Properties

Label 285.2.k.d.77.12
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.12
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.d.248.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.631220 - 0.631220i) q^{2} +(-0.998873 + 1.41501i) q^{3} +1.20312i q^{4} +(-1.34140 + 1.78903i) q^{5} +(0.262674 + 1.52369i) q^{6} +(-3.10938 - 3.10938i) q^{7} +(2.02187 + 2.02187i) q^{8} +(-1.00451 - 2.82683i) q^{9} +O(q^{10})\) \(q+(0.631220 - 0.631220i) q^{2} +(-0.998873 + 1.41501i) q^{3} +1.20312i q^{4} +(-1.34140 + 1.78903i) q^{5} +(0.262674 + 1.52369i) q^{6} +(-3.10938 - 3.10938i) q^{7} +(2.02187 + 2.02187i) q^{8} +(-1.00451 - 2.82683i) q^{9} +(0.282552 + 1.97599i) q^{10} +0.484934i q^{11} +(-1.70243 - 1.20177i) q^{12} +(-1.71998 + 1.71998i) q^{13} -3.92540 q^{14} +(-1.19161 - 3.68512i) q^{15} +0.146246 q^{16} +(-5.25692 + 5.25692i) q^{17} +(-2.41841 - 1.15029i) q^{18} +1.00000i q^{19} +(-2.15243 - 1.61387i) q^{20} +(7.50568 - 1.29393i) q^{21} +(0.306100 + 0.306100i) q^{22} +(2.66096 + 2.66096i) q^{23} +(-4.88057 + 0.841377i) q^{24} +(-1.40127 - 4.79963i) q^{25} +2.17137i q^{26} +(5.00337 + 1.40226i) q^{27} +(3.74097 - 3.74097i) q^{28} +6.46492 q^{29} +(-3.07828 - 1.57395i) q^{30} +3.84489 q^{31} +(-3.95144 + 3.95144i) q^{32} +(-0.686187 - 0.484388i) q^{33} +6.63654i q^{34} +(9.73372 - 1.39185i) q^{35} +(3.40103 - 1.20855i) q^{36} +(-1.24679 - 1.24679i) q^{37} +(0.631220 + 0.631220i) q^{38} +(-0.715749 - 4.15184i) q^{39} +(-6.32935 + 0.905048i) q^{40} +10.2468i q^{41} +(3.92098 - 5.55449i) q^{42} +(-1.78437 + 1.78437i) q^{43} -0.583436 q^{44} +(6.40474 + 1.99483i) q^{45} +3.35930 q^{46} +(4.00816 - 4.00816i) q^{47} +(-0.146081 + 0.206939i) q^{48} +12.3365i q^{49} +(-3.91413 - 2.14511i) q^{50} +(-2.18760 - 12.6896i) q^{51} +(-2.06935 - 2.06935i) q^{52} +(-2.13230 - 2.13230i) q^{53} +(4.04335 - 2.27309i) q^{54} +(-0.867563 - 0.650493i) q^{55} -12.5736i q^{56} +(-1.41501 - 0.998873i) q^{57} +(4.08078 - 4.08078i) q^{58} +4.08854 q^{59} +(4.43365 - 1.43365i) q^{60} -0.395747 q^{61} +(2.42697 - 2.42697i) q^{62} +(-5.66630 + 11.9131i) q^{63} +5.28094i q^{64} +(-0.769913 - 5.38430i) q^{65} +(-0.738890 + 0.127380i) q^{66} +(-0.787783 - 0.787783i) q^{67} +(-6.32472 - 6.32472i) q^{68} +(-6.42324 + 1.10732i) q^{69} +(5.26555 - 7.02267i) q^{70} +7.63110i q^{71} +(3.68451 - 7.74648i) q^{72} +(-0.661154 + 0.661154i) q^{73} -1.57399 q^{74} +(8.19121 + 2.81141i) q^{75} -1.20312 q^{76} +(1.50785 - 1.50785i) q^{77} +(-3.07252 - 2.16893i) q^{78} -7.50129i q^{79} +(-0.196174 + 0.261638i) q^{80} +(-6.98193 + 5.67914i) q^{81} +(6.46798 + 6.46798i) q^{82} +(6.64986 + 6.64986i) q^{83} +(1.55676 + 9.03026i) q^{84} +(-2.35314 - 16.4564i) q^{85} +2.25266i q^{86} +(-6.45763 + 9.14792i) q^{87} +(-0.980476 + 0.980476i) q^{88} -8.36904 q^{89} +(5.30197 - 2.78362i) q^{90} +10.6962 q^{91} +(-3.20146 + 3.20146i) q^{92} +(-3.84055 + 5.44056i) q^{93} -5.06005i q^{94} +(-1.78903 - 1.34140i) q^{95} +(-1.64434 - 9.53830i) q^{96} +(-7.06303 - 7.06303i) q^{97} +(7.78704 + 7.78704i) q^{98} +(1.37083 - 0.487120i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7} - 4 q^{10} - 18 q^{12} - 8 q^{13} - 8 q^{15} - 84 q^{16} + 8 q^{21} + 40 q^{22} - 20 q^{25} - 14 q^{27} + 36 q^{28} + 28 q^{30} - 28 q^{33} + 92 q^{36} - 4 q^{37} - 20 q^{40} - 100 q^{42} + 16 q^{43} + 28 q^{45} - 24 q^{46} - 58 q^{48} + 32 q^{51} + 148 q^{52} - 72 q^{55} - 2 q^{57} - 12 q^{58} + 58 q^{60} - 112 q^{61} - 64 q^{63} + 92 q^{66} - 8 q^{67} + 8 q^{70} - 88 q^{72} + 76 q^{73} + 80 q^{75} + 36 q^{76} - 36 q^{78} + 4 q^{81} + 20 q^{82} - 28 q^{85} - 4 q^{87} + 140 q^{88} + 76 q^{90} - 24 q^{91} - 48 q^{93} + 32 q^{96} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.631220 0.631220i 0.446340 0.446340i −0.447796 0.894136i \(-0.647791\pi\)
0.894136 + 0.447796i \(0.147791\pi\)
\(3\) −0.998873 + 1.41501i −0.576699 + 0.816956i
\(4\) 1.20312i 0.601562i
\(5\) −1.34140 + 1.78903i −0.599894 + 0.800079i
\(6\) 0.262674 + 1.52369i 0.107236 + 0.622044i
\(7\) −3.10938 3.10938i −1.17524 1.17524i −0.980944 0.194292i \(-0.937759\pi\)
−0.194292 0.980944i \(-0.562241\pi\)
\(8\) 2.02187 + 2.02187i 0.714841 + 0.714841i
\(9\) −1.00451 2.82683i −0.334836 0.942277i
\(10\) 0.282552 + 1.97599i 0.0893507 + 0.624864i
\(11\) 0.484934i 0.146213i 0.997324 + 0.0731066i \(0.0232913\pi\)
−0.997324 + 0.0731066i \(0.976709\pi\)
\(12\) −1.70243 1.20177i −0.491450 0.346920i
\(13\) −1.71998 + 1.71998i −0.477037 + 0.477037i −0.904183 0.427146i \(-0.859519\pi\)
0.427146 + 0.904183i \(0.359519\pi\)
\(14\) −3.92540 −1.04911
\(15\) −1.19161 3.68512i −0.307671 0.951493i
\(16\) 0.146246 0.0365614
\(17\) −5.25692 + 5.25692i −1.27499 + 1.27499i −0.331553 + 0.943437i \(0.607572\pi\)
−0.943437 + 0.331553i \(0.892428\pi\)
\(18\) −2.41841 1.15029i −0.570026 0.271125i
\(19\) 1.00000i 0.229416i
\(20\) −2.15243 1.61387i −0.481297 0.360873i
\(21\) 7.50568 1.29393i 1.63787 0.282359i
\(22\) 0.306100 + 0.306100i 0.0652607 + 0.0652607i
\(23\) 2.66096 + 2.66096i 0.554848 + 0.554848i 0.927836 0.372988i \(-0.121667\pi\)
−0.372988 + 0.927836i \(0.621667\pi\)
\(24\) −4.88057 + 0.841377i −0.996242 + 0.171745i
\(25\) −1.40127 4.79963i −0.280254 0.959926i
\(26\) 2.17137i 0.425841i
\(27\) 5.00337 + 1.40226i 0.962898 + 0.269864i
\(28\) 3.74097 3.74097i 0.706977 0.706977i
\(29\) 6.46492 1.20050 0.600252 0.799811i \(-0.295067\pi\)
0.600252 + 0.799811i \(0.295067\pi\)
\(30\) −3.07828 1.57395i −0.562015 0.287363i
\(31\) 3.84489 0.690562 0.345281 0.938499i \(-0.387784\pi\)
0.345281 + 0.938499i \(0.387784\pi\)
\(32\) −3.95144 + 3.95144i −0.698522 + 0.698522i
