) −0.319810 + 1.37095i −0.0135144 + 0.0579333i
\(561\) −16.2058 16.5674i −0.684211 0.699474i
\(562\) −6.49464 6.49464i −0.273960 0.273960i
\(563\) 13.9439 + 13.9439i 0.587664 + 0.587664i 0.936998 0.349334i \(-0.113592\pi\)
−0.349334 + 0.936998i \(0.613592\pi\)
\(564\) 4.59020 + 4.69260i 0.193282 + 0.197594i
\(565\) 0.245735 1.05341i 0.0103382 0.0443174i
\(566\) 5.20766i 0.218894i
\(567\) 17.4486 + 19.0606i 0.732774 + 0.800469i
\(568\) 9.60719 9.60719i 0.403109 0.403109i
\(569\) −25.4894 −1.06857 −0.534286 0.845304i \(-0.679419\pi\)
−0.534286 + 0.845304i \(0.679419\pi\)
\(570\) −0.831056 + 3.39294i −0.0348091 + 0.142114i
\(571\) −31.6504 −1.32453 −0.662264 0.749270i \(-0.730404\pi\)
−0.662264 + 0.749270i \(0.730404\pi\)
\(572\) −5.92155 + 5.92155i −0.247593 + 0.247593i
\(573\) 0.232099 21.0402i 0.00969607 0.878967i
\(574\) 10.4145i 0.434694i
\(575\) 0.836544 0.283777i 0.0348863 0.0118343i
\(576\) −0.360323 + 16.3300i −0.0150135 + 0.680416i
\(577\) −24.8799 24.8799i −1.03576 1.03576i −0.999336 0.0364277i \(-0.988402\pi\)
−0.0364277 0.999336i \(-0.511598\pi\)
\(578\) 10.8593 + 10.8593i 0.451688 + 0.451688i
\(579\) −2.15961 + 2.11248i −0.0897502 + 0.0877917i
\(580\) 9.00475 5.59823i 0.373902 0.232454i
\(581\) 41.6920i 1.72967i
\(582\) 27.2132 + 0.300195i 1.12803 + 0.0124435i
\(583\) 15.5927 15.5927i 0.645783 0.645783i
\(584\) 8.38772 0.347086
\(585\) −19.9932 5.13148i −0.826617 0.212161i
\(586\) 9.70274 0.400817
\(587\) −22.3822 + 22.3822i −0.923813 + 0.923813i −0.997296 0.0734834i \(-0.976588\pi\)
0.0734834 + 0.997296i \(0.476588\pi\)
\(588\) 2.55625 + 0.0281985i 0.105418 + 0.00116289i
\(589\) 8.55462i 0.352487i
\(590\) −1.15546 0.269540i −0.0475695 0.0110968i
\(591\) 26.8570 26.2710i 1.10475 1.08064i
\(592\) −1.75092 1.75092i −0.0719625 0.0719625i
\(593\) 22.4046 + 22.4046i 0.920047 + 0.920047i 0.997032 0.0769849i \(-0.0245293\pi\)
−0.0769849 + 0.997032i \(0.524529\pi\)
\(594\) −7.34596 7.84898i −0.301408 0.322048i
\(595\) −19.7734 31.8056i −0.810632 1.30390i
\(596\) 7.69653i 0.315262i
\(597\) −0.101109 + 9.16574i −0.00413813 + 0.375129i
\(598\) −0.346710 + 0.346710i −0.0141780 + 0.0141780i
\(599\) 24.7478 1.01117 0.505584 0.862778i \(-0.331277\pi\)
0.505584 + 0.862778i \(0.331277\pi\)
\(600\) −23.6575 + 7.73531i −0.965813 + 0.315793i
\(601\) 24.0364 0.980466 0.490233 0.871591i \(-0.336912\pi\)
0.490233 + 0.871591i \(0.336912\pi\)
\(602\) −15.0803 + 15.0803i −0.614629 + 0.614629i
\(603\) 9.09938 + 9.51000i 0.370556 + 0.387277i
\(604\) 24.2899i 0.988343i
\(605\) 6.77478 + 10.8972i 0.275434 + 0.443035i
\(606\) −6.25801 6.39762i −0.254214 0.259885i
\(607\) 14.3713 + 14.3713i 0.583312 + 0.583312i 0.935812 0.352500i \(-0.114668\pi\)
−0.352500 + 0.935812i \(0.614668\pi\)
\(608\) 3.92468 + 3.92468i 0.159167 + 0.159167i
\(609\) 13.8981 + 14.2081i 0.563178 + 0.575741i
\(610\) −9.35311 2.18185i −0.378696 0.0883405i
