Properties

Label 285.2.k.d.77.15
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.15
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.d.248.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.43829 - 1.43829i) q^{2} +(0.368185 + 1.69247i) q^{3} -2.13738i q^{4} +(2.18737 - 0.464149i) q^{5} +(2.96382 + 1.90470i) q^{6} +(-1.23221 - 1.23221i) q^{7} +(-0.197591 - 0.197591i) q^{8} +(-2.72888 + 1.24628i) q^{9} +O(q^{10})\) \(q+(1.43829 - 1.43829i) q^{2} +(0.368185 + 1.69247i) q^{3} -2.13738i q^{4} +(2.18737 - 0.464149i) q^{5} +(2.96382 + 1.90470i) q^{6} +(-1.23221 - 1.23221i) q^{7} +(-0.197591 - 0.197591i) q^{8} +(-2.72888 + 1.24628i) q^{9} +(2.47849 - 3.81366i) q^{10} -0.351554i q^{11} +(3.61744 - 0.786952i) q^{12} +(0.181358 - 0.181358i) q^{13} -3.54456 q^{14} +(1.59091 + 3.53115i) q^{15} +3.70637 q^{16} +(-1.52282 + 1.52282i) q^{17} +(-2.13241 + 5.71745i) q^{18} +1.00000i q^{19} +(-0.992062 - 4.67523i) q^{20} +(1.63179 - 2.53915i) q^{21} +(-0.505639 - 0.505639i) q^{22} +(-3.86668 - 3.86668i) q^{23} +(0.261666 - 0.407167i) q^{24} +(4.56913 - 2.03053i) q^{25} -0.521694i q^{26} +(-3.11402 - 4.15967i) q^{27} +(-2.63370 + 2.63370i) q^{28} -7.70264 q^{29} +(7.36703 + 2.79063i) q^{30} -4.22453 q^{31} +(5.72603 - 5.72603i) q^{32} +(0.594994 - 0.129437i) q^{33} +4.38052i q^{34} +(-3.26722 - 2.12336i) q^{35} +(2.66378 + 5.83265i) q^{36} +(1.89968 + 1.89968i) q^{37} +(1.43829 + 1.43829i) q^{38} +(0.373716 + 0.240169i) q^{39} +(-0.523916 - 0.340492i) q^{40} +6.12012i q^{41} +(-1.30505 - 5.99904i) q^{42} +(-0.226097 + 0.226097i) q^{43} -0.751405 q^{44} +(-5.39059 + 3.99268i) q^{45} -11.1228 q^{46} +(-8.19848 + 8.19848i) q^{47} +(1.36463 + 6.27290i) q^{48} -3.96332i q^{49} +(3.65126 - 9.49225i) q^{50} +(-3.13800 - 2.01664i) q^{51} +(-0.387632 - 0.387632i) q^{52} +(-2.43700 - 2.43700i) q^{53} +(-10.4617 - 1.50395i) q^{54} +(-0.163174 - 0.768978i) q^{55} +0.486948i q^{56} +(-1.69247 + 0.368185i) q^{57} +(-11.0787 + 11.0787i) q^{58} +5.37432 q^{59} +(7.54740 - 3.40038i) q^{60} +11.0661 q^{61} +(-6.07611 + 6.07611i) q^{62} +(4.89823 + 1.82687i) q^{63} -9.05869i q^{64} +(0.312520 - 0.480874i) q^{65} +(0.669607 - 1.04194i) q^{66} +(-5.18430 - 5.18430i) q^{67} +(3.25484 + 3.25484i) q^{68} +(5.12056 - 7.96787i) q^{69} +(-7.75324 + 1.64520i) q^{70} +14.9920i q^{71} +(0.785457 + 0.292948i) q^{72} +(6.94178 - 6.94178i) q^{73} +5.46459 q^{74} +(5.11888 + 6.98549i) q^{75} +2.13738 q^{76} +(-0.433189 + 0.433189i) q^{77} +(0.882948 - 0.192080i) q^{78} -3.78981i q^{79} +(8.10718 - 1.72031i) q^{80} +(5.89356 - 6.80191i) q^{81} +(8.80253 + 8.80253i) q^{82} +(-7.19514 - 7.19514i) q^{83} +(-5.42713 - 3.48775i) q^{84} +(-2.62415 + 4.03778i) q^{85} +0.650387i q^{86} +(-2.83600 - 13.0364i) q^{87} +(-0.0694641 + 0.0694641i) q^{88} +17.9313 q^{89} +(-2.01061 + 13.4959i) q^{90} -0.446943 q^{91} +(-8.26455 + 8.26455i) q^{92} +(-1.55541 - 7.14987i) q^{93} +23.5837i q^{94} +(0.464149 + 2.18737i) q^{95} +(11.7994 + 7.58287i) q^{96} +(9.20451 + 9.20451i) q^{97} +(-5.70042 - 5.70042i) q^{98} +(0.438136 + 0.959350i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7} - 4 q^{10} - 18 q^{12} - 8 q^{13} - 8 q^{15} - 84 q^{16} + 8 q^{21} + 40 q^{22} - 20 q^{25} - 14 q^{27} + 36 q^{28} + 28 q^{30} - 28 q^{33} + 92 q^{36} - 4 q^{37} - 20 q^{40} - 100 q^{42} + 16 q^{43} + 28 q^{45} - 24 q^{46} - 58 q^{48} + 32 q^{51} + 148 q^{52} - 72 q^{55} - 2 q^{57} - 12 q^{58} + 58 q^{60} - 112 q^{61} - 64 q^{63} + 92 q^{66} - 8 q^{67} + 8 q^{70} - 88 q^{72} + 76 q^{73} + 80 q^{75} + 36 q^{76} - 36 q^{78} + 4 q^{81} + 20 q^{82} - 28 q^{85} - 4 q^{87} + 140 q^{88} + 76 q^{90} - 24 q^{91} - 48 q^{93} + 32 q^{96} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43829 1.43829i 1.01703 1.01703i 0.0171749 0.999853i \(-0.494533\pi\)
0.999853 0.0171749i \(-0.00546721\pi\)
\(3\) 0.368185 + 1.69247i 0.212572 + 0.977145i
\(4\) 2.13738i 1.06869i
\(5\) 2.18737 0.464149i 0.978219 0.207574i
\(6\) 2.96382 + 1.90470i 1.20998 + 0.777592i
\(7\) −1.23221 1.23221i −0.465731 0.465731i 0.434797 0.900528i \(-0.356820\pi\)
−0.900528 + 0.434797i \(0.856820\pi\)
\(8\) −0.197591 0.197591i −0.0698591 0.0698591i
\(9\) −2.72888 + 1.24628i −0.909626 + 0.415427i
\(10\) 2.47849 3.81366i 0.783768 1.20598i
\(11\) 0.351554i 0.105998i −0.998595 0.0529988i \(-0.983122\pi\)
0.998595 0.0529988i \(-0.0168780\pi\)
\(12\) 3.61744 0.786952i 1.04427 0.227173i
\(13\) 0.181358 0.181358i 0.0502998 0.0502998i −0.681509 0.731809i \(-0.738676\pi\)
0.731809 + 0.681509i \(0.238676\pi\)
\(14\) −3.54456 −0.947323
\(15\) 1.59091 + 3.53115i 0.410772 + 0.911738i
\(16\) 3.70637 0.926592
\(17\) −1.52282 + 1.52282i −0.369338 + 0.369338i −0.867236 0.497898i \(-0.834105\pi\)
0.497898 + 0.867236i \(0.334105\pi\)
\(18\) −2.13241 + 5.71745i −0.502614 + 1.34762i
\(19\) 1.00000i 0.229416i
\(20\) −0.992062 4.67523i −0.221832 1.04541i
\(21\) 1.63179 2.53915i 0.356086 0.554089i
\(22\) −0.505639 0.505639i −0.107803 0.107803i
\(23\) −3.86668 3.86668i −0.806258 0.806258i 0.177808 0.984065i \(-0.443099\pi\)
−0.984065 + 0.177808i \(0.943099\pi\)
\(24\) 0.261666 0.407167i 0.0534124 0.0831125i
\(25\) 4.56913 2.03053i 0.913826 0.406105i
\(26\) 0.521694i 0.102313i
\(27\) −3.11402 4.15967i −0.599294 0.800529i
\(28\) −2.63370 + 2.63370i −0.497722 + 0.497722i
\(29\) −7.70264 −1.43034 −0.715172 0.698949i \(-0.753652\pi\)
−0.715172 + 0.698949i \(0.753652\pi\)
\(30\) 7.36703 + 2.79063i 1.34503 + 0.509497i
\(31\) −4.22453 −0.758747 −0.379374 0.925244i \(-0.623861\pi\)
−0.379374 + 0.925244i \(0.623861\pi\)
\(32\) 5.72603 5.72603i 1.01223 1.01223i
\(33\) 0.594994 0.129437i 0.103575 0.0225321i
\(34\) 4.38052i 0.751254i
\(35\) −3.26722 2.12336i −0.552261 0.358914i
\(36\) 2.66378 + 5.83265i 0.443963 + 0.972108i
\(37\) 1.89968 + 1.89968i 0.312305 + 0.312305i 0.845802 0.533497i \(-0.179122\pi\)