\(33\) −0.686187 0.484388i −0.119450 0.0843211i
\(34\) 6.63654i 1.13816i
\(35\) 9.73372 1.39185i 1.64530 0.235265i
\(36\) 3.40103 1.20855i 0.566838 0.201424i
\(37\) −1.24679 1.24679i −0.204971 0.204971i 0.597155 0.802126i \(-0.296298\pi\)
−0.802126 + 0.597155i \(0.796298\pi\)
\(38\) 0.631220 + 0.631220i 0.102397 + 0.102397i
\(39\) −0.715749 4.15184i −0.114612 0.664826i
\(40\) −6.32935 + 0.905048i −1.00076 + 0.143101i
\(41\) 10.2468i 1.60028i 0.599812 + 0.800141i \(0.295242\pi\)
−0.599812 + 0.800141i \(0.704758\pi\)
\(42\) 3.92098 5.55449i 0.605020 0.857076i
\(43\) −1.78437 + 1.78437i −0.272115 + 0.272115i −0.829951 0.557836i \(-0.811632\pi\)
0.557836 + 0.829951i \(0.311632\pi\)
\(44\) −0.583436 −0.0879563
\(45\) 6.40474 + 1.99483i 0.954762 + 0.297371i
\(46\) 3.35930 0.495301
\(47\) 4.00816 4.00816i 0.584650 0.584650i −0.351528 0.936177i \(-0.614338\pi\)
0.936177 + 0.351528i \(0.114338\pi\)
\(48\) −0.146081 + 0.206939i −0.0210849 + 0.0298691i
\(49\) 12.3365i 1.76236i
\(50\) −3.91413 2.14511i −0.553541 0.303364i
\(51\) −2.18760 12.6896i −0.306325 1.77690i
\(52\) −2.06935 2.06935i −0.286968 0.286968i
\(53\) −2.13230 2.13230i −0.292893 0.292893i 0.545329 0.838222i \(-0.316405\pi\)
−0.838222 + 0.545329i \(0.816405\pi\)
\(54\) 4.04335 2.27309i 0.550231 0.309329i
\(55\) −0.867563 0.650493i −0.116982 0.0877124i
\(56\) 12.5736i 1.68021i
\(57\) −1.41501 0.998873i −0.187423 0.132304i
\(58\) 4.08078 4.08078i 0.535833 0.535833i
\(59\) 4.08854 0.532283 0.266141 0.963934i \(-0.414251\pi\)
0.266141 + 0.963934i \(0.414251\pi\)
\(60\) 4.43365 1.43365i 0.572382 0.185083i
\(61\) −0.395747 −0.0506703 −0.0253351 0.999679i \(-0.508065\pi\)
−0.0253351 + 0.999679i \(0.508065\pi\)
\(62\) 2.42697 2.42697i 0.308225 0.308225i
\(63\) −5.66630 + 11.9131i −0.713886 + 1.50091i
\(64\) 5.28094i 0.660117i
\(65\) −0.769913 5.38430i −0.0954959 0.667840i
\(66\) −0.738890 + 0.127380i −0.0909510 + 0.0156794i
\(67\) −0.787783 0.787783i −0.0962430 0.0962430i 0.657346 0.753589i \(-0.271679\pi\)
−0.753589 + 0.657346i \(0.771679\pi\)
\(68\) −6.32472 6.32472i −0.766985 0.766985i
\(69\) −6.42324 + 1.10732i −0.773267 + 0.133306i
\(70\) 5.26555 7.02267i 0.629354 0.839370i
\(71\) 7.63110i 0.905645i 0.891601 + 0.452822i \(0.149583\pi\)
−0.891601 + 0.452822i \(0.850417\pi\)
\(72\) 3.68451 7.74648i 0.434223 0.912932i
\(73\) −0.661154 + 0.661154i −0.0773822 + 0.0773822i −0.744739 0.667356i \(-0.767426\pi\)
0.667356 + 0.744739i \(0.267426\pi\)
\(74\) −1.57399 −0.182973
\(75\) 8.19121 + 2.81141i 0.945840 + 0.324633i
\(76\) −1.20312 −0.138008
\(77\) 1.50785 1.50785i 0.171835 0.171835i
\(78\) −3.07252 2.16893i −0.347894 0.245582i
\(79\) 7.50129i 0.843961i −0.906605 0.421980i \(-0.861335\pi\)
0.906605 0.421980i \(-0.138665\pi\)
\(80\) −0.196174 + 0.261638i −0.0219330 + 0.0292520i
\(81\) −6.98193 + 5.67914i −0.775770 + 0.631015i
\(82\) 6.46798 + 6.46798i 0.714269 + 0.714269i
\(83\) 6.64986 + 6.64986i 0.729917 + 0.729917i 0.970603 0.240686i \(-0.0773723\pi\)
−0.240686 + 0.970603i \(0.577372\pi\)
\(84\) 1.55676 + 9.03026i 0.169856 + 0.985283i
\(85\) −2.35314 16.4564i −0.255234 1.78495i
\(86\) 2.25266i 0.242911i
\(87\) −6.45763 + 9.14792i −0.692330 + 0.980760i
\(88\) −0.980476 + 0.980476i −0.104519 + 0.104519i
\(89\) −8.36904 −0.887116 −0.443558 0.896246i \(-0.646284\pi\)
−0.443558 + 0.896246i \(0.646284\pi\)
\(90\) 5.30197 2.78362i 0.558877 0.293420i
\(91\) 10.6962 1.12126
\(92\) −3.20146 + 3.20146i −0.333775 + 0.333775i
\(93\) −3.84055 + 5.44056i −0.398247 + 0.564159i
\(94\) 5.06005i 0.521904i
\(95\) −1.78903 1.34140i −0.183551 0.137625i
\(96\) −1.64434 9.53830i −0.167825 0.973499i
\(97\) −7.06303 7.06303i −0.717142 0.717142i 0.250877 0.968019i \(-0.419281\pi\)
−0.968019 + 0.250877i \(0.919281\pi\)
\(98\) 7.78704 + 7.78704i 0.786610 + 0.786610i
\(99\) 1.37083 0.487120i 0.137773 0.0489574i
\(100\) 5.77455 1.68590i 0.577455 0.168590i
\(101\) 0.402110i 0.0400115i 0.999800 + 0.0200057i \(0.00636845\pi\)
−0.999800 + 0.0200057i \(0.993632\pi\)
\(102\) −9.39077 6.62905i −0.929824 0.656374i
\(103\) −9.11315 + 9.11315i −0.897946 + 0.897946i −0.995254 0.0973085i \(-0.968977\pi\)
0.0973085 + 0.995254i \(0.468977\pi\)
\(104\) −6.95518 −0.682011
\(105\) −7.75327 + 15.1636i −0.756642 + 1.47981i
\(106\) −2.69189 −0.261460
\(107\) 8.57439 8.57439i 0.828918 0.828918i −0.158449 0.987367i \(-0.550649\pi\)
0.987367 + 0.158449i \(0.0506494\pi\)
\(108\) −1.68709 + 6.01967i −0.162340 + 0.579243i
\(109\) 2.94223i 0.281814i 0.990023 + 0.140907i \(0.0450019\pi\)
−0.990023 + 0.140907i \(0.954998\pi\)
\(110\) −0.958226 + 0.137019i −0.0913633 + 0.0130642i
\(111\) 3.00960 0.518835i 0.285659 0.0492457i
\(112\) −0.454733 0.454733i −0.0429683 0.0429683i
\(113\) −13.6558 13.6558i −1.28463 1.28463i −0.938001 0.346632i \(-0.887325\pi\)
−0.346632 0.938001i \(-0.612675\pi\)
\(114\) −1.52369 + 0.262674i −0.142707 + 0.0246017i
\(115\) −8.32995 + 1.19112i −0.776772 + 0.111072i
\(116\) 7.77809i 0.722178i
\(117\) 6.58983 + 3.13436i 0.609230 + 0.289772i
\(118\) 2.58077 2.58077i 0.237579 0.237579i
\(119\) 32.6915 2.99683
\(120\) 5.04156 9.86012i 0.460229 0.900102i
\(121\) 10.7648 0.978622
\(122\) −0.249803 + 0.249803i −0.0226161 + 0.0226161i
\(123\) −14.4993 10.2353i −1.30736 0.922882i
\(124\) 4.62588i 0.415416i
\(125\) 10.4664 + 3.93132i 0.936140 + 0.351628i
\(126\) 3.94310 + 11.0964i 0.351279 + 0.988550i
\(127\) 12.4056 + 12.4056i 1.10082 + 1.10082i 0.994312 + 0.106507i \(0.0339665\pi\)
0.106507 + 0.994312i \(0.466033\pi\)
\(128\) −4.56944 4.56944i −0.403885 0.403885i
\(129\) −0.742545 4.30727i −0.0653774 0.379234i
\(130\) −3.88466 2.91269i −0.340707 0.255460i