\(611\) 9.82869i 0.397626i
\(612\) −14.3544 15.0022i −0.580243 0.606427i
\(613\) −9.83473 + 9.83473i −0.397221 + 0.397221i −0.877252 0.480031i \(-0.840626\pi\)
0.480031 + 0.877252i \(0.340626\pi\)
\(614\) −7.27484 −0.293589
\(615\) 13.3173 8.07703i 0.537005 0.325697i
\(616\) −18.9287 −0.762658
\(617\) 27.2691 27.2691i 1.09781 1.09781i 0.103147 0.994666i \(-0.467109\pi\)
0.994666 0.103147i \(-0.0328911\pi\)
\(618\) 0.169162 15.3349i 0.00680471 0.616860i
\(619\) 7.71669i 0.310160i 0.987902 + 0.155080i \(0.0495635\pi\)
−0.987902 + 0.155080i \(0.950436\pi\)
\(620\) −19.2747 + 11.9831i −0.774092 + 0.481251i
\(621\) 0.627306 + 0.670261i 0.0251729 + 0.0268966i
\(622\) −19.4343 19.4343i −0.779243 0.779243i
\(623\) −1.89124 1.89124i −0.0757711 0.0757711i
\(624\) 0.835389 0.817159i 0.0334423 0.0327126i
\(625\) −15.2109 19.8401i −0.608436 0.793603i
\(626\) 4.19510i 0.167670i
\(627\) −3.97276 0.0438244i −0.158657 0.00175018i
\(628\) −0.427962 + 0.427962i −0.0170776 + 0.0170776i
\(629\) 65.8745 2.62659
\(630\) −8.84452 14.9522i −0.352374 0.595711i
\(631\) 38.3444 1.52647 0.763233 0.646123i \(-0.223611\pi\)
0.763233 + 0.646123i \(0.223611\pi\)
\(632\) 23.9879 23.9879i 0.954187 0.954187i
\(633\) 20.8682 + 0.230201i 0.829435 + 0.00914968i
\(634\) 22.9889i 0.913008i
\(635\) 8.02103 34.3844i 0.318305 1.36450i
\(636\) 14.1229 13.8148i 0.560011 0.547791i
\(637\) −2.70657 2.70657i −0.107238 0.107238i
\(638\) −5.84668 5.84668i −0.231472 0.231472i
\(639\) −0.312852 + 14.1786i −0.0123762 + 0.560896i
\(640\) −3.14434 + 13.4791i −0.124291 + 0.532807i
\(641\) 43.2352i 1.70769i −0.520529 0.853844i \(-0.674265\pi\)
0.520529 0.853844i \(-0.325735\pi\)
\(642\) 0.206672 18.7352i 0.00815669 0.739419i
\(643\) 9.30261 9.30261i 0.366859 0.366859i −0.499471 0.866330i \(-0.666472\pi\)
0.866330 + 0.499471i \(0.166472\pi\)
\(644\) 0.601869 0.0237170
\(645\) −30.9792 7.58796i −1.21981 0.298776i
\(646\) 5.26130 0.207003
\(647\) 1.81460 1.81460i 0.0713394 0.0713394i −0.670537 0.741876i \(-0.733936\pi\)
0.741876 + 0.670537i \(0.233936\pi\)
\(648\) −17.4658 19.0793i −0.686120 0.749506i
\(649\) 1.34943i 0.0529700i
\(650\) 12.4442 + 6.13998i 0.488102 + 0.240830i
\(651\) −29.7489 30.4125i −1.16595 1.19196i
\(652\) 12.2163 + 12.2163i 0.478429 + 0.478429i
\(653\) 1.84597 + 1.84597i 0.0722383 + 0.0722383i 0.742303 0.670065i \(-0.233734\pi\)
−0.670065 + 0.742303i \(0.733734\pi\)
\(654\) 6.78415 + 6.93549i 0.265281 + 0.271199i
\(655\) 40.5383 25.2026i 1.58396 0.984746i
\(656\) 0.881791i 0.0344281i
\(657\) −6.32599 + 6.05285i −0.246801 + 0.236144i
\(658\) 5.84926 5.84926i 0.228028 0.228028i
\(659\) 8.65947 0.337325 0.168662 0.985674i \(-0.446055\pi\)
0.168662 + 0.985674i \(0.446055\pi\)
\(660\) −5.46618 9.01255i −0.212771 0.350813i
\(661\) 37.1754 1.44596 0.722978 0.690871i \(-0.242773\pi\)
0.722978 + 0.690871i \(0.242773\pi\)
\(662\) 6.97853 6.97853i 0.271228 0.271228i