−0.533497 + 0.845802i \(0.679122\pi\)
\(38\) 1.43829 + 1.43829i 0.233322 + 0.233322i
\(39\) 0.373716 + 0.240169i 0.0598425 + 0.0384579i
\(40\) −0.523916 0.340492i −0.0828384 0.0538366i
\(41\) 6.12012i 0.955802i 0.878414 + 0.477901i \(0.158602\pi\)
−0.878414 + 0.477901i \(0.841398\pi\)
\(42\) −1.30505 5.99904i −0.201374 0.925672i
\(43\) −0.226097 + 0.226097i −0.0344794 + 0.0344794i −0.724136 0.689657i \(-0.757761\pi\)
0.689657 + 0.724136i \(0.257761\pi\)
\(44\) −0.751405 −0.113279
\(45\) −5.39059 + 3.99268i −0.803582 + 0.595194i
\(46\) −11.1228 −1.63997
\(47\) −8.19848 + 8.19848i −1.19587 + 1.19587i −0.220480 + 0.975391i \(0.570762\pi\)
−0.975391 + 0.220480i \(0.929238\pi\)
\(48\) 1.36463 + 6.27290i 0.196967 + 0.905415i
\(49\) 3.96332i 0.566189i
\(50\) 3.65126 9.49225i 0.516366 1.34241i
\(51\) −3.13800 2.01664i −0.439408 0.282386i
\(52\) −0.387632 0.387632i −0.0537549 0.0537549i
\(53\) −2.43700 2.43700i −0.334747 0.334747i 0.519639 0.854386i \(-0.326067\pi\)
−0.854386 + 0.519639i \(0.826067\pi\)
\(54\) −10.4617 1.50395i −1.42366 0.204662i
\(55\) −0.163174 0.768978i −0.0220023 0.103689i
\(56\) 0.486948i 0.0650711i
\(57\) −1.69247 + 0.368185i −0.224173 + 0.0487673i
\(58\) −11.0787 + 11.0787i −1.45470 + 1.45470i
\(59\) 5.37432 0.699677 0.349839 0.936810i \(-0.386236\pi\)
0.349839 + 0.936810i \(0.386236\pi\)
\(60\) 7.54740 3.40038i 0.974365 0.438987i
\(61\) 11.0661 1.41687 0.708437 0.705774i \(-0.249401\pi\)
0.708437 + 0.705774i \(0.249401\pi\)
\(62\) −6.07611 + 6.07611i −0.771667 + 0.771667i
\(63\) 4.89823 + 1.82687i 0.617119 + 0.230164i
\(64\) 9.05869i 1.13234i
\(65\) 0.312520 0.480874i 0.0387633 0.0596451i
\(66\) 0.669607 1.04194i 0.0824230 0.128255i
\(67\) −5.18430 5.18430i −0.633363 0.633363i 0.315547 0.948910i \(-0.397812\pi\)
−0.948910 + 0.315547i \(0.897812\pi\)
\(68\) 3.25484 + 3.25484i 0.394708 + 0.394708i
\(69\) 5.12056 7.96787i 0.616443 0.959219i
\(70\) −7.75324 + 1.64520i −0.926690 + 0.196639i
\(71\) 14.9920i 1.77923i 0.456714 + 0.889614i \(0.349026\pi\)
−0.456714 + 0.889614i \(0.650974\pi\)
\(72\) 0.785457 + 0.292948i 0.0925670 + 0.0345243i
\(73\) 6.94178 6.94178i 0.812474 0.812474i −0.172531 0.985004i \(-0.555194\pi\)
0.985004 + 0.172531i \(0.0551943\pi\)
\(74\) 5.46459 0.635245
\(75\) 5.11888 + 6.98549i 0.591078 + 0.806615i
\(76\) 2.13738 0.245174
\(77\) −0.433189 + 0.433189i −0.0493664 + 0.0493664i
\(78\) 0.882948 0.192080i 0.0999742 0.0217488i
\(79\) 3.78981i 0.426387i −0.977010 0.213193i \(-0.931614\pi\)
0.977010 0.213193i \(-0.0683864\pi\)
\(80\) 8.10718 1.72031i 0.906411 0.192336i
\(81\) 5.89356 6.80191i 0.654840 0.755767i
\(82\) 8.80253 + 8.80253i 0.972077 + 0.972077i
\(83\) −7.19514 7.19514i −0.789769 0.789769i 0.191687 0.981456i \(-0.438604\pi\)
−0.981456 + 0.191687i \(0.938604\pi\)
\(84\) −5.42713 3.48775i −0.592149 0.380545i
\(85\) −2.62415 + 4.03778i −0.284629 + 0.437958i
\(86\) 0.650387i 0.0701330i
\(87\) −2.83600 13.0364i −0.304051 1.39765i
\(88\) −0.0694641 + 0.0694641i −0.00740490 + 0.00740490i
\(89\) 17.9313 1.90072 0.950358 0.311160i \(-0.100717\pi\)
0.950358 + 0.311160i \(0.100717\pi\)
\(90\) −2.01061 + 13.4959i −0.211937 + 1.42259i
\(91\) −0.446943 −0.0468524
\(92\) −8.26455 + 8.26455i −0.861639 + 0.861639i
\(93\) −1.55541 7.14987i −0.161288 0.741407i
\(94\) 23.5837i 2.43247i
\(95\) 0.464149 + 2.18737i 0.0476207 + 0.224419i
\(96\) 11.7994 + 7.58287i 1.20427 + 0.773923i
\(97\) 9.20451 + 9.20451i 0.934576 + 0.934576i 0.997987 0.0634115i \(-0.0201981\pi\)
−0.0634115 + 0.997987i \(0.520198\pi\)
\(98\) −5.70042 5.70042i −0.575829 0.575829i
\(99\) 0.438136 + 0.959350i 0.0440343 + 0.0964183i
\(100\) −4.34000 9.76597i −0.434000 0.976597i
\(101\) 5.36602i 0.533939i 0.963705 + 0.266969i \(0.0860222\pi\)
−0.963705 + 0.266969i \(0.913978\pi\)
\(102\) −7.41388 + 1.61284i −0.734084 + 0.159695i
\(103\) 0.661659 0.661659i 0.0651952 0.0651952i −0.673757 0.738953i \(-0.735321\pi\)
0.738953 + 0.673757i \(0.235321\pi\)
\(104\) −0.0716697 −0.00702779
\(105\) 2.39078 6.31145i 0.233316 0.615934i
\(106\) −7.01024 −0.680894
\(107\) 2.98489 2.98489i 0.288560 0.288560i −0.547950 0.836511i \(-0.684592\pi\)
0.836511 + 0.547950i \(0.184592\pi\)
\(108\) −8.89079 + 6.65585i −0.855517 + 0.640459i
\(109\) 15.3648i 1.47168i 0.677154 + 0.735841i \(0.263213\pi\)
−0.677154 + 0.735841i \(0.736787\pi\)
\(110\) −1.34071 0.871325i −0.127831 0.0830775i
\(111\) −2.51570 + 3.91457i −0.238780 + 0.371555i
\(112\) −4.56702 4.56702i −0.431543 0.431543i
\(113\) −12.5987 12.5987i −1.18519 1.18519i −0.978382 0.206807i \(-0.933693\pi\)
−0.206807 0.978382i \(-0.566307\pi\)
\(114\) −1.90470 + 2.96382i −0.178392 + 0.277587i
\(115\) −10.2525 6.66312i −0.956055 0.621339i
\(116\) 16.4635i 1.52859i
\(117\) −0.268882 + 0.720929i −0.0248581 + 0.0666499i
\(118\) 7.72986 7.72986i 0.711591 0.711591i
\(119\) 3.75286 0.344024
\(120\) 0.383374 1.01207i 0.0349971 0.0923893i
\(121\) 10.8764 0.988764
\(122\) 15.9164 15.9164i 1.44100 1.44100i
\(123\) −10.3581 + 2.25334i −0.933957 + 0.203177i
\(124\) 9.02941i 0.810865i
\(125\) 9.05189 6.56226i 0.809626 0.586946i
\(126\) 9.67267 4.41752i 0.861710 0.393544i
\(127\) −2.44477 2.44477i −0.216938 0.216938i 0.590269 0.807207i \(-0.299022\pi\)
−0.807207 + 0.590269i \(0.799022\pi\)
\(128\) −1.57700 1.57700i −0.139389 0.139389i
\(129\) −0.465906 0.299415i −0.0410208 0.0263621i
\(130\) −0.242144 1.14113i −0.0212374 0.100084i
\(131\) 19.1466i 1.67285i −0.548082 0.836424i \(-0.684642\pi\)
0.548082 0.836424i \(-0.315358\pi\)
\(132\) −0.276656 1.27173i −0.0240798 0.110690i
\(133\) 1.23221 1.23221i 0.106846 0.106846i
\(134\) −14.9131 −1.28830
\(135\) −8.74221 7.65335i −0.752410 0.658695i
\(136\) 0.601792 0.0516032
\(137\) 3.89420 3.89420i 0.332704 0.332704i −0.520908 0.853613i \(-0.674407\pi\)