\(131\) 2.18846i 0.191206i −0.995420 0.0956032i \(-0.969522\pi\)
0.995420 0.0956032i \(-0.0304780\pi\)
\(132\) 0.582778 0.825568i 0.0507243 0.0718565i
\(133\) 3.10938 3.10938i 0.269618 0.269618i
\(134\) −0.994528 −0.0859141
\(135\) −9.22022 + 7.07019i −0.793550 + 0.608505i
\(136\) −21.2576 −1.82283
\(137\) −13.4491 + 13.4491i −1.14903 + 1.14903i −0.162287 + 0.986744i \(0.551887\pi\)
−0.986744 + 0.162287i \(0.948113\pi\)
\(138\) −3.35551 + 4.75344i −0.285640 + 0.404639i
\(139\) 19.8345i 1.68234i −0.540769 0.841171i \(-0.681867\pi\)
0.540769 0.841171i \(-0.318133\pi\)
\(140\) 1.67456 + 11.7109i 0.141526 + 0.989749i
\(141\) 1.66794 + 9.67522i 0.140466 + 0.814800i
\(142\) 4.81690 + 4.81690i 0.404225 + 0.404225i
\(143\) −0.834079 0.834079i −0.0697492 0.0697492i
\(144\) −0.146905 0.413411i −0.0122421 0.0344510i
\(145\) −8.67206 + 11.5659i −0.720176 + 0.960499i
\(146\) 0.834667i 0.0690775i
\(147\) −17.4563 12.3226i −1.43977 1.01635i
\(148\) 1.50004 1.50004i 0.123303 0.123303i
\(149\) −0.129352 −0.0105970 −0.00529848 0.999986i \(-0.501687\pi\)
−0.00529848 + 0.999986i \(0.501687\pi\)
\(150\) 6.94507 3.39584i 0.567063 0.277269i
\(151\) 9.09129 0.739839 0.369920 0.929064i \(-0.379385\pi\)
0.369920 + 0.929064i \(0.379385\pi\)
\(152\) −2.02187 + 2.02187i −0.163996 + 0.163996i
\(153\) 20.1410 + 9.57980i 1.62830 + 0.774481i
\(154\) 1.90356i 0.153394i
\(155\) −5.15755 + 6.87863i −0.414264 + 0.552505i
\(156\) 4.99517 0.861135i 0.399934 0.0689460i
\(157\) 17.5751 + 17.5751i 1.40265 + 1.40265i 0.791571 + 0.611078i \(0.209264\pi\)
0.611078 + 0.791571i \(0.290736\pi\)
\(158\) −4.73496 4.73496i −0.376693 0.376693i
\(159\) 5.14711 0.887328i 0.408193 0.0703697i
\(160\) −1.76877 12.3697i −0.139834 0.977912i
\(161\) 16.5479i 1.30415i
\(162\) −0.822348 + 7.99192i −0.0646098 + 0.627904i
\(163\) 11.1001 11.1001i 0.869425 0.869425i −0.122984 0.992409i \(-0.539246\pi\)
0.992409 + 0.122984i \(0.0392463\pi\)
\(164\) −12.3282 −0.962669
\(165\) 1.78704 0.577851i 0.139121 0.0449856i
\(166\) 8.39505 0.651582
\(167\) −2.27559 + 2.27559i −0.176091 + 0.176091i −0.789649 0.613559i \(-0.789737\pi\)
0.613559 + 0.789649i \(0.289737\pi\)
\(168\) 17.7917 + 12.5594i 1.37266 + 0.968977i
\(169\) 7.08332i 0.544871i
\(170\) −11.8730 8.90228i −0.910616 0.682773i
\(171\) 2.82683 1.00451i 0.216173 0.0768166i
\(172\) −2.14682 2.14682i −0.163694 0.163694i
\(173\) −8.75419 8.75419i −0.665568 0.665568i 0.291119 0.956687i \(-0.405973\pi\)
−0.956687 + 0.291119i \(0.905973\pi\)
\(174\) 1.69817 + 9.85053i 0.128738 + 0.746767i
\(175\) −10.5668 + 19.2810i −0.798774 + 1.45750i
\(176\) 0.0709195i 0.00534576i
\(177\) −4.08393 + 5.78533i −0.306967 + 0.434852i
\(178\) −5.28270 + 5.28270i −0.395955 + 0.395955i
\(179\) −10.7138 −0.800787 −0.400394 0.916343i \(-0.631127\pi\)
−0.400394 + 0.916343i \(0.631127\pi\)
\(180\) −2.40002 + 7.70569i −0.178887 + 0.574348i
\(181\) −21.0414 −1.56400 −0.781999 0.623280i \(-0.785800\pi\)
−0.781999 + 0.623280i \(0.785800\pi\)
\(182\) 6.75163 6.75163i 0.500464 0.500464i
\(183\) 0.395301 0.559987i 0.0292215 0.0413954i
\(184\) 10.7602i 0.793255i
\(185\) 3.90299 0.558098i 0.286954 0.0410322i
\(186\) 1.00995 + 5.85842i 0.0740533 + 0.429560i
\(187\) −2.54926 2.54926i −0.186420 0.186420i
\(188\) 4.82231 + 4.82231i 0.351703 + 0.351703i
\(189\) −11.1972 19.9175i −0.814478 1.44879i
\(190\) −1.97599 + 0.282552i −0.143354 + 0.0204984i
\(191\) 2.14074i 0.154899i 0.996996 + 0.0774493i \(0.0246776\pi\)
−0.996996 + 0.0774493i \(0.975322\pi\)
\(192\) −7.47258 5.27498i −0.539287 0.380689i
\(193\) 6.90598 6.90598i 0.497104 0.497104i −0.413432 0.910535i \(-0.635670\pi\)
0.910535 + 0.413432i \(0.135670\pi\)
\(194\) −8.91665 −0.640178
\(195\) 8.38788 + 4.28879i 0.600668 + 0.307127i
\(196\) −14.8423 −1.06017
\(197\) 4.53867 4.53867i 0.323367 0.323367i −0.526690 0.850057i \(-0.676567\pi\)
0.850057 + 0.526690i \(0.176567\pi\)
\(198\) 0.557813 1.17277i 0.0396420 0.0833453i
\(199\) 2.36288i 0.167500i 0.996487 + 0.0837499i \(0.0266897\pi\)
−0.996487 + 0.0837499i \(0.973310\pi\)
\(200\) 6.87105 12.5374i 0.485857 0.886531i
\(201\) 1.90162 0.327826i 0.134130 0.0231231i
\(202\) 0.253820 + 0.253820i 0.0178587 + 0.0178587i
\(203\) −20.1019 20.1019i −1.41088 1.41088i
\(204\) 15.2671 2.63195i 1.06891 0.184274i
\(205\) −18.3319 13.7451i −1.28035 0.960000i
\(206\) 11.5048i 0.801578i
\(207\) 4.84912 10.1950i 0.337037 0.708603i
\(208\) −0.251540 + 0.251540i −0.0174412 + 0.0174412i
\(209\) −0.484934 −0.0335436
\(210\) 4.67754 + 14.4656i 0.322781 + 0.998219i
\(211\) 8.32645 0.573217 0.286608 0.958048i \(-0.407472\pi\)
0.286608 + 0.958048i \(0.407472\pi\)
\(212\) 2.56542 2.56542i 0.176193 0.176193i
\(213\) −10.7981 7.62249i −0.739872 0.522285i
\(214\) 10.8247i 0.739958i
\(215\) −0.798736 5.58587i −0.0544733 0.380953i
\(216\) 7.28099 + 12.9514i 0.495409 + 0.881229i
\(217\) −11.9552 11.9552i −0.811574 0.811574i
\(218\) 1.85719 + 1.85719i 0.125785 + 0.125785i
\(219\) −0.275131 1.59595i −0.0185916 0.107844i
\(220\) 0.782623 1.04379i 0.0527645 0.0703720i
\(221\) 18.0836i 1.21644i
\(222\) 1.57222 2.22722i 0.105521 0.149481i
\(223\) 0.192204 0.192204i 0.0128709 0.0128709i −0.700642 0.713513i \(-0.747103\pi\)
0.713513 + 0.700642i \(0.247103\pi\)
\(224\) 24.5730 1.64186
\(225\) −12.1601 + 8.78241i −0.810677 + 0.585494i
\(226\) −17.2397 −1.14677
\(227\) −7.27049 + 7.27049i −0.482559 + 0.482559i −0.905948 0.423389i \(-0.860840\pi\)
0.423389 + 0.905948i \(0.360840\pi\)
\(228\) 1.20177 1.70243i 0.0795890 0.112746i
\(229\) 19.9414i 1.31776i 0.752246 + 0.658882i \(0.228970\pi\)
−0.752246 + 0.658882i \(0.771030\pi\)
\(230\) −4.50617 + 6.00989i −0.297128 + 0.396280i