\(663\) −0.342924 + 31.0867i −0.0133181 + 1.20731i
\(664\) 41.7329i 1.61955i
\(665\) −6.25240 1.45853i −0.242458 0.0565594i
\(666\) 30.5494 + 0.674077i 1.18377 + 0.0261200i
\(667\) 0.499275 + 0.499275i 0.0193320 + 0.0193320i
\(668\) 3.05244 + 3.05244i 0.118103 + 0.118103i
\(669\) −1.08816 + 1.06442i −0.0420709 + 0.0411528i
\(670\) −4.67182 7.51462i −0.180488 0.290315i
\(671\) 10.9233i 0.421689i
\(672\) −27.6007 0.304470i −1.06472 0.0117452i
\(673\) −9.85686 + 9.85686i −0.379954 + 0.379954i −0.871085 0.491131i \(-0.836583\pi\)
0.491131 + 0.871085i \(0.336583\pi\)
\(674\) 9.60220 0.369863
\(675\) 12.2604 22.9060i 0.471902 0.881651i
\(676\) −4.19069 −0.161180
\(677\) 0.741697 0.741697i 0.0285057 0.0285057i −0.692710 0.721216i \(-0.743584\pi\)
0.721216 + 0.692710i \(0.243584\pi\)
\(678\) −0.755676 0.00833603i −0.0290216 0.000320143i
\(679\) 50.0187i 1.91954i
\(680\) 19.7929 + 31.8368i 0.759022 + 1.22089i
\(681\) −21.1823 + 20.7201i −0.811707 + 0.793994i
\(682\) 12.5149 + 12.5149i 0.479219 + 0.479219i
\(683\) 7.80856 + 7.80856i 0.298786 + 0.298786i 0.840538 0.541752i \(-0.182239\pi\)
−0.541752 + 0.840538i \(0.682239\pi\)
\(684\) −3.55860 0.0785209i −0.136066 0.00300232i
\(685\) 15.2942 + 3.56775i 0.584359 + 0.136317i
\(686\) 14.9064i 0.569130i
\(687\) −0.398558 + 36.1300i −0.0152060 + 1.37845i
\(688\) 1.27684 1.27684i 0.0486792 0.0486792i
\(689\) −29.5806 −1.12693
\(690\) −0.320048 0.527690i −0.0121840 0.0200888i
\(691\) 21.1640 0.805115 0.402558 0.915395i \(-0.368121\pi\)
0.402558 + 0.915395i \(0.368121\pi\)
\(692\) −16.8815 + 16.8815i −0.641740 + 0.641740i
\(693\) 14.2760 13.6596i 0.542299 0.518884i
\(694\) 15.0197i 0.570138i
\(695\) −6.86124 + 4.26562i −0.260262 + 0.161804i
\(696\) −13.9117 14.2221i −0.527322 0.539086i
\(697\) −16.5877 16.5877i −0.628303 0.628303i
\(698\) −10.8564 10.8564i −0.410922 0.410922i
\(699\) −26.4949 27.0860i −1.00213 1.02449i
\(700\) −5.47190 16.1306i −0.206818 0.609678i
\(701\) 29.6964i 1.12162i −0.827945 0.560809i \(-0.810490\pi\)
0.827945 0.560809i \(-0.189510\pi\)
\(702\) −0.477134 + 14.4130i −0.0180083 + 0.543984i
\(703\) 7.98529 7.98529i 0.301171 0.301171i
\(704\) 12.4890 0.470697
\(705\) 12.0160 + 2.94317i 0.452549 + 0.110846i
\(706\) 10.8819 0.409544
\(707\) 11.6307 11.6307i 0.437417 0.437417i
\(708\) 0.0133357 1.20890i 0.000501185 0.0454334i
\(709\) 35.9779i 1.35118i 0.737279 + 0.675588i \(0.236110\pi\)
−0.737279 + 0.675588i \(0.763890\pi\)
\(710\) 2.16594 9.28491i 0.0812863 0.348456i
\(711\) −0.781151 + 35.4021i −0.0292954 + 1.32768i
\(712\) 1.89310 + 1.89310i 0.0709469 + 0.0709469i
\(713\) −1.06870 1.06870i −0.0400232 0.0400232i
\(714\) −18.7044 + 18.2963i −0.699996 + 0.684721i
\(715\) −3.58538 + 15.3697i −0.134085 + 0.574795i
\(716\) 5.18381i 0.193728i
\(717\) −28.7323 0.316953i −1.07303 0.0118368i
\(718\) 7.47562 7.47562i 0.278988 0.278988i