0.853613 + 0.520908i \(0.174407\pi\)
\(138\) −4.09526 18.8250i −0.348612 1.60249i
\(139\) 1.97780i 0.167755i −0.996476 0.0838776i \(-0.973270\pi\)
0.996476 0.0838776i \(-0.0267305\pi\)
\(140\) −4.53843 + 6.98329i −0.383567 + 0.590196i
\(141\) −16.8942 10.8571i −1.42275 0.914332i
\(142\) 21.5630 + 21.5630i 1.80952 + 1.80952i
\(143\) −0.0637574 0.0637574i −0.00533166 0.00533166i
\(144\) −10.1142 + 4.61918i −0.842853 + 0.384932i
\(145\) −16.8485 + 3.57517i −1.39919 + 0.296902i
\(146\) 19.9686i 1.65262i
\(147\) 6.70778 1.45924i 0.553249 0.120356i
\(148\) 4.06033 4.06033i 0.333757 0.333757i
\(149\) 2.29450 0.187973 0.0939866 0.995573i \(-0.470039\pi\)
0.0939866 + 0.995573i \(0.470039\pi\)
\(150\) 17.4096 + 2.68473i 1.42149 + 0.219207i
\(151\) 11.0214 0.896909 0.448454 0.893806i \(-0.351975\pi\)
0.448454 + 0.893806i \(0.351975\pi\)
\(152\) 0.197591 0.197591i 0.0160268 0.0160268i
\(153\) 2.25773 6.05345i 0.182526 0.489393i
\(154\) 1.24611i 0.100414i
\(155\) −9.24058 + 1.96081i −0.742221 + 0.157496i
\(156\) 0.513333 0.798774i 0.0410995 0.0639531i
\(157\) −13.2385 13.2385i −1.05655 1.05655i −0.998302 0.0582450i \(-0.981450\pi\)
−0.0582450 0.998302i \(-0.518550\pi\)
\(158\) −5.45086 5.45086i −0.433647 0.433647i
\(159\) 3.22727 5.02180i 0.255939 0.398255i
\(160\) 9.86719 15.1827i 0.780070 1.20029i
\(161\) 9.52911i 0.750999i
\(162\) −1.30646 18.2598i −0.102646 1.43463i
\(163\) 4.18678 4.18678i 0.327934 0.327934i −0.523867 0.851800i \(-0.675511\pi\)
0.851800 + 0.523867i \(0.175511\pi\)
\(164\) 13.0810 1.02146
\(165\) 1.24139 0.559292i 0.0966421 0.0435408i
\(166\) −20.6975 −1.60643
\(167\) −9.30946 + 9.30946i −0.720388 + 0.720388i −0.968684 0.248296i \(-0.920129\pi\)
0.248296 + 0.968684i \(0.420129\pi\)
\(168\) −0.824142 + 0.179287i −0.0635839 + 0.0138323i
\(169\) 12.9342i 0.994940i
\(170\) 2.03322 + 9.58180i 0.155940 + 0.734891i
\(171\) −1.24628 2.72888i −0.0953056 0.208683i
\(172\) 0.483254 + 0.483254i 0.0368478 + 0.0368478i
\(173\) 5.23789 + 5.23789i 0.398229 + 0.398229i 0.877608 0.479379i \(-0.159138\pi\)
−0.479379 + 0.877608i \(0.659138\pi\)
\(174\) −22.8292 14.6712i −1.73068 1.11222i
\(175\) −8.13216 3.12809i −0.614733 0.236462i
\(176\) 1.30299i 0.0982166i
\(177\) 1.97875 + 9.09586i 0.148732 + 0.683687i
\(178\) 25.7905 25.7905i 1.93308 1.93308i
\(179\) 3.71181 0.277434 0.138717 0.990332i \(-0.455702\pi\)
0.138717 + 0.990332i \(0.455702\pi\)
\(180\) 8.53387 + 11.5217i 0.636077 + 0.858780i
\(181\) 19.2249 1.42898 0.714488 0.699648i \(-0.246660\pi\)
0.714488 + 0.699648i \(0.246660\pi\)
\(182\) −0.642836 + 0.642836i −0.0476501 + 0.0476501i
\(183\) 4.07439 + 18.7291i 0.301188 + 1.38449i
\(184\) 1.52804i 0.112649i
\(185\) 5.03702 + 3.27355i 0.370329 + 0.240676i
\(186\) −12.5207 8.04647i −0.918066 0.589996i
\(187\) 0.535354 + 0.535354i 0.0391490 + 0.0391490i
\(188\) 17.5233 + 17.5233i 1.27802 + 1.27802i
\(189\) −1.28846 + 8.96271i −0.0937215 + 0.651941i
\(190\) 3.81366 + 2.47849i 0.276672 + 0.179809i
\(191\) 20.3995i 1.47606i 0.674770 + 0.738028i \(0.264243\pi\)
−0.674770 + 0.738028i \(0.735757\pi\)
\(192\) 15.3315 3.33528i 1.10646 0.240703i
\(193\) 7.55435 7.55435i 0.543774 0.543774i −0.380859 0.924633i \(-0.624372\pi\)
0.924633 + 0.380859i \(0.124372\pi\)
\(194\) 26.4776 1.90098
\(195\) 0.928929 + 0.351878i 0.0665220 + 0.0251985i
\(196\) −8.47112 −0.605080
\(197\) −14.7537 + 14.7537i −1.05116 + 1.05116i −0.0525373 + 0.998619i \(0.516731\pi\)
−0.998619 + 0.0525373i \(0.983269\pi\)
\(198\) 2.01000 + 0.749658i 0.142844 + 0.0532759i
\(199\) 4.57329i 0.324192i 0.986775 + 0.162096i \(0.0518254\pi\)
−0.986775 + 0.162096i \(0.948175\pi\)
\(200\) −1.30403 0.501606i −0.0922092 0.0354689i
\(201\) 6.86547 10.6830i 0.484253 0.753523i
\(202\) 7.71791 + 7.71791i 0.543030 + 0.543030i
\(203\) 9.49126 + 9.49126i 0.666156 + 0.666156i
\(204\) −4.31032 + 6.70709i −0.301783 + 0.469590i
\(205\) 2.84065 + 13.3869i 0.198399 + 0.934984i
\(206\) 1.90332i 0.132611i
\(207\) 15.3707 + 5.73272i 1.06833 + 0.398452i
\(208\) 0.672181 0.672181i 0.0466074 0.0466074i
\(209\) 0.351554 0.0243175
\(210\) −5.63908 12.5164i −0.389133 0.863711i
\(211\) −17.0641 −1.17474 −0.587370 0.809319i \(-0.699836\pi\)
−0.587370 + 0.809319i \(0.699836\pi\)
\(212\) −5.20879 + 5.20879i −0.357741 + 0.357741i
\(213\) −25.3735 + 5.51985i −1.73856 + 0.378214i
\(214\) 8.58630i 0.586948i
\(215\) −0.389614 + 0.599499i −0.0265714 + 0.0408855i
\(216\) −0.206611 + 1.43722i −0.0140581 + 0.0977903i
\(217\) 5.20550 + 5.20550i 0.353372 + 0.353372i
\(218\) 22.0991 + 22.0991i 1.49674 + 1.49674i
\(219\) 14.3046 + 9.19286i 0.966614 + 0.621196i
\(220\) −1.64360 + 0.348764i −0.110811 + 0.0235137i
\(221\) 0.552352i 0.0371552i
\(222\) 2.01198 + 9.24863i 0.135035 + 0.620727i
\(223\) 16.1518 16.1518i 1.08160 1.08160i 0.0852434 0.996360i \(-0.472833\pi\)
0.996360 0.0852434i \(-0.0271668\pi\)
\(224\) −14.1113 −0.942853
\(225\) −9.93800 + 11.2355i −0.662533 + 0.749032i
\(226\) −36.2414 −2.41074
\(227\) 9.07842 9.07842i 0.602556 0.602556i −0.338434 0.940990i \(-0.609897\pi\)
0.940990 + 0.338434i \(0.109897\pi\)
\(228\) 0.786952 + 3.61744i 0.0521171 + 0.239571i
\(229\) 13.3378i 0.881388i −0.897657 0.440694i \(-0.854732\pi\)
0.897657 0.440694i \(-0.145268\pi\)
\(230\) −24.3297 + 5.16265i −1.60425 + 0.340415i
\(231\) −0.892651 0.573663i −0.0587321 0.0377443i
\(232\) 1.52197 + 1.52197i 0.0999225 + 0.0999225i
\(233\) −4.65087 4.65087i −0.304688 0.304688i 0.538156 0.842845i \(-0.319121\pi\)
−0.842845 + 0.538156i \(0.819121\pi\)
\(234\) 0.650177 + 1.42364i 0.0425034 + 0.0930662i
\(235\) −14.1278 + 21.7384i −0.921593 + 1.41806i
\(236\) 11.4870i 0.747738i
\(237\) 6.41412 1.39535i 0.416642 0.0906379i
\(238\) 5.39772 5.39772i 0.349882 0.349882i
\(239\) −0.155287 −0.0100447 −0.00502235 0.999987i \(-0.501599\pi\)