\(231\) 0.627471 + 3.63976i 0.0412846 + 0.239479i
\(232\) 13.0712 + 13.0712i 0.858169 + 0.858169i
\(233\) 8.00181 + 8.00181i 0.524216 + 0.524216i 0.918842 0.394626i \(-0.129126\pi\)
−0.394626 + 0.918842i \(0.629126\pi\)
\(234\) 6.13810 2.18116i 0.401260 0.142587i
\(235\) 1.79416 + 12.5473i 0.117038 + 0.818494i
\(236\) 4.91902i 0.320201i
\(237\) 10.6144 + 7.49283i 0.689479 + 0.486712i
\(238\) 20.6355 20.6355i 1.33760 1.33760i
\(239\) −8.06309 −0.521558 −0.260779 0.965399i \(-0.583979\pi\)
−0.260779 + 0.965399i \(0.583979\pi\)
\(240\) −0.174267 0.538932i −0.0112489 0.0347879i
\(241\) −3.28544 −0.211634 −0.105817 0.994386i \(-0.533746\pi\)
−0.105817 + 0.994386i \(0.533746\pi\)
\(242\) 6.79498 6.79498i 0.436798 0.436798i
\(243\) −1.06198 15.5522i −0.0681259 0.997677i
\(244\) 0.476133i 0.0304813i
\(245\) −22.0704 16.5482i −1.41003 1.05723i
\(246\) −15.6130 + 2.69157i −0.995446 + 0.171608i
\(247\) −1.71998 1.71998i −0.109440 0.109440i
\(248\) 7.77388 + 7.77388i 0.493642 + 0.493642i
\(249\) −16.0520 + 2.76726i −1.01725 + 0.175368i
\(250\) 9.08810 4.12504i 0.574782 0.260891i
\(251\) 5.94266i 0.375097i −0.982255 0.187549i \(-0.939946\pi\)
0.982255 0.187549i \(-0.0600542\pi\)
\(252\) −14.3329 6.81726i −0.902889 0.429447i
\(253\) −1.29039 + 1.29039i −0.0811261 + 0.0811261i
\(254\) 15.6613 0.982678
\(255\) 25.6365 + 13.1082i 1.60542 + 0.820865i
\(256\) −16.3305 −1.02066
\(257\) 6.45234 6.45234i 0.402486 0.402486i −0.476622 0.879108i \(-0.658139\pi\)
0.879108 + 0.476622i \(0.158139\pi\)
\(258\) −3.18754 2.25012i −0.198448 0.140087i
\(259\) 7.75348i 0.481778i
\(260\) 6.47797 0.926300i 0.401747 0.0574467i
\(261\) −6.49405 18.2752i −0.401972 1.13121i
\(262\) −1.38140 1.38140i −0.0853430 0.0853430i
\(263\) 16.6563 + 16.6563i 1.02707 + 1.02707i 0.999623 + 0.0274500i \(0.00873871\pi\)
0.0274500 + 0.999623i \(0.491261\pi\)
\(264\) −0.408013 2.36675i −0.0251115 0.145664i
\(265\) 6.67502 0.954475i 0.410043 0.0586330i
\(266\) 3.92540i 0.240682i
\(267\) 8.35960 11.8423i 0.511599 0.724735i
\(268\) 0.947801 0.947801i 0.0578961 0.0578961i
\(269\) 23.6314 1.44083 0.720416 0.693543i \(-0.243951\pi\)
0.720416 + 0.693543i \(0.243951\pi\)
\(270\) −1.35714 + 10.2828i −0.0825927 + 0.625793i
\(271\) −1.21408 −0.0737504 −0.0368752 0.999320i \(-0.511740\pi\)
−0.0368752 + 0.999320i \(0.511740\pi\)
\(272\) −0.768801 + 0.768801i −0.0466154 + 0.0466154i
\(273\) −10.6841 + 15.1352i −0.646632 + 0.916023i
\(274\) 16.9786i 1.02572i
\(275\) 2.32750 0.679524i 0.140354 0.0409769i
\(276\) −1.33225 7.72795i −0.0801919 0.465168i
\(277\) 9.65826 + 9.65826i 0.580309 + 0.580309i 0.934988 0.354679i \(-0.115410\pi\)
−0.354679 + 0.934988i \(0.615410\pi\)
\(278\) −12.5199 12.5199i −0.750896 0.750896i
\(279\) −3.86222 10.8688i −0.231225 0.650701i
\(280\) 22.4945 + 16.8662i 1.34430 + 1.00795i
\(281\) 9.22464i 0.550296i 0.961402 + 0.275148i \(0.0887268\pi\)
−0.961402 + 0.275148i \(0.911273\pi\)
\(282\) 7.16002 + 5.05435i 0.426373 + 0.300982i
\(283\) 20.8970 20.8970i 1.24220 1.24220i 0.283112 0.959087i \(-0.408633\pi\)
0.959087 0.283112i \(-0.0913668\pi\)
\(284\) −9.18115 −0.544801
\(285\) 3.68512 1.19161i 0.218287 0.0705847i
\(286\) −1.05297 −0.0622636
\(287\) 31.8612 31.8612i 1.88071 1.88071i
\(288\) 15.1393 + 7.20079i 0.892091 + 0.424311i
\(289\) 38.2703i 2.25120i
\(290\) 1.82667 + 12.7746i 0.107266 + 0.750152i
\(291\) 17.0493 2.93919i 0.999450 0.172298i
\(292\) −0.795450 0.795450i −0.0465502 0.0465502i
\(293\) 18.8428 + 18.8428i 1.10081 + 1.10081i 0.994313 + 0.106498i \(0.0339638\pi\)
0.106498 + 0.994313i \(0.466036\pi\)
\(294\) −18.7970 + 3.24048i −1.09626 + 0.188989i
\(295\) −5.48439 + 7.31453i −0.319313 + 0.425869i
\(296\) 5.04170i 0.293043i
\(297\) −0.680002 + 2.42630i −0.0394577 + 0.140788i
\(298\) −0.0816498 + 0.0816498i −0.00472985 + 0.00472985i
\(299\) −9.15360 −0.529366
\(300\) −3.38247 + 9.85505i −0.195287 + 0.568981i
\(301\) 11.0966 0.639597
\(302\) 5.73860 5.73860i 0.330219 0.330219i
\(303\) −0.568990 0.401657i −0.0326876 0.0230746i
\(304\) 0.146246i 0.00838776i
\(305\) 0.530857 0.708005i 0.0303968 0.0405402i
\(306\) 18.7604 6.66645i 1.07246 0.381095i
\(307\) 1.57533 + 1.57533i 0.0899088 + 0.0899088i 0.750631 0.660722i \(-0.229750\pi\)
−0.660722 + 0.750631i \(0.729750\pi\)
\(308\) 1.81412 + 1.81412i 0.103369 + 0.103369i
\(309\) −3.79232 21.9981i −0.215738 1.25143i
\(310\) 1.08638 + 7.59747i 0.0617022 + 0.431507i
\(311\) 17.6141i 0.998804i −0.866370 0.499402i \(-0.833553\pi\)
0.866370 0.499402i \(-0.166447\pi\)
\(312\) 6.94734 9.84165i 0.393316 0.557174i
\(313\) −7.57967 + 7.57967i −0.428428 + 0.428428i −0.888093 0.459664i \(-0.847970\pi\)
0.459664 + 0.888093i \(0.347970\pi\)
\(314\) 22.1875 1.25212
\(315\) −13.7121 26.1174i −0.772589 1.47155i
\(316\) 9.02498 0.507695
\(317\) −6.04760 + 6.04760i −0.339667 + 0.339667i −0.856242 0.516575i \(-0.827207\pi\)
0.516575 + 0.856242i \(0.327207\pi\)
\(318\) 2.68886 3.80906i 0.150784 0.213601i
\(319\) 3.13506i 0.175530i
\(320\) −9.44777 7.08387i −0.528146 0.396000i
\(321\) 3.56813 + 20.6976i 0.199153 + 1.15523i
\(322\) −10.4453 10.4453i −0.582096 0.582096i
\(323\) −5.25692 5.25692i −0.292503 0.292503i
\(324\) −6.83271 8.40013i −0.379595 0.466674i
\(325\) 10.6654 + 5.84512i 0.591612 + 0.324229i
\(326\) 14.0132i 0.776118i
\(327\) −4.16328 2.93891i −0.230230 0.162522i
\(328\) −20.7178 + 20.7178i −1.14395 + 1.14395i
\(329\) −24.9258 −1.37420
\(330\) 0.763263 1.49276i 0.0420162 0.0821740i
\(331\) −16.5043 −0.907157 −0.453579 0.891216i \(-0.649853\pi\)
−0.453579 + 0.891216i \(0.649853\pi\)
\(332\) −8.00061 + 8.00061i −0.439091 + 0.439091i