\(719\) −19.2876 −0.719305 −0.359652 0.933086i \(-0.617105\pi\)
−0.359652 + 0.933086i \(0.617105\pi\)
\(720\) 0.748860 + 1.26600i 0.0279084 + 0.0471809i
\(721\) 28.1859 1.04970
\(722\) 0.637774 0.637774i 0.0237355 0.0237355i
\(723\) 5.90405 + 0.0651288i 0.219574 + 0.00242217i
\(724\) 4.50760i 0.167523i
\(725\) 8.84181 17.9201i 0.328376 0.665537i
\(726\) 6.40852 6.26868i 0.237843 0.232652i
\(727\) 0.975337 + 0.975337i 0.0361732 + 0.0361732i 0.724962 0.688789i \(-0.241857\pi\)
−0.688789 + 0.724962i \(0.741857\pi\)
\(728\) 17.9546 + 17.9546i 0.665442 + 0.665442i
\(729\) 26.9409 + 1.78568i 0.997811 + 0.0661363i
\(730\) 4.99868 3.10767i 0.185009 0.115020i
\(731\) 48.0383i 1.77676i
\(732\) 0.107948 9.78572i 0.00398989 0.361691i
\(733\) −13.9736 + 13.9736i −0.516128 + 0.516128i −0.916397 0.400270i \(-0.868916\pi\)
0.400270 + 0.916397i \(0.368916\pi\)
\(734\) −4.06622 −0.150087
\(735\) 4.11938 2.49843i 0.151946 0.0921560i
\(736\) −0.980594 −0.0361452
\(737\) 7.11614 7.11614i 0.262126 0.262126i
\(738\) −7.52284 7.86231i −0.276920 0.289416i
\(739\) 0.667677i 0.0245609i 0.999925 + 0.0122805i \(0.00390909\pi\)
−0.999925 + 0.0122805i \(0.996091\pi\)
\(740\) 29.1775 + 6.80639i 1.07259 + 0.250208i
\(741\) 3.72675 + 3.80989i 0.136906 + 0.139960i
\(742\) −17.6040 17.6040i −0.646265 0.646265i
\(743\) 5.50775 + 5.50775i 0.202060 + 0.202060i 0.800882 0.598822i \(-0.204364\pi\)
−0.598822 + 0.800882i \(0.704364\pi\)
\(744\) 29.7781 + 30.4424i 1.09172 + 1.11607i
\(745\) −7.65834 12.3184i −0.280580 0.451312i
\(746\) 3.73722i 0.136829i
\(747\) 30.1158 + 31.4748i 1.10188 + 1.15160i
\(748\) −11.2258 + 11.2258i −0.410456 + 0.410456i
\(749\) 34.4358 1.25826
\(750\) −11.2328 + 13.3750i −0.410163 + 0.488387i
\(751\) 8.04141 0.293435 0.146718 0.989178i \(-0.453129\pi\)
0.146718 + 0.989178i \(0.453129\pi\)
\(752\) −0.495254 + 0.495254i −0.0180600 + 0.0180600i
\(753\) −0.0583644 + 5.29084i −0.00212692 + 0.192809i
\(754\) 11.0916i 0.403933i
\(755\) −24.1694 38.8764i −0.879614 1.41486i
\(756\) 12.9242 12.0960i 0.470050 0.439925i
\(757\) −3.26438 3.26438i −0.118646 0.118646i 0.645291 0.763937i \(-0.276736\pi\)
−0.763937 + 0.645291i \(0.776736\pi\)
\(758\) −12.4847 12.4847i −0.453464 0.453464i
\(759\) 0.501779 0.490829i 0.0182134 0.0178160i
\(760\) 6.25854 + 1.45996i 0.227021 + 0.0529584i
\(761\) 50.8122i 1.84194i −0.389633 0.920970i \(-0.627398\pi\)
0.389633 0.920970i \(-0.372602\pi\)
\(762\) −24.6660 0.272096i −0.893554 0.00985699i
\(763\) −12.6085 + 12.6085i −0.456459 + 0.456459i
\(764\) −14.4138 −0.521474
\(765\) −37.9022 9.72804i −1.37036 0.351718i
\(766\) 18.5299 0.669512
\(767\) −1.27999 + 1.27999i −0.0462179 + 0.0462179i
\(768\) 28.5290 + 0.314710i 1.02945 + 0.0113561i
\(769\) 10.5994i 0.382223i 0.981568 + 0.191112i \(0.0612092\pi\)
−0.981568 + 0.191112i \(0.938791\pi\)
\(770\) −11.2806 + 7.01311i −0.406524 + 0.252735i
\(771\) −14.1968 + 13.8870i −0.511286 + 0.500129i