−0.00502235 + 0.999987i \(0.501599\pi\)
\(240\) 5.89651 + 13.0877i 0.380618 + 0.844810i
\(241\) 9.96653 0.642001 0.321000 0.947079i \(-0.395981\pi\)
0.321000 + 0.947079i \(0.395981\pi\)
\(242\) 15.6435 15.6435i 1.00560 1.00560i
\(243\) 13.6819 + 7.47029i 0.877695 + 0.479219i
\(244\) 23.6525i 1.51420i
\(245\) −1.83957 8.66923i −0.117526 0.553857i
\(246\) −11.6570 + 18.1389i −0.743224 + 1.15650i
\(247\) 0.181358 + 0.181358i 0.0115396 + 0.0115396i
\(248\) 0.834730 + 0.834730i 0.0530054 + 0.0530054i
\(249\) 9.52838 14.8267i 0.603837 0.939602i
\(250\) 3.58082 22.4577i 0.226471 1.42035i
\(251\) 22.5815i 1.42533i 0.701503 + 0.712667i \(0.252513\pi\)
−0.701503 + 0.712667i \(0.747487\pi\)
\(252\) 3.90471 10.4694i 0.245974 0.659509i
\(253\) −1.35935 + 1.35935i −0.0854614 + 0.0854614i
\(254\) −7.03260 −0.441264
\(255\) −7.79997 2.95463i −0.488453 0.185026i
\(256\) 13.5810 0.848813
\(257\) 2.95901 2.95901i 0.184578 0.184578i −0.608769 0.793347i \(-0.708336\pi\)
0.793347 + 0.608769i \(0.208336\pi\)
\(258\) −1.10076 + 0.239463i −0.0685302 + 0.0149083i
\(259\) 4.68160i 0.290900i
\(260\) −1.02781 0.667973i −0.0637421 0.0414259i
\(261\) 21.0196 9.59966i 1.30108 0.594204i
\(262\) −27.5385 27.5385i −1.70133 1.70133i
\(263\) −3.52891 3.52891i −0.217602 0.217602i 0.589885 0.807487i \(-0.299173\pi\)
−0.807487 + 0.589885i \(0.799173\pi\)
\(264\) −0.143141 0.0919899i −0.00880974 0.00566159i
\(265\) −6.46173 4.19947i −0.396941 0.257972i
\(266\) 3.54456i 0.217331i
\(267\) 6.60205 + 30.3481i 0.404039 + 1.85728i
\(268\) −11.0808 + 11.0808i −0.676869 + 0.676869i
\(269\) −15.2648 −0.930711 −0.465355 0.885124i \(-0.654073\pi\)
−0.465355 + 0.885124i \(0.654073\pi\)
\(270\) −23.5816 + 1.56610i −1.43513 + 0.0953100i
\(271\) −29.1239 −1.76915 −0.884577 0.466395i \(-0.845553\pi\)
−0.884577 + 0.466395i \(0.845553\pi\)
\(272\) −5.64413 + 5.64413i −0.342226 + 0.342226i
\(273\) −0.164558 0.756436i −0.00995950 0.0457816i
\(274\) 11.2020i 0.676739i
\(275\) −0.713841 1.60630i −0.0430462 0.0968634i
\(276\) −17.0304 10.9446i −1.02511 0.658786i
\(277\) −7.89347 7.89347i −0.474273 0.474273i 0.429022 0.903294i \(-0.358858\pi\)
−0.903294 + 0.429022i \(0.858858\pi\)
\(278\) −2.84466 2.84466i −0.170612 0.170612i
\(279\) 11.5282 5.26495i 0.690177 0.315204i
\(280\) 0.226016 + 1.06513i 0.0135071 + 0.0636538i
\(281\) 10.3368i 0.616644i −0.951282 0.308322i \(-0.900233\pi\)
0.951282 0.308322i \(-0.0997674\pi\)
\(282\) −39.9145 + 8.68316i −2.37688 + 0.517074i
\(283\) −17.9562 + 17.9562i −1.06739 + 1.06739i −0.0698264 + 0.997559i \(0.522245\pi\)
−0.997559 + 0.0698264i \(0.977755\pi\)
\(284\) 32.0437 1.90144
\(285\) −3.53115 + 1.59091i −0.209167 + 0.0942375i
\(286\) −0.183404 −0.0108449
\(287\) 7.54127 7.54127i 0.445147 0.445147i
\(288\) −8.48940 + 22.7619i −0.500243 + 1.34126i
\(289\) 12.3620i 0.727179i
\(290\) −19.0909 + 29.3752i −1.12106 + 1.72497i
\(291\) −12.1893 + 18.9673i −0.714552 + 1.11188i
\(292\) −14.8372 14.8372i −0.868282 0.868282i
\(293\) 4.98025 + 4.98025i 0.290949 + 0.290949i 0.837455 0.546506i \(-0.184042\pi\)
−0.546506 + 0.837455i \(0.684042\pi\)
\(294\) 7.54895 11.7466i 0.440264 0.685074i
\(295\) 11.7556 2.49449i 0.684438 0.145235i
\(296\) 0.750719i 0.0436347i
\(297\) −1.46235 + 1.09475i −0.0848542 + 0.0635238i
\(298\) 3.30017 3.30017i 0.191174 0.191174i
\(299\) −1.40251 −0.0811092
\(300\) 14.9306 10.9410i 0.862021 0.631679i
\(301\) 0.557197 0.0321163
\(302\) 15.8520 15.8520i 0.912181 0.912181i
\(303\) −9.08180 + 1.97569i −0.521736 + 0.113500i
\(304\) 3.70637i 0.212575i
\(305\) 24.2057 5.13634i 1.38601 0.294106i
\(306\) −5.45937 11.9539i −0.312091 0.683360i
\(307\) 16.4404 + 16.4404i 0.938304 + 0.938304i 0.998204 0.0599002i \(-0.0190782\pi\)
−0.0599002 + 0.998204i \(0.519078\pi\)
\(308\) 0.925888 + 0.925888i 0.0527574 + 0.0527574i
\(309\) 1.36345 + 0.876222i 0.0775638 + 0.0498465i
\(310\) −10.4705 + 16.1109i −0.594682 + 0.915037i
\(311\) 16.5978i 0.941176i −0.882353 0.470588i \(-0.844042\pi\)
0.882353 0.470588i \(-0.155958\pi\)
\(312\) −0.0263877 0.121299i −0.00149391 0.00686718i
\(313\) −4.89675 + 4.89675i −0.276781 + 0.276781i −0.831822 0.555042i \(-0.812702\pi\)
0.555042 + 0.831822i \(0.312702\pi\)
\(314\) −38.0817 −2.14908
\(315\) 11.5622 + 1.72252i 0.651454 + 0.0970532i
\(316\) −8.10026 −0.455675
\(317\) −20.4161 + 20.4161i −1.14668 + 1.14668i −0.159480 + 0.987201i \(0.550982\pi\)
−0.987201 + 0.159480i \(0.949018\pi\)
\(318\) −2.58107 11.8646i −0.144739 0.665333i
\(319\) 2.70790i 0.151613i
\(320\) −4.20458 19.8147i −0.235043 1.10767i
\(321\) 6.15082 + 3.95283i 0.343305 + 0.220626i
\(322\) 13.7057 + 13.7057i 0.763786 + 0.763786i
\(323\) −1.52282 1.52282i −0.0847319 0.0847319i
\(324\) −14.5382 12.5968i −0.807681 0.699821i
\(325\) 0.460398 1.19690i 0.0255383 0.0663923i
\(326\) 12.0436i 0.667035i
\(327\) −26.0044 + 5.65710i −1.43805 + 0.312838i
\(328\) 1.20928 1.20928i 0.0667714 0.0667714i
\(329\) 20.2045 1.11391
\(330\) 0.981058 2.58991i 0.0540055 0.142570i
\(331\) 16.2044 0.890676 0.445338 0.895363i \(-0.353084\pi\)
0.445338 + 0.895363i \(0.353084\pi\)
\(332\) −15.3787 + 15.3787i −0.844018 + 0.844018i
\(333\) −7.55152 2.81646i −0.413821 0.154341i
\(334\) 26.7795i 1.46531i
\(335\) −13.7463 8.93367i −0.751038 0.488099i
\(336\) 6.04802 9.41104i 0.329946 0.513414i
\(337\) −10.6952 10.6952i −0.582603 0.582603i 0.353015 0.935618i \(-0.385156\pi\)
−0.935618 + 0.353015i \(0.885156\pi\)
\(338\) 18.6032 + 18.6032i 1.01188 + 1.01188i
\(339\) 16.6843 25.9616i 0.906164 1.41004i
\(340\) 8.63026 + 5.60880i 0.468041 + 0.304180i
\(341\) 1.48515i 0.0804255i
\(342\) −5.71745 2.13241i −0.309164 0.115308i
\(343\) −13.5091 + 13.5091i −0.729423 + 0.729423i
\(344\) 0.0893495 0.00481740
\(345\) 7.50226 19.8053i 0.403908 1.06628i
\(346\) 15.0672 0.810020