\(333\) −2.27205 + 4.77687i −0.124508 + 0.261771i
\(334\) 2.87280i 0.157192i
\(335\) 2.46610 0.352634i 0.134738 0.0192664i
\(336\) 1.09767 0.189232i 0.0598830 0.0103234i
\(337\) −15.0634 15.0634i −0.820555 0.820555i 0.165632 0.986188i \(-0.447034\pi\)
−0.986188 + 0.165632i \(0.947034\pi\)
\(338\) 4.47113 + 4.47113i 0.243197 + 0.243197i
\(339\) 32.9636 5.68270i 1.79034 0.308642i
\(340\) 19.7991 2.83112i 1.07376 0.153539i
\(341\) 1.86452i 0.100969i
\(342\) 1.15029 2.41841i 0.0622003 0.130773i
\(343\) 16.5932 16.5932i 0.895950 0.895950i
\(344\) −7.21556 −0.389037
\(345\) 6.63512 12.9767i 0.357223 0.698644i
\(346\) −11.0516 −0.594139
\(347\) −16.3236 + 16.3236i −0.876298 + 0.876298i −0.993149 0.116851i \(-0.962720\pi\)
0.116851 + 0.993149i \(0.462720\pi\)
\(348\) −11.0061 7.76933i −0.589988 0.416480i
\(349\) 7.06087i 0.377960i 0.981981 + 0.188980i \(0.0605181\pi\)
−0.981981 + 0.188980i \(0.939482\pi\)
\(350\) 5.50056 + 18.8405i 0.294017 + 1.00707i
\(351\) −11.0176 + 6.19385i −0.588074 + 0.330603i
\(352\) −1.91619 1.91619i −0.102133 0.102133i
\(353\) 15.7883 + 15.7883i 0.840325 + 0.840325i 0.988901 0.148576i \(-0.0474690\pi\)
−0.148576 + 0.988901i \(0.547469\pi\)
\(354\) 1.07395 + 6.22967i 0.0570800 + 0.331103i
\(355\) −13.6523 10.2364i −0.724588 0.543291i
\(356\) 10.0690i 0.533655i
\(357\) −32.6547 + 46.2588i −1.72827 + 2.44828i
\(358\) −6.76276 + 6.76276i −0.357423 + 0.357423i
\(359\) −25.8168 −1.36256 −0.681278 0.732025i \(-0.738576\pi\)
−0.681278 + 0.732025i \(0.738576\pi\)
\(360\) 8.91629 + 16.9829i 0.469930 + 0.895075i
\(361\) −1.00000 −0.0526316
\(362\) −13.2818 + 13.2818i −0.698074 + 0.698074i
\(363\) −10.7527 + 15.2324i −0.564371 + 0.799491i
\(364\) 12.8688i 0.674509i
\(365\) −0.295951 2.06970i −0.0154908 0.108333i
\(366\) −0.103953 0.602996i −0.00543369 0.0315191i
\(367\) 14.0056 + 14.0056i 0.731086 + 0.731086i 0.970835 0.239749i \(-0.0770651\pi\)
−0.239749 + 0.970835i \(0.577065\pi\)
\(368\) 0.389153 + 0.389153i 0.0202860 + 0.0202860i
\(369\) 28.9660 10.2930i 1.50791 0.535831i
\(370\) 2.11136 2.81593i 0.109765 0.146393i
\(371\) 13.2602i 0.688437i
\(372\) −6.54566 4.62066i −0.339377 0.239570i
\(373\) 18.1829 18.1829i 0.941476 0.941476i −0.0569035 0.998380i \(-0.518123\pi\)
0.998380 + 0.0569035i \(0.0181227\pi\)
\(374\) −3.21828 −0.166414
\(375\) −16.0174 + 10.8831i −0.827136 + 0.562002i
\(376\) 16.2080 0.835862
\(377\) −11.1195 + 11.1195i −0.572686 + 0.572686i
\(378\) −19.6402 5.50442i −1.01018 0.283117i
\(379\) 9.67090i 0.496761i −0.968663 0.248380i \(-0.920102\pi\)
0.968663 0.248380i \(-0.0798983\pi\)
\(380\) 1.61387 2.15243i 0.0827900 0.110417i
\(381\) −29.9457 + 5.16243i −1.53416 + 0.264479i
\(382\) 1.35128 + 1.35128i 0.0691374 + 0.0691374i
\(383\) 6.50293 + 6.50293i 0.332284 + 0.332284i 0.853453 0.521169i \(-0.174504\pi\)
−0.521169 + 0.853453i \(0.674504\pi\)
\(384\) 11.0301 1.90151i 0.562877 0.0970363i
\(385\) 0.674954 + 4.72021i 0.0343988 + 0.240564i
\(386\) 8.71838i 0.443754i
\(387\) 6.83654 + 3.25171i 0.347521 + 0.165294i
\(388\) 8.49770 8.49770i 0.431406 0.431406i
\(389\) 7.26031 0.368112 0.184056 0.982916i \(-0.441077\pi\)
0.184056 + 0.982916i \(0.441077\pi\)
\(390\) 8.00176 2.58742i 0.405185 0.131019i
\(391\) −27.9768 −1.41485
\(392\) −24.9429 + 24.9429i −1.25980 + 1.25980i
\(393\) 3.09669 + 2.18599i 0.156207 + 0.110269i
\(394\) 5.72979i 0.288663i
\(395\) 13.4200 + 10.0623i 0.675236 + 0.506287i
\(396\) 0.586065 + 1.64927i 0.0294509 + 0.0828791i
\(397\) 13.5745 + 13.5745i 0.681287 + 0.681287i 0.960290 0.279003i \(-0.0900040\pi\)
−0.279003 + 0.960290i \(0.590004\pi\)
\(398\) 1.49149 + 1.49149i 0.0747618 + 0.0747618i
\(399\) 1.29393 + 7.50568i 0.0647775 + 0.375754i
\(400\) −0.204930 0.701925i −0.0102465 0.0350962i
\(401\) 26.8858i 1.34261i 0.741181 + 0.671306i \(0.234266\pi\)
−0.741181 + 0.671306i \(0.765734\pi\)
\(402\) 0.993407 1.40727i 0.0495466 0.0701881i
\(403\) −6.61314 + 6.61314i −0.329424 + 0.329424i
\(404\) −0.483789 −0.0240694
\(405\) −0.794571 20.1089i −0.0394825 0.999220i
\(406\) −25.3774 −1.25946
\(407\) 0.604611 0.604611i 0.0299694 0.0299694i
\(408\) 21.2337 30.0798i 1.05122 1.48917i
\(409\) 9.24979i 0.457373i 0.973500 + 0.228686i \(0.0734430\pi\)
−0.973500 + 0.228686i \(0.926557\pi\)
\(410\) −20.2476 + 2.89525i −0.999958 + 0.142986i
\(411\) −5.59666 32.4644i −0.276063 1.60135i
\(412\) −10.9643 10.9643i −0.540170 0.540170i
\(413\) −12.7128 12.7128i −0.625558 0.625558i
\(414\) −3.37444 9.49616i −0.165844 0.466711i
\(415\) −20.8170 + 2.97667i −1.02187 + 0.146119i
\(416\) 13.5928i 0.666442i
\(417\) 28.0660 + 19.8122i 1.37440 + 0.970206i
\(418\) −0.306100 + 0.306100i −0.0149718 + 0.0149718i
\(419\) −27.3581 −1.33653 −0.668264 0.743924i \(-0.732962\pi\)
−0.668264 + 0.743924i \(0.732962\pi\)
\(420\) −18.2437 9.32814i −0.890200 0.455167i
\(421\) −13.7170 −0.668525 −0.334263 0.942480i \(-0.608487\pi\)
−0.334263 + 0.942480i \(0.608487\pi\)
\(422\) 5.25582 5.25582i 0.255849 0.255849i
\(423\) −15.3566 7.30415i −0.746663 0.355140i
\(424\) 8.62247i 0.418744i
\(425\) 32.5976 + 17.8649i 1.58122 + 0.866574i
\(426\) −11.6274 + 2.00449i −0.563351 + 0.0971179i
\(427\) 1.23053 + 1.23053i 0.0595495 + 0.0595495i
\(428\) 10.3161 + 10.3161i 0.498645 + 0.498645i
\(429\) 2.01337 0.347091i 0.0972063 0.0167577i
\(430\) −4.03009 3.02173i −0.194348 0.145721i
\(431\) 13.6763i 0.658766i −0.944196 0.329383i \(-0.893159\pi\)
0.944196 0.329383i \(-0.106841\pi\)
\(432\) 0.731720 + 0.205074i 0.0352049 + 0.00986661i
\(433\) −3.55520 + 3.55520i −0.170852 + 0.170852i −0.787354 0.616502i \(-0.788549\pi\)
0.616502 + 0.787354i \(0.288549\pi\)
\(434\) −15.0927 −0.724475
\(435\) −7.70364 23.8240i −0.369361 1.14227i
\(436\) −3.53986 −0.169529
\(437\) −2.66096 + 2.66096i −0.127291 + 0.127291i
\(438\) −1.18106 0.833726i −0.0564333 0.0398370i
\(439\) 30.0669i 1.43502i −0.696551 0.717508i \(-0.745283\pi\)
0.696551 0.717508i \(-0.254717\pi\)
\(440\) −0.438889 3.06932i −0.0209232 0.146324i
\(441\) 34.8732 12.3921i 1.66063 0.590100i
\(442\) −11.4147 11.4147i −0.542943 0.542943i
\(443\) −11.3303 11.3303i −0.538319 0.538319i 0.384716 0.923035i \(-0.374300\pi\)
−0.923035 + 0.384716i \(0.874300\pi\)
\(444\) 0.624223 + 3.62092i 0.0296243 + 0.171841i
\(445\) 11.2263 14.9725i 0.532176 0.709763i
\(446\) 0.242646i 0.0114896i
\(447\) 0.129207 0.183035i 0.00611126 0.00865726i
\(448\) 16.4204 16.4204i 0.775793 0.775793i
\(449\) −4.52307 −0.213457 −0.106728 0.994288i \(-0.534038\pi\)
−0.106728 + 0.994288i \(0.534038\pi\)
\(450\) −2.13209 + 13.2194i −0.100508 + 0.623166i
\(451\) −4.96903 −0.233982
\(452\) 16.4297 16.4297i 0.772786 0.772786i
\(453\) −9.08105 + 12.8643i −0.426665 + 0.604416i
\(454\) 9.17855i 0.430771i
\(455\) −14.3479 + 19.1358i −0.672639 + 0.897099i
\(456\) −0.841377 4.88057i −0.0394011 0.228554i
\(457\) 24.3285 + 24.3285i 1.13804 + 1.13804i 0.988801 + 0.149240i \(0.0476828\pi\)
0.149240 + 0.988801i \(0.452317\pi\)
\(458\) 12.5874 + 12.5874i 0.588170 + 0.588170i
\(459\) −33.6738 + 18.9307i −1.57176 + 0.883611i
\(460\) −1.43306 10.0220i −0.0668169 0.467277i
\(461\) 19.0723i 0.888284i 0.895957 + 0.444142i \(0.146491\pi\)
−0.895957 + 0.444142i \(0.853509\pi\)
\(462\) 2.69356 + 1.90142i 0.125316 + 0.0884619i
\(463\) 27.0456 27.0456i 1.25692 1.25692i 0.304360 0.952557i \(-0.401558\pi\)
0.952557 0.304360i \(-0.0984425\pi\)
\(464\) 0.945466 0.0438921
\(465\) −4.58159 14.1689i −0.212466 0.657065i
\(466\) 10.1018 0.467957
\(467\) −14.7797 + 14.7797i −0.683924 + 0.683924i −0.960882 0.276958i \(-0.910674\pi\)
0.276958 + 0.960882i \(0.410674\pi\)
\(468\) −3.77103 + 7.92838i −0.174316 + 0.366490i
\(469\) 4.89904i 0.226216i
\(470\) 9.05259 + 6.78757i 0.417565 + 0.313087i
\(471\) −42.4243 + 7.31367i −1.95481 + 0.336996i
\(472\) 8.26652 + 8.26652i 0.380497 + 0.380497i
\(473\) −0.865304 0.865304i −0.0397867 0.0397867i
\(474\) 11.4296 1.97039i 0.524981 0.0905032i
\(475\) 4.79963 1.40127i 0.220222 0.0642947i
\(476\) 39.3319i 1.80278i
\(477\) −3.88573 + 8.16954i −0.177915 + 0.374058i
\(478\) −5.08958 + 5.08958i −0.232792 + 0.232792i
\(479\) 28.2939 1.29278 0.646391 0.763006i \(-0.276277\pi\)
0.646391 + 0.763006i \(0.276277\pi\)
\(480\) 19.2701 + 9.85294i 0.879553 + 0.449723i
\(481\) 4.28891 0.195557
\(482\) −2.07384 + 2.07384i −0.0944606 + 0.0944606i
\(483\) 23.4154 + 16.5292i 1.06544 + 0.752105i
\(484\) 12.9514i 0.588702i
\(485\) 22.1104 3.16161i 1.00398 0.143561i
\(486\) −10.4872 9.14654i −0.475710 0.414895i
\(487\) 0.608543 + 0.608543i 0.0275757 + 0.0275757i 0.720760 0.693184i \(-0.243793\pi\)
−0.693184 + 0.720760i \(0.743793\pi\)
\(488\) −0.800152 0.800152i −0.0362212 0.0362212i
\(489\) 4.61916 + 26.7943i 0.208885 + 1.21168i
\(490\) −24.3768 + 3.48570i −1.10123 + 0.157468i
\(491\) 25.7171i 1.16060i 0.814403 + 0.580299i \(0.197064\pi\)
−0.814403 + 0.580299i \(0.802936\pi\)
\(492\) 12.3143 17.4445i 0.555171 0.786458i
\(493\) −33.9855 + 33.9855i −1.53063 + 1.53063i
\(494\) −2.17137 −0.0976947
\(495\) −0.967359 + 3.10588i −0.0434796 + 0.139599i
\(496\) 0.562298 0.0252479
\(497\) 23.7280 23.7280i 1.06435 1.06435i
\(498\) −8.38558 + 11.8791i −0.375767 + 0.532314i
\(499\) 8.12902i 0.363905i 0.983307 + 0.181952i \(0.0582417\pi\)
−0.983307 + 0.181952i \(0.941758\pi\)
\(500\) −4.72987 + 12.5923i −0.211526 + 0.563146i
\(501\) −0.946959 5.49301i −0.0423070 0.245410i
\(502\) −3.75112 3.75112i −0.167421 0.167421i
\(503\) 24.4871 + 24.4871i 1.09182 + 1.09182i 0.995334 + 0.0964901i \(0.0307616\pi\)
0.0964901 + 0.995334i \(0.469238\pi\)
\(504\) −35.5433 + 12.6302i −1.58322 + 0.562595i
\(505\) −0.719388 0.539393i −0.0320124 0.0240027i
\(506\) 1.62904i 0.0724196i
\(507\) −10.0230 7.07533i −0.445136 0.314227i
\(508\) −14.9255 + 14.9255i −0.662211 + 0.662211i
\(509\) −16.4424 −0.728796 −0.364398 0.931243i \(-0.618725\pi\)
−0.364398 + 0.931243i \(0.618725\pi\)
\(510\) 24.4564 7.90814i 1.08295 0.350178i
\(511\) 4.11156 0.181885
\(512\) −1.16926 + 1.16926i −0.0516745 + 0.0516745i
\(513\) −1.40226 + 5.00337i −0.0619111 + 0.220904i
\(514\) 8.14569i 0.359291i
\(515\) −4.07930 28.5281i −0.179756 1.25710i
\(516\) 5.18218 0.893373i 0.228133 0.0393286i
\(517\) 1.94369 + 1.94369i 0.0854835 + 0.0854835i
\(518\) 4.89415 + 4.89415i 0.215037 + 0.215037i
\(519\) 21.1316 3.64294i 0.927573 0.159907i
\(520\) 9.32970 12.4430i 0.409135 0.545663i
\(521\) 12.9898i 0.569094i 0.958662 + 0.284547i \(0.0918432\pi\)
−0.958662 + 0.284547i \(0.908157\pi\)
\(522\) −15.6348 7.43650i −0.684319 0.325487i
\(523\) 3.68860 3.68860i 0.161291 0.161291i −0.621847 0.783138i \(-0.713618\pi\)
0.783138 + 0.621847i \(0.213618\pi\)
\(524\) 2.63298 0.115022
\(525\) −16.7279 34.2113i −0.730064 1.49311i
\(526\) 21.0276 0.916847
\(527\) −20.2123 + 20.2123i −0.880460 + 0.880460i
\(528\) −0.100352 0.0708396i −0.00436725 0.00308290i
\(529\) 8.83862i 0.384288i
\(530\) 3.61092 4.81588i 0.156848 0.209189i
\(531\) −4.10697 11.5576i −0.178227 0.501558i
\(532\) 3.74097 + 3.74097i 0.162192 + 0.162192i
\(533\) −17.6243 17.6243i −0.763394 0.763394i
\(534\) −2.19833 12.7518i −0.0951310 0.551825i
\(535\) 3.83814 + 26.8416i 0.165937 + 1.16046i
\(536\) 3.18560i 0.137597i
\(537\) 10.7017 15.1601i 0.461813 0.654208i
\(538\) 14.9166 14.9166i 0.643100 0.643100i
\(539\) −5.98239 −0.257680