\(347\) −8.24391 + 8.24391i −0.442556 + 0.442556i −0.892870 0.450314i \(-0.851312\pi\)
0.450314 + 0.892870i \(0.351312\pi\)
\(348\) −27.8638 + 6.06160i −1.49366 + 0.324936i
\(349\) 13.0746i 0.699868i −0.936774 0.349934i \(-0.886204\pi\)
0.936774 0.349934i \(-0.113796\pi\)
\(350\) −16.1956 + 7.19732i −0.865689 + 0.384713i
\(351\) −1.31915 0.189637i −0.0704108 0.0101221i
\(352\) −2.01301 2.01301i −0.107294 0.107294i
\(353\) −3.33449 3.33449i −0.177477 0.177477i 0.612778 0.790255i \(-0.290052\pi\)
−0.790255 + 0.612778i \(0.790052\pi\)
\(354\) 15.9285 + 10.2365i 0.846592 + 0.544064i
\(355\) 6.95854 + 32.7930i 0.369321 + 1.74047i
\(356\) 38.3260i 2.03127i
\(357\) 1.38175 + 6.35159i 0.0731299 + 0.336162i
\(358\) 5.33868 5.33868i 0.282158 0.282158i
\(359\) −31.8869 −1.68292 −0.841462 0.540316i \(-0.818305\pi\)
−0.841462 + 0.540316i \(0.818305\pi\)
\(360\) 1.85405 + 0.276216i 0.0977172 + 0.0145578i
\(361\) −1.00000 −0.0526316
\(362\) 27.6511 27.6511i 1.45331 1.45331i
\(363\) 4.00453 + 18.4079i 0.210184 + 0.966167i
\(364\) 0.955287i 0.0500706i
\(365\) 11.9622 18.4062i 0.626129 0.963426i
\(366\) 32.7981 + 21.0777i 1.71438 + 1.10175i
\(367\) −0.808859 0.808859i −0.0422221 0.0422221i 0.685681 0.727903i \(-0.259505\pi\)
−0.727903 + 0.685681i \(0.759505\pi\)
\(368\) −14.3313 14.3313i −0.747072 0.747072i
\(369\) −7.62739 16.7011i −0.397066 0.869423i
\(370\) 11.9530 2.53638i 0.621409 0.131860i
\(371\) 6.00578i 0.311805i
\(372\) −15.2820 + 3.32450i −0.792333 + 0.172367i
\(373\) −17.3546 + 17.3546i −0.898586 + 0.898586i −0.995311 0.0967255i \(-0.969163\pi\)
0.0967255 + 0.995311i \(0.469163\pi\)
\(374\) 1.53999 0.0796311
\(375\) 14.4392 + 12.9039i 0.745636 + 0.666354i
\(376\) 3.23990 0.167085
\(377\) −1.39694 + 1.39694i −0.0719460 + 0.0719460i
\(378\) 11.0378 + 14.7442i 0.567725 + 0.758360i
\(379\) 5.07732i 0.260804i 0.991461 + 0.130402i \(0.0416269\pi\)
−0.991461 + 0.130402i \(0.958373\pi\)
\(380\) 4.67523 0.992062i 0.239834 0.0508917i
\(381\) 3.23756 5.03782i 0.165865 0.258095i
\(382\) 29.3405 + 29.3405i 1.50119 + 1.50119i
\(383\) 18.5033 + 18.5033i 0.945474 + 0.945474i 0.998588 0.0531142i \(-0.0169147\pi\)
−0.0531142 + 0.998588i \(0.516915\pi\)
\(384\) 2.08839 3.24965i 0.106573 0.165833i
\(385\) −0.746478 + 1.14861i −0.0380440 + 0.0585384i
\(386\) 21.7308i 1.10607i
\(387\) 0.335210 0.898771i 0.0170397 0.0456871i
\(388\) 19.6735 19.6735i 0.998771 0.998771i
\(389\) 2.18736 0.110903 0.0554517 0.998461i \(-0.482340\pi\)
0.0554517 + 0.998461i \(0.482340\pi\)
\(390\) 1.84218 0.829968i 0.0932822 0.0420271i
\(391\) 11.7765 0.595563
\(392\) −0.783118 + 0.783118i −0.0395534 + 0.0395534i
\(393\) 32.4050 7.04951i 1.63462 0.355601i
\(394\) 42.4403i 2.13811i
\(395\) −1.75904 8.28970i −0.0885067 0.417100i
\(396\) 2.05049 0.936463i 0.103041 0.0470590i
\(397\) 13.4240 + 13.4240i 0.673730 + 0.673730i 0.958574 0.284844i \(-0.0919418\pi\)
−0.284844 + 0.958574i \(0.591942\pi\)
\(398\) 6.57774 + 6.57774i 0.329712 + 0.329712i
\(399\) 2.53915 + 1.63179i 0.127117 + 0.0816917i
\(400\) 16.9349 7.52588i 0.846744 0.376294i
\(401\) 30.9472i 1.54543i 0.634753 + 0.772715i \(0.281102\pi\)
−0.634753 + 0.772715i \(0.718898\pi\)
\(402\) −5.49079 25.2399i −0.273855 1.25885i
\(403\) −0.766154 + 0.766154i −0.0381648 + 0.0381648i
\(404\) 11.4692 0.570614
\(405\) 9.73428 17.6137i 0.483700 0.875234i
\(406\) 27.3024 1.35500
\(407\) 0.667840 0.667840i 0.0331036 0.0331036i
\(408\) 0.221571 + 1.01851i 0.0109694 + 0.0504238i
\(409\) 19.3750i 0.958034i −0.877806 0.479017i \(-0.840993\pi\)
0.877806 0.479017i \(-0.159007\pi\)
\(410\) 23.3400 + 15.1687i 1.15268 + 0.749127i
\(411\) 8.02459 + 5.15702i 0.395824 + 0.254377i
\(412\) −1.41422 1.41422i −0.0696734 0.0696734i
\(413\) −6.62229 6.62229i −0.325862 0.325862i
\(414\) 30.3529 13.8622i 1.49176 0.681289i
\(415\) −19.0780 12.3988i −0.936503 0.608632i
\(416\) 2.07693i 0.101830i
\(417\) 3.34737 0.728198i 0.163921 0.0356600i
\(418\) 0.505639 0.505639i 0.0247316 0.0247316i
\(419\) 1.26019 0.0615642 0.0307821 0.999526i \(-0.490200\pi\)
0.0307821 + 0.999526i \(0.490200\pi\)
\(420\) −13.4900 5.10999i −0.658243 0.249342i
\(421\) −28.0921 −1.36912 −0.684562 0.728955i \(-0.740006\pi\)
−0.684562 + 0.728955i \(0.740006\pi\)
\(422\) −24.5431 + 24.5431i −1.19474 + 1.19474i
\(423\) 12.1550 32.5903i 0.590999 1.58459i
\(424\) 0.963059i 0.0467703i
\(425\) −3.86584 + 10.0501i −0.187521 + 0.487501i
\(426\) −28.5554 + 44.4337i −1.38351 + 2.15282i
\(427\) −13.6358 13.6358i −0.659882 0.659882i
\(428\) −6.37985 6.37985i −0.308381 0.308381i
\(429\) 0.0844326 0.131382i 0.00407645 0.00634317i
\(430\) 0.301876 + 1.42263i 0.0145578 + 0.0686055i
\(431\) 21.6156i 1.04118i −0.853805 0.520592i \(-0.825711\pi\)
0.853805 0.520592i \(-0.174289\pi\)
\(432\) −11.5417 15.4173i −0.555301 0.741764i
\(433\) 10.9345 10.9345i 0.525478 0.525478i −0.393743 0.919221i \(-0.628820\pi\)
0.919221 + 0.393743i \(0.128820\pi\)
\(434\) 14.9741 0.718779
\(435\) −12.2542 27.1991i −0.587545 1.30410i
\(436\) 32.8404 1.57277
\(437\) 3.86668 3.86668i 0.184968 0.184968i
\(438\) 33.7962 7.35216i 1.61485 0.351300i
\(439\) 26.4490i 1.26234i −0.775644 0.631171i \(-0.782575\pi\)
0.775644 0.631171i \(-0.217425\pi\)
\(440\) −0.119702 + 0.184185i −0.00570655 + 0.00878068i
\(441\) 4.93941 + 10.8154i 0.235210 + 0.515020i
\(442\) 0.794445 + 0.794445i 0.0377879 + 0.0377879i
\(443\) 6.49327 + 6.49327i 0.308505 + 0.308505i 0.844329 0.535825i \(-0.179999\pi\)
−0.535825 + 0.844329i \(0.679999\pi\)
\(444\) 8.36692 + 5.37701i 0.397077 + 0.255182i
\(445\) 39.2223 8.32280i 1.85932 0.394539i
\(446\) 46.4620i 2.20004i
\(447\) 0.844803 + 3.88337i 0.0399578 + 0.183677i
\(448\) −11.1622 + 11.1622i −0.527365 + 0.527365i
\(449\) −22.4309 −1.05858 −0.529289 0.848442i \(-0.677541\pi\)
−0.529289 + 0.848442i \(0.677541\pi\)
\(450\) 1.86617 + 30.4537i 0.0879721 + 1.43560i
\(451\) 2.15155 0.101313
\(452\) −26.9283 + 26.9283i −1.26660 + 1.26660i
\(453\) 4.05792 + 18.6533i 0.190658 + 0.876410i
\(454\) 26.1149i 1.22563i
\(455\) −0.977628 + 0.207448i −0.0458319 + 0.00972532i
\(456\) 0.407167 + 0.261666i 0.0190673 + 0.0122536i
\(457\) −21.2398 21.2398i −0.993558 0.993558i 0.00642148 0.999979i \(-0.497956\pi\)
−0.999979 + 0.00642148i \(0.997956\pi\)
\(458\) −19.1837 19.1837i −0.896396 0.896396i
\(459\) 11.0765 + 1.59233i 0.517008 + 0.0743238i
\(460\) −14.2416 + 21.9136i −0.664018 + 1.02173i
\(461\) 22.1774i 1.03290i −0.856316 0.516452i \(-0.827252\pi\)
0.856316 0.516452i \(-0.172748\pi\)
\(462\) −2.10899 + 0.458798i −0.0981191 + 0.0213452i
\(463\) −4.37335 + 4.37335i −0.203247 + 0.203247i −0.801390 0.598143i \(-0.795906\pi\)
0.598143 + 0.801390i \(0.295906\pi\)
\(464\) −28.5488 −1.32535
\(465\) −6.72085 14.9174i −0.311672 0.691779i
\(466\) −13.3786 −0.619753
\(467\) −4.51110 + 4.51110i −0.208749 + 0.208749i −0.803736 0.594987i \(-0.797157\pi\)
0.594987 + 0.803736i \(0.297157\pi\)
\(468\) 1.54090 + 0.574702i 0.0712281 + 0.0265656i
\(469\) 12.7763i 0.589954i
\(470\) 10.9463 + 51.5861i 0.504916 + 2.37949i
\(471\) 17.5315 27.2799i 0.807808 1.25699i
\(472\) −1.06192 1.06192i −0.0488788 0.0488788i
\(473\) 0.0794853 + 0.0794853i 0.00365474 + 0.00365474i
\(474\) 7.21846 11.2323i 0.331555 0.515917i
\(475\) 2.03053 + 4.56913i 0.0931669 + 0.209646i
\(476\) 8.02129i 0.367655i
\(477\) 9.68746 + 3.61309i 0.443558 + 0.165432i
\(478\) −0.223349 + 0.223349i −0.0102157 + 0.0102157i
\(479\) −26.1450 −1.19460 −0.597298 0.802019i \(-0.703759\pi\)
−0.597298 + 0.802019i \(0.703759\pi\)
\(480\) 29.3291 + 11.1098i 1.33868 + 0.507093i
\(481\) 0.689045 0.0314177
\(482\) 14.3348 14.3348i 0.652932 0.652932i
\(483\) −16.1277 + 3.50848i −0.733835 + 0.159641i
\(484\) 23.2470i 1.05668i
\(485\) 24.4059 + 15.8614i 1.10821 + 0.720227i
\(486\) 30.4231 8.93414i 1.38002 0.405261i
\(487\) 9.76706 + 9.76706i 0.442588 + 0.442588i 0.892881 0.450293i \(-0.148681\pi\)
−0.450293 + 0.892881i \(0.648681\pi\)
\(488\) −2.18657 2.18657i −0.0989815 0.0989815i
\(489\) 8.62749 + 5.54447i 0.390148 + 0.250729i
\(490\) −15.1147 9.82306i −0.682815 0.443760i
\(491\) 27.5380i 1.24277i −0.783505 0.621385i \(-0.786570\pi\)
0.783505 0.621385i \(-0.213430\pi\)
\(492\) 4.81624 + 22.1392i 0.217133 + 0.998110i
\(493\) 11.7297 11.7297i 0.528280 0.528280i
\(494\) 0.521694 0.0234721
\(495\) 1.40364 + 1.89509i 0.0630891 + 0.0851778i
\(496\) −15.6577 −0.703050
\(497\) 18.4733 18.4733i 0.828642 0.828642i
\(498\) −7.62050 35.0297i −0.341483 1.56972i
\(499\) 6.35894i 0.284665i 0.989819 + 0.142333i \(0.0454603\pi\)
−0.989819 + 0.142333i \(0.954540\pi\)
\(500\) −14.0260 19.3473i −0.627263 0.865239i
\(501\) −19.1836 12.3283i −0.857058 0.550790i
\(502\) 32.4789 + 32.4789i 1.44960 + 1.44960i
\(503\) −2.78468 2.78468i −0.124163 0.124163i 0.642295 0.766458i \(-0.277982\pi\)
−0.766458 + 0.642295i \(0.777982\pi\)
\(504\) −0.606874 1.32882i −0.0270323 0.0591904i
\(505\) 2.49063 + 11.7374i 0.110832 + 0.522309i
\(506\) 3.91028i 0.173833i
\(507\) −21.8907 + 4.76219i −0.972201 + 0.211496i
\(508\) −5.22540 + 5.22540i −0.231840 + 0.231840i
\(509\) 6.95758 0.308389 0.154195 0.988040i \(-0.450722\pi\)
0.154195 + 0.988040i \(0.450722\pi\)
\(510\) −15.4683 + 6.96903i −0.684947 + 0.308594i
\(511\) −17.1074 −0.756789
\(512\) 22.6875 22.6875i 1.00265 1.00265i
\(513\) 4.15967 3.11402i 0.183654 0.137487i
\(514\) 8.51186i 0.375442i
\(515\) 1.14018 1.75440i 0.0502424 0.0773080i
\(516\) −0.639964 + 0.995819i −0.0281729 + 0.0438385i
\(517\) 2.88221 + 2.88221i 0.126760 + 0.126760i
\(518\) −6.73352 6.73352i −0.295854 0.295854i
\(519\) −6.93643 + 10.7935i −0.304476 + 0.473780i
\(520\) −0.156768 + 0.0332654i −0.00687472 + 0.00145879i
\(521\) 7.42589i 0.325334i 0.986681 + 0.162667i \(0.0520097\pi\)
−0.986681 + 0.162667i \(0.947990\pi\)
\(522\) 16.4252 44.0394i 0.718911 1.92755i
\(523\) 6.92192 6.92192i 0.302674 0.302674i −0.539385 0.842059i \(-0.681343\pi\)
0.842059 + 0.539385i \(0.181343\pi\)
\(524\) −40.9236 −1.78776
\(525\) 2.30005 14.9151i 0.100382 0.650949i
\(526\) −10.1512 −0.442614
\(527\) 6.43319 6.43319i 0.280234 0.280234i
\(528\) 2.20527 0.479742i 0.0959719 0.0208781i
\(529\) 6.90235i 0.300102i
\(530\) −15.3339 + 3.25379i −0.666064 + 0.141336i
\(531\) −14.6659 + 6.69792i −0.636445 + 0.290665i
\(532\) −2.63370 2.63370i −0.114185 0.114185i
\(533\) 1.10994 + 1.10994i 0.0480766 + 0.0480766i
\(534\) 53.1452 + 34.1538i 2.29982 + 1.47798i
\(535\) 5.14361 7.91448i 0.222378 0.342173i
\(536\) 2.04875i 0.0884924i
\(537\) 1.36664 + 6.28212i 0.0589747 + 0.271093i
\(538\) −21.9553 + 21.9553i −0.946558 + 0.946558i
\(539\) −1.39332 −0.0600147
\(540\) −16.3581 + 18.6854i −0.703941 + 0.804092i
\(541\) −17.3801 −0.747227 −0.373613 0.927585i \(-0.621881\pi\)
−0.373613 + 0.927585i \(0.621881\pi\)
\(542\) −41.8888 + 41.8888i −1.79928 + 1.79928i
\(543\) 7.07833 + 32.5375i 0.303760 + 1.39632i
\(544\) 17.4394i 0.747709i
\(545\) 7.13156 + 33.6085i 0.305483 + 1.43963i
\(546\) −1.32466 0.851294i −0.0566902 0.0364320i
\(547\) 21.5791 + 21.5791i 0.922657 + 0.922657i 0.997217 0.0745593i \(-0.0237550\pi\)
−0.0745593 + 0.997217i \(0.523755\pi\)
\(548\) −8.32339 8.32339i −0.355557 0.355557i
\(549\) −30.1982 + 13.7915i −1.28883 + 0.588608i
\(550\) −3.33704 1.28362i −0.142292 0.0547336i
\(551\) 7.70264i 0.328143i
\(552\) −2.58616 + 0.562603i −0.110074 + 0.0239460i
\(553\) −4.66984 + 4.66984i −0.198582 + 0.198582i
\(554\) −22.7063 −0.964697
\(555\) −3.68582 + 9.73026i −0.156454 + 0.413026i
\(556\) −4.22732 −0.179278
\(557\) 25.3668 25.3668i 1.07483 1.07483i 0.0778623 0.996964i \(-0.475191\pi\)
0.996964 0.0778623i \(-0.0248094\pi\)
\(558\) 9.00843 24.1535i 0.381357 1.02250i
\(559\) 0.0820091i 0.00346862i