\(540\) −8.50632 11.0931i −0.366054 0.477369i
\(541\) 29.6270 1.27377 0.636883 0.770961i \(-0.280223\pi\)
0.636883 + 0.770961i \(0.280223\pi\)
\(542\) −0.766354 + 0.766354i −0.0329177 + 0.0329177i
\(543\) 21.0177 29.7739i 0.901957 1.27772i
\(544\) 41.5447i 1.78122i
\(545\) −5.26374 3.94671i −0.225474 0.169059i
\(546\) 2.80960 + 16.2976i 0.120240 + 0.697474i
\(547\) 24.9591 + 24.9591i 1.06717 + 1.06717i 0.997575 + 0.0695973i \(0.0221714\pi\)
0.0695973 + 0.997575i \(0.477829\pi\)
\(548\) −16.1809 16.1809i −0.691213 0.691213i
\(549\) 0.397531 + 1.11871i 0.0169662 + 0.0477454i
\(550\) 1.04024 1.89810i 0.0443559 0.0809351i
\(551\) 6.46492i 0.275415i
\(552\) −15.2258 10.7481i −0.648055 0.457470i
\(553\) −23.3244 + 23.3244i −0.991853 + 0.991853i
\(554\) 12.1930 0.518030
\(555\) −3.10888 + 6.08024i −0.131965 + 0.258092i
\(556\) 23.8634 1.01203
\(557\) 11.3659 11.3659i 0.481590 0.481590i −0.424049 0.905639i \(-0.639392\pi\)
0.905639 + 0.424049i \(0.139392\pi\)
\(558\) −9.29853 4.42272i −0.393638 0.187229i
\(559\) 6.13819i 0.259618i
\(560\) 1.42351 0.203551i 0.0601544 0.00860162i
\(561\) 6.15361 1.06084i 0.259806 0.0447888i
\(562\) 5.82277 + 5.82277i 0.245619 + 0.245619i
\(563\) 11.5917 + 11.5917i 0.488530 + 0.488530i 0.907842 0.419312i \(-0.137729\pi\)
−0.419312 + 0.907842i \(0.637729\pi\)
\(564\) −11.6405 + 2.00674i −0.490153 + 0.0844991i
\(565\) 42.7487 6.11274i 1.79845 0.257165i
\(566\) 26.3812i 1.10889i
\(567\) 39.3681 + 4.05088i 1.65330 + 0.170121i
\(568\) −15.4291 + 15.4291i −0.647391 + 0.647391i
\(569\) 16.0656 0.673503 0.336752 0.941593i \(-0.390672\pi\)
0.336752 + 0.941593i \(0.390672\pi\)
\(570\) 1.57395 3.07828i 0.0659256 0.128935i
\(571\) −3.13996 −0.131403 −0.0657017 0.997839i \(-0.520929\pi\)
−0.0657017 + 0.997839i \(0.520929\pi\)
\(572\) 1.00350 1.00350i 0.0419584 0.0419584i
\(573\) −3.02917 2.13833i −0.126545 0.0893299i
\(574\) 40.2229i 1.67887i
\(575\) 9.04288 16.5003i 0.377114 0.688111i
\(576\) 14.9283 5.30474i 0.622013 0.221031i
\(577\) −26.5932 26.5932i −1.10709 1.10709i −0.993531 0.113558i \(-0.963775\pi\)
−0.113558 0.993531i \(-0.536225\pi\)
\(578\) −24.1570 24.1570i −1.00480 1.00480i
\(579\) 2.87384 + 16.6702i 0.119433 + 0.692791i
\(580\) −13.9153 10.4336i −0.577800 0.433230i
\(581\) 41.3539i 1.71565i
\(582\) 8.90660 12.6171i 0.369190 0.522998i
\(583\) 1.03402 1.03402i 0.0428249 0.0428249i
\(584\) −2.67354 −0.110632
\(585\) −14.4471 + 7.58497i −0.597314 + 0.313600i
\(586\) 23.7879 0.982671
\(587\) −4.22727 + 4.22727i −0.174478 + 0.174478i −0.788944 0.614465i \(-0.789372\pi\)
0.614465 + 0.788944i \(0.289372\pi\)
\(588\) 14.8256 21.0021i 0.611398 0.866110i
\(589\) 3.84489i 0.158426i
\(590\) 1.15522 + 8.07893i 0.0475598 + 0.332604i
\(591\) 1.88871 + 10.9558i 0.0776911 + 0.450662i
\(592\) −0.182337 0.182337i −0.00749402 0.00749402i
\(593\) −29.5108 29.5108i −1.21186 1.21186i −0.970414 0.241447i \(-0.922378\pi\)
−0.241447 0.970414i \(-0.577622\pi\)
\(594\) 1.10230 + 1.96076i 0.0452279 + 0.0804510i
\(595\) −43.8525 + 58.4862i −1.79778 + 2.39770i
\(596\) 0.155627i 0.00637473i
\(597\) −3.34349 2.36021i −0.136840 0.0965970i
\(598\) −5.77793 + 5.77793i −0.236277 + 0.236277i
\(599\) −4.56114 −0.186363 −0.0931815 0.995649i \(-0.529704\pi\)
−0.0931815 + 0.995649i \(0.529704\pi\)
\(600\) 10.8773 + 22.2459i 0.444064 + 0.908186i
\(601\) 22.5632 0.920371 0.460186 0.887823i \(-0.347783\pi\)
0.460186 + 0.887823i \(0.347783\pi\)
\(602\) 7.00439 7.00439i 0.285478 0.285478i
\(603\) −1.43560 + 3.01826i −0.0584620 + 0.122913i
\(604\) 10.9380i 0.445059i
\(605\) −14.4400 + 19.2586i −0.587069 + 0.782975i
\(606\) −0.612692 + 0.105624i −0.0248889 + 0.00429068i
\(607\) −29.4054 29.4054i −1.19353 1.19353i −0.976069 0.217461i \(-0.930223\pi\)
−0.217461 0.976069i \(-0.569777\pi\)
\(608\) −3.95144 3.95144i −0.160252 0.160252i
\(609\) 48.5236 8.36515i 1.96628 0.338973i
\(610\) −0.111819 0.781994i −0.00452742 0.0316620i
\(611\) 13.7879i 0.557799i
\(612\) −11.5257 + 24.2321i −0.465898 + 0.979526i
\(613\) 6.61155 6.61155i 0.267038 0.267038i −0.560868 0.827905i \(-0.689532\pi\)
0.827905 + 0.560868i \(0.189532\pi\)
\(614\) 1.98876 0.0802597
\(615\) 37.7607 12.2102i 1.52266 0.492361i
\(616\) 6.09735 0.245669
\(617\) 16.4346 16.4346i 0.661631 0.661631i −0.294133 0.955764i \(-0.595031\pi\)
0.955764 + 0.294133i \(0.0950309\pi\)
\(618\) −16.2794 11.4918i −0.654854 0.462269i
\(619\) 1.62695i 0.0653928i 0.999465 + 0.0326964i \(0.0104094\pi\)
−0.999465 + 0.0326964i \(0.989591\pi\)
\(620\) −8.27584 6.20517i −0.332366 0.249206i
\(621\) 9.58240 + 17.0451i 0.384528 + 0.683996i
\(622\) −11.1184 11.1184i −0.445806 0.445806i
\(623\) 26.0225 + 26.0225i 1.04257 + 1.04257i
\(624\) −0.104675 0.607188i −0.00419036 0.0243070i
\(625\) −21.0729 + 13.4512i −0.842915 + 0.538046i
\(626\) 9.56888i 0.382449i
\(627\) 0.484388 0.686187i 0.0193446 0.0274037i
\(628\) −21.1451 + 21.1451i −0.843780 + 0.843780i
\(629\) 13.1085 0.522671
\(630\) −25.1412 7.83050i −1.00165 0.311974i
\(631\) 6.15817 0.245153 0.122576 0.992459i \(-0.460884\pi\)
0.122576 + 0.992459i \(0.460884\pi\)
\(632\) 15.1667 15.1667i 0.603298 0.603298i
\(633\) −8.31707 + 11.7820i −0.330574 + 0.468293i
\(634\) 7.63472i 0.303214i
\(635\) −38.8349 + 5.55309i −1.54112 + 0.220368i
\(636\) 1.06757 + 6.19261i 0.0423317 + 0.245553i
\(637\) −21.2186 21.2186i −0.840710 0.840710i
\(638\) 1.97891 + 1.97891i 0.0783458 + 0.0783458i
\(639\) 21.5718 7.66549i 0.853368 0.303242i
\(640\) 14.3043 2.04541i 0.565429 0.0808519i
\(641\) 4.36725i 0.172496i 0.996274 + 0.0862481i \(0.0274878\pi\)
−0.996274 + 0.0862481i \(0.972512\pi\)
\(642\) 15.3170 + 10.8124i 0.604513 + 0.426733i