\(560\) −12.1095 7.86997i −0.511721 0.332567i
\(561\) −0.708959 + 1.10318i −0.0299323 + 0.0465762i
\(562\) −14.8674 14.8674i −0.627144 0.627144i
\(563\) 11.4312 + 11.4312i 0.481769 + 0.481769i 0.905696 0.423927i \(-0.139349\pi\)
−0.423927 + 0.905696i \(0.639349\pi\)
\(564\) −23.2057 + 36.1093i −0.977137 + 1.52048i
\(565\) −33.4057 21.7103i −1.40539 0.913361i
\(566\) 51.6526i 2.17112i
\(567\) −15.6435 + 1.11927i −0.656964 + 0.0470049i
\(568\) 2.96230 2.96230i 0.124295 0.124295i
\(569\) 8.91564 0.373763 0.186881 0.982382i \(-0.440162\pi\)
0.186881 + 0.982382i \(0.440162\pi\)
\(570\) −2.79063 + 7.36703i −0.116887 + 0.308571i
\(571\) −22.9887 −0.962047 −0.481024 0.876708i \(-0.659735\pi\)
−0.481024 + 0.876708i \(0.659735\pi\)
\(572\) −0.136274 + 0.136274i −0.00569789 + 0.00569789i
\(573\) −34.5255 + 7.51080i −1.44232 + 0.313768i
\(574\) 21.6931i 0.905453i
\(575\) −25.5187 9.81596i −1.06420 0.409354i
\(576\) 11.2897 + 24.7201i 0.470404 + 1.03000i
\(577\) −31.8440 31.8440i −1.32568 1.32568i −0.909096 0.416588i \(-0.863226\pi\)
−0.416588 0.909096i \(-0.636774\pi\)
\(578\) 17.7803 + 17.7803i 0.739561 + 0.739561i
\(579\) 15.5669 + 10.0041i 0.646937 + 0.415755i
\(580\) 7.64150 + 36.0116i 0.317296 + 1.49530i
\(581\) 17.7318i 0.735640i
\(582\) 9.74865 + 44.8124i 0.404095 + 1.85753i
\(583\) −0.856737 + 0.856737i −0.0354824 + 0.0354824i
\(584\) −2.74327 −0.113517
\(585\) −0.253524 + 1.70174i −0.0104819 + 0.0703581i
\(586\) 14.3261 0.591806
\(587\) 16.9188 16.9188i 0.698316 0.698316i −0.265731 0.964047i \(-0.585613\pi\)
0.964047 + 0.265731i \(0.0856134\pi\)
\(588\) −3.11894 14.3371i −0.128623 0.591251i
\(589\) 4.22453i 0.174069i
\(590\) 13.3202 20.4958i 0.548385 0.843800i
\(591\) −30.4022 19.5380i −1.25058 0.803686i
\(592\) 7.04090 + 7.04090i 0.289379 + 0.289379i
\(593\) −19.8094 19.8094i −0.813476 0.813476i 0.171678 0.985153i \(-0.445081\pi\)
−0.985153 + 0.171678i \(0.945081\pi\)
\(594\) −0.528720 + 3.67786i −0.0216937 + 0.150904i
\(595\) 8.20888 1.74189i 0.336531 0.0714104i
\(596\) 4.90423i 0.200885i
\(597\) −7.74014 + 1.68382i −0.316783 + 0.0689141i
\(598\) −2.01722 + 2.01722i −0.0824902 + 0.0824902i
\(599\) −12.7792 −0.522146 −0.261073 0.965319i \(-0.584076\pi\)
−0.261073 + 0.965319i \(0.584076\pi\)
\(600\) 0.368825 2.39172i 0.0150572 0.0976415i
\(601\) −13.9217 −0.567877 −0.283939 0.958842i \(-0.591641\pi\)
−0.283939 + 0.958842i \(0.591641\pi\)
\(602\) 0.801413 0.801413i 0.0326632 0.0326632i
\(603\) 20.6084 + 7.68623i 0.839240 + 0.313008i
\(604\) 23.5569i 0.958517i
\(605\) 23.7907 5.04827i 0.967229 0.205242i
\(606\) −10.2207 + 15.9039i −0.415186 + 0.646052i
\(607\) −17.6172 17.6172i −0.715059 0.715059i 0.252530 0.967589i \(-0.418737\pi\)
−0.967589 + 0.252530i \(0.918737\pi\)
\(608\) 5.72603 + 5.72603i 0.232221 + 0.232221i
\(609\) −12.5691 + 19.5582i −0.509325 + 0.792537i
\(610\) 27.4273 42.2024i 1.11050 1.70873i
\(611\) 2.97373i 0.120304i
\(612\) −12.9385 4.82562i −0.523009 0.195064i
\(613\) −1.69012 + 1.69012i −0.0682631 + 0.0682631i −0.740414 0.672151i \(-0.765371\pi\)
0.672151 + 0.740414i \(0.265371\pi\)
\(614\) 47.2923 1.90856
\(615\) −21.6110 + 9.73657i −0.871441 + 0.392616i
\(616\) 0.171189 0.00689739
\(617\) 20.3235 20.3235i 0.818194 0.818194i −0.167652 0.985846i \(-0.553618\pi\)
0.985846 + 0.167652i \(0.0536185\pi\)
\(618\) 3.22130 0.700774i 0.129580 0.0281893i
\(619\) 13.6102i 0.547040i 0.961866 + 0.273520i \(0.0881879\pi\)
−0.961866 + 0.273520i \(0.911812\pi\)
\(620\) 4.19099 + 19.7506i 0.168314 + 0.793204i
\(621\) −4.04318 + 28.1250i −0.162247 + 1.12862i
\(622\) −23.8726 23.8726i −0.957202 0.957202i
\(623\) −22.0951 22.0951i −0.885223 0.885223i
\(624\) 1.38513 + 0.890157i 0.0554496 + 0.0356348i
\(625\) 16.7539 18.5555i 0.670157 0.742219i
\(626\) 14.0859i 0.562987i
\(627\) 0.129437 + 0.594994i 0.00516922 + 0.0237618i
\(628\) −28.2957 + 28.2957i −1.12912 + 1.12912i
\(629\) −5.78573 −0.230692
\(630\) 19.1073 14.1523i 0.761252 0.563841i
\(631\) 34.9196 1.39013 0.695064 0.718948i \(-0.255376\pi\)
0.695064 + 0.718948i \(0.255376\pi\)
\(632\) −0.748833 + 0.748833i −0.0297870 + 0.0297870i
\(633\) −6.28274 28.8804i −0.249717 1.14789i
\(634\) 58.7286i 2.33241i
\(635\) −6.48234 4.21287i −0.257244 0.167183i
\(636\) −10.7335 6.89789i −0.425611 0.273519i
\(637\) −0.718782 0.718782i −0.0284792 0.0284792i
\(638\) 3.89475 + 3.89475i 0.154195 + 0.154195i
\(639\) −18.6843 40.9114i −0.739140 1.61843i
\(640\) −4.18144 2.71751i −0.165286 0.107419i
\(641\) 6.39096i 0.252428i 0.992003 + 0.126214i \(0.0402825\pi\)
−0.992003 + 0.126214i \(0.959717\pi\)
\(642\) 14.5320 3.16135i 0.573533 0.124769i
\(643\) 27.3839 27.3839i 1.07991 1.07991i 0.0833979 0.996516i \(-0.473423\pi\)
0.996516 0.0833979i \(-0.0265773\pi\)
\(644\) 20.3673 0.802584
\(645\) −1.15808 0.438681i −0.0455994 0.0172730i
\(646\) −4.38052 −0.172349
\(647\) 11.9850 11.9850i 0.471178 0.471178i −0.431118 0.902296i \(-0.641881\pi\)
0.902296 + 0.431118i \(0.141881\pi\)
\(648\) −2.50851 + 0.179481i −0.0985437 + 0.00705067i
\(649\) 1.88937i 0.0741642i
\(650\) −1.05931 2.38369i −0.0415497 0.0934959i
\(651\) −6.89354 + 10.7267i −0.270179 + 0.420413i
\(652\) −8.94873 8.94873i −0.350459 0.350459i
\(653\) 2.46174 + 2.46174i 0.0963354 + 0.0963354i 0.753632 0.657297i \(-0.228300\pi\)
−0.657297 + 0.753632i \(0.728300\pi\)
\(654\) −29.2654 + 45.5386i −1.14437 + 1.78070i
\(655\) −8.88689 41.8807i −0.347239 1.63641i
\(656\) 22.6834i 0.885639i
\(657\) −10.2919 + 27.5947i −0.401524 + 1.07657i
\(658\) 29.0600 29.0600i 1.13288 1.13288i
\(659\) −2.59567 −0.101113 −0.0505565 0.998721i \(-0.516099\pi\)
−0.0505565 + 0.998721i \(0.516099\pi\)
\(660\) −1.19542 2.65332i −0.0465316 0.103280i
\(661\) 36.7087 1.42780 0.713901 0.700246i \(-0.246926\pi\)
0.713901 + 0.700246i \(0.246926\pi\)
\(662\) 23.3067 23.3067i 0.905842 0.905842i
\(663\) −0.934837 + 0.203368i −0.0363061 + 0.00789816i
\(664\) 2.84339i 0.110345i
\(665\) 2.12336 3.26722i 0.0823405 0.126697i
\(666\) −14.9122 + 6.81042i −0.577836 + 0.263898i
\(667\) 29.7836 + 29.7836i 1.15323 + 1.15323i
\(668\) 19.8979 + 19.8979i 0.769871 + 0.769871i
\(669\) 33.2832 + 21.3895i 1.28680 + 0.826965i
\(670\) −32.6204 + 6.92190i −1.26024 + 0.267416i
\(671\) 3.89035i 0.150185i
\(672\) −5.19559 23.8830i −0.200424 0.921305i
\(673\) −28.8563 + 28.8563i −1.11233 + 1.11233i −0.119492 + 0.992835i \(0.538126\pi\)
−0.992835 + 0.119492i \(0.961874\pi\)
\(674\) −30.7656 −1.18505
\(675\) −22.6747 12.6830i −0.872750 0.488168i
\(676\) 27.6453 1.06328
\(677\) −0.0608639 + 0.0608639i −0.00233919 + 0.00233919i −0.708275 0.705936i \(-0.750527\pi\)
0.705936 + 0.708275i \(0.250527\pi\)
\(678\) −13.3435 61.3373i −0.512455 2.35564i
\(679\) 22.6838i 0.870523i
\(680\) 1.31634 0.279321i 0.0504793 0.0107115i
\(681\) 18.7075 + 12.0224i 0.716871 + 0.460698i
\(682\) 2.13608 + 2.13608i 0.0817949 + 0.0817949i
\(683\) −10.7495 10.7495i −0.411318 0.411318i 0.470880 0.882197i \(-0.343937\pi\)
−0.882197 + 0.470880i \(0.843937\pi\)
\(684\) −5.83265 + 2.66378i −0.223017 + 0.101852i
\(685\) 6.71055 10.3255i 0.256397 0.394518i
\(686\) 38.8601i 1.48369i
\(687\) 22.5738 4.91079i 0.861244 0.187358i
\(688\) −0.837998 + 0.837998i −0.0319484 + 0.0319484i
\(689\) −0.883940 −0.0336754
\(690\) −17.6954 39.2764i −0.673654 1.49523i
\(691\) −33.1265 −1.26019 −0.630096 0.776517i \(-0.716984\pi\)
−0.630096 + 0.776517i \(0.716984\pi\)
\(692\) 11.1954 11.1954i 0.425583 0.425583i
\(693\) 0.642244 1.72199i 0.0243968 0.0654132i
\(694\) 23.7143i 0.900183i
\(695\) −0.917996 4.32618i −0.0348216 0.164101i
\(696\) −2.01552 + 3.13626i −0.0763981 + 0.118880i
\(697\) −9.31983 9.31983i −0.353014 0.353014i
\(698\) −18.8051 18.8051i −0.711785 0.711785i
\(699\) 6.15905 9.58381i 0.232957 0.362493i
\(700\) −6.68592 + 17.3815i −0.252704 + 0.656959i
\(701\) 43.1763i 1.63075i 0.578936 + 0.815373i \(0.303468\pi\)
−0.578936 + 0.815373i \(0.696532\pi\)
\(702\) −2.17007 + 1.62457i −0.0819041 + 0.0613153i
\(703\) −1.89968 + 1.89968i −0.0716477 + 0.0716477i
\(704\) −3.18462 −0.120025
\(705\) −41.9931 15.9070i −1.58155 0.599092i
\(706\) −9.59196 −0.360998
\(707\) 6.61205 6.61205i 0.248672 0.248672i
\(708\) 19.4413 4.22933i 0.730649 0.158948i
\(709\) 40.3912i 1.51692i −0.651718 0.758462i \(-0.725951\pi\)
0.651718 0.758462i \(-0.274049\pi\)
\(710\) 57.1745 + 37.1576i 2.14572 + 1.39450i
\(711\) 4.72317 + 10.3419i 0.177133 + 0.387853i
\(712\) −3.54307 3.54307i −0.132782 0.132782i
\(713\) 16.3349 + 16.3349i 0.611746 + 0.611746i
\(714\) 11.1228 + 7.14810i 0.416261 + 0.267511i
\(715\) −0.169054 0.109868i −0.00632225 0.00410882i
\(716\) 7.93355i 0.296491i
\(717\) −0.0571745 0.262818i −0.00213522 0.00981514i
\(718\) −45.8627 + 45.8627i −1.71158 + 1.71158i
\(719\) 42.5949 1.58852 0.794260 0.607578i \(-0.207859\pi\)
0.794260 + 0.607578i \(0.207859\pi\)
\(720\) −19.9795 + 14.7983i −0.744593 + 0.551502i
\(721\) −1.63060 −0.0607269
\(722\) −1.43829 + 1.43829i −0.0535278 + 0.0535278i
\(723\) 3.66953 + 16.8680i 0.136471 + 0.627328i
\(724\) 41.0909i 1.52713i
\(725\) −35.1944 + 15.6404i −1.30709 + 0.580870i
\(726\) 32.2357 + 20.7163i 1.19638 + 0.768856i
\(727\) 7.35183 + 7.35183i 0.272664 + 0.272664i 0.830172 0.557508i \(-0.188242\pi\)
−0.557508 + 0.830172i \(0.688242\pi\)
\(728\) 0.0883121 + 0.0883121i 0.00327306 + 0.00327306i
\(729\) −7.60573 + 25.9066i −0.281694 + 0.959504i
\(730\) −9.26842 43.6787i −0.343040 1.61662i
\(731\) 0.688609i 0.0254691i
\(732\) 40.0311 8.70851i 1.47959 0.321876i
\(733\) 7.73048 7.73048i 0.285532 0.285532i −0.549779 0.835310i \(-0.685288\pi\)
0.835310 + 0.549779i \(0.185288\pi\)
\(734\) −2.32675 −0.0858820
\(735\) 13.9951 6.30529i 0.516216 0.232574i
\(736\) −44.2814 −1.63223
\(737\) −1.82256 + 1.82256i −0.0671350 + 0.0671350i
\(738\) −34.9915 13.0506i −1.28805 0.480399i
\(739\) 12.4469i 0.457867i −0.973442 0.228933i \(-0.926476\pi\)
0.973442 0.228933i \(-0.0735238\pi\)
\(740\) 6.99682 10.7660i 0.257208 0.395767i
\(741\) −0.240169 + 0.373716i −0.00882284 + 0.0137288i
\(742\) 8.63808 + 8.63808i 0.317114 + 0.317114i
\(743\) −17.3581 17.3581i −0.636808 0.636808i 0.312959 0.949767i \(-0.398680\pi\)
−0.949767 + 0.312959i \(0.898680\pi\)
\(744\) −1.10542 + 1.72009i −0.0405265 + 0.0630614i
\(745\) 5.01892 1.06499i 0.183879 0.0390183i
\(746\) 49.9219i 1.82777i
\(747\) 28.6018 + 10.6675i 1.04649 + 0.390303i
\(748\) 1.14425 1.14425i 0.0418381 0.0418381i
\(749\) −7.35602 −0.268783
\(750\) 39.3274 2.20819i 1.43603 0.0806318i
\(751\) 40.3009 1.47060 0.735300 0.677742i \(-0.237041\pi\)
0.735300 + 0.677742i \(0.237041\pi\)
\(752\) −30.3866 + 30.3866i −1.10809 + 1.10809i
\(753\) −38.2185 + 8.31419i −1.39276 + 0.302986i
\(754\) 4.01842i 0.146342i
\(755\) 24.1078 5.11557i 0.877374 0.186175i
\(756\) 19.1567 + 2.75392i 0.696723 + 0.100159i
\(757\) 9.15343 + 9.15343i 0.332687 + 0.332687i 0.853606 0.520919i \(-0.174411\pi\)
−0.520919 + 0.853606i \(0.674411\pi\)
\(758\) 7.30268 + 7.30268i 0.265245 + 0.265245i
\(759\) −2.80114 1.80016i −0.101675 0.0653415i
\(760\) 0.340492 0.523916i 0.0123510 0.0190044i
\(761\) 9.34990i 0.338934i 0.985536 + 0.169467i \(0.0542045\pi\)
−0.985536 + 0.169467i \(0.945795\pi\)
\(762\) −2.58930 11.9024i −0.0938004 0.431180i
\(763\) 18.9327 18.9327i 0.685409 0.685409i
\(764\) 43.6015 1.57745
\(765\) 2.12877 14.2890i 0.0769659 0.516621i
\(766\) 53.2264 1.92315
\(767\) 0.974679 0.974679i 0.0351936 0.0351936i
\(768\) 5.00033 + 22.9854i 0.180434 + 0.829413i
\(769\) 50.7849i 1.83135i 0.401918 + 0.915676i \(0.368344\pi\)
−0.401918 + 0.915676i \(0.631656\pi\)
\(770\) 0.578378 + 2.72569i 0.0208433 + 0.0982269i
\(771\) 6.09749 + 3.91856i 0.219596 + <