\(643\) −7.15001 + 7.15001i −0.281969 + 0.281969i −0.833894 0.551925i \(-0.813893\pi\)
0.551925 + 0.833894i \(0.313893\pi\)
\(644\) 19.9091 0.784529
\(645\) 8.70190 + 4.44935i 0.342637 + 0.175193i
\(646\) −6.63654 −0.261111
\(647\) 26.3863 26.3863i 1.03735 1.03735i 0.0380774 0.999275i \(-0.487877\pi\)
0.999275 0.0380774i \(-0.0121233\pi\)
\(648\) −25.5991 2.63408i −1.00563 0.103477i
\(649\) 1.98267i 0.0778268i
\(650\) 10.4218 3.04268i 0.408776 0.119344i
\(651\) 28.8585 4.97502i 1.13105 0.194986i
\(652\) 13.3548 + 13.3548i 0.523013 + 0.523013i
\(653\) −13.2064 13.2064i −0.516806 0.516806i 0.399797 0.916604i \(-0.369080\pi\)
−0.916604 + 0.399797i \(0.869080\pi\)
\(654\) −4.48304 + 0.772846i −0.175301 + 0.0302207i
\(655\) 3.91522 + 2.93560i 0.152980 + 0.114704i
\(656\) 1.49855i 0.0585086i
\(657\) 2.53310 + 1.20484i 0.0988258 + 0.0470051i
\(658\) −15.7336 + 15.7336i −0.613361 + 0.613361i
\(659\) 25.5826 0.996557 0.498278 0.867017i \(-0.333966\pi\)
0.498278 + 0.867017i \(0.333966\pi\)
\(660\) 0.695226 + 2.15003i 0.0270616 + 0.0836898i
\(661\) 31.6395 1.23063 0.615317 0.788279i \(-0.289028\pi\)
0.615317 + 0.788279i \(0.289028\pi\)
\(662\) −10.4178 + 10.4178i −0.404900 + 0.404900i
\(663\) 25.5885 + 18.0632i 0.993775 + 0.701517i
\(664\) 26.8904i 1.04355i
\(665\) 1.39185 + 9.73372i 0.0539735 + 0.377457i
\(666\) 1.58109 + 4.44942i 0.0612659 + 0.172411i
\(667\) 17.2029 + 17.2029i 0.666097 + 0.666097i
\(668\) −2.73782 2.73782i −0.105929 0.105929i
\(669\) 0.0799833 + 0.463958i 0.00309233 + 0.0179377i
\(670\) 1.33406 1.77924i 0.0515394 0.0687381i
\(671\) 0.191911i 0.00740866i
\(672\) −24.5453 + 34.7711i −0.946857 + 1.34132i
\(673\) −15.6709 + 15.6709i −0.604069 + 0.604069i −0.941390 0.337321i \(-0.890479\pi\)
0.337321 + 0.941390i \(0.390479\pi\)
\(674\) −19.0166 −0.732493
\(675\) −0.280765 25.9792i −0.0108067 0.999942i
\(676\) −8.52211 −0.327773
\(677\) 21.6627 21.6627i 0.832564 0.832564i −0.155303 0.987867i \(-0.549635\pi\)
0.987867 + 0.155303i \(0.0496355\pi\)
\(678\) 17.2202 24.3943i 0.661339 0.936857i
\(679\) 43.9233i 1.68562i
\(680\) 28.5151 38.0306i 1.09350 1.45841i
\(681\) −3.02552 17.5501i −0.115938 0.672522i
\(682\) 1.17692 + 1.17692i 0.0450666 + 0.0450666i
\(683\) −22.3519 22.3519i −0.855271 0.855271i 0.135506 0.990777i \(-0.456734\pi\)
−0.990777 + 0.135506i \(0.956734\pi\)
\(684\) 1.20855 + 3.40103i 0.0462099 + 0.130041i
\(685\) −6.02018 42.1014i −0.230019 1.60861i
\(686\) 20.9479i 0.799796i
\(687\) −28.2173 19.9189i −1.07656 0.759954i
\(688\) −0.260957 + 0.260957i −0.00994889 + 0.00994889i
\(689\) 7.33502 0.279442
\(690\) −4.00296 12.3794i −0.152390 0.471275i
\(691\) −26.6976 −1.01563 −0.507813 0.861468i \(-0.669546\pi\)
−0.507813 + 0.861468i \(0.669546\pi\)
\(692\) 10.5324 10.5324i 0.400381 0.400381i
\(693\) −5.77706 2.74778i −0.219453 0.104380i
\(694\) 20.6076i 0.782253i
\(695\) 35.4846 + 26.6061i 1.34601 + 1.00923i
\(696\) −31.5525 + 5.43943i −1.19599 + 0.206181i
\(697\) −53.8666 53.8666i −2.04034 2.04034i
\(698\) 4.45696 + 4.45696i 0.168698 + 0.168698i
\(699\) −19.3154 + 3.32985i −0.730576 + 0.125947i
\(700\) −23.1974 12.7132i −0.876779 0.480512i
\(701\) 7.96666i 0.300897i 0.988618 + 0.150448i \(0.0480717\pi\)
−0.988618 + 0.150448i \(0.951928\pi\)
\(702\) −3.04482 + 10.8642i −0.114919 + 0.410042i
\(703\) 1.24679 1.24679i 0.0470235 0.0470235i
\(704\) −2.56091 −0.0965179
\(705\) −19.5467 9.99437i −0.736170 0.376410i
\(706\) 19.9317 0.750141
\(707\) 1.25031 1.25031i 0.0470229 0.0470229i
\(708\) −6.96047 4.91348i −0.261590 0.184660i
\(709\) 9.48047i 0.356046i −0.984026 0.178023i \(-0.943030\pi\)
0.984026 0.178023i \(-0.0569702\pi\)
\(710\) −15.0790 + 2.15618i −0.565904 + 0.0809199i
\(711\) −21.2049 + 7.53510i −0.795245 + 0.282588i
\(712\) −16.9211 16.9211i −0.634147 0.634147i
\(713\) 10.2311 + 10.2311i 0.383157 + 0.383157i
\(714\) 8.58721 + 49.8117i 0.321368 + 1.86416i
\(715\) 2.61103 0.373357i 0.0976470 0.0139628i
\(716\) 12.8900i 0.481723i
\(717\) 8.05400 11.4093i 0.300782 0.426090i
\(718\) −16.2960 + 16.2960i −0.608163 + 0.608163i
\(719\) 1.99830 0.0745241 0.0372621 0.999306i \(-0.488136\pi\)
0.0372621 + 0.999306i \(0.488136\pi\)
\(720\) 0.936665 + 0.291734i 0.0349074 + 0.0108723i
\(721\) 56.6725 2.11060
\(722\) −0.631220 + 0.631220i −0.0234916 + 0.0234916i
\(723\) 3.28174 4.64893i 0.122049 0.172896i
\(724\) 25.3155i 0.940842i
\(725\) −9.05910 31.0292i −0.336447 1.15240i
\(726\) 2.82764 + 16.4023i 0.104944 + 0.608746i
\(727\) −8.30098 8.30098i −0.307866 0.307866i 0.536215 0.844081i \(-0.319854\pi\)
−0.844081 + 0.536215i \(0.819854\pi\)
\(728\) 21.6263 + 21.6263i 0.801524 + 0.801524i
\(729\) 23.0674 + 14.0320i 0.854347 + 0.519704i
\(730\) −1.49325 1.11963i −0.0552675 0.0414392i
\(731\) 18.7606i 0.693886i
\(732\) 0.673733 + 0.475596i 0.0249019 + 0.0175785i
\(733\) −3.73842 + 3.73842i −0.138082 + 0.138082i −0.772769 0.634687i \(-0.781129\pi\)
0.634687 + 0.772769i \(0.281129\pi\)
\(734\) 17.6812 0.652625
\(735\) 45.4614 14.7003i 1.67687 0.542227i
\(736\) −21.0292 −0.775146
\(737\) 0.382023 0.382023i 0.0140720 0.0140720i
\(738\) 11.7868 24.7810i 0.433876 0.912202i
\(739\) 15.4108i 0.566895i 0.958988 + 0.283447i \(0.0914781\pi\)
−0.958988 + 0.283447i \(0.908522\pi\)
\(740\) 0.671461 + 4.69578i 0.0246834 + 0.172620i
\(741\) 4.15184 0.715749i 0.152522 0.0262937i
\(742\) 8.37012 + 8.37012i 0.307277 + 0.307277i
\(743\) 15.8667 + 15.8667i 0.582092 + 0.582092i 0.935478 0.353386i \(-0.114970\pi\)
−0.353386 + 0.935478i \(0.614970\pi\)
\(744\) −18.7652 + 3.23500i −0.687967 + 0.118601i
\(745\) 0.173514 0.231416i 0.00635706 0.00847842i
\(746\) 22.9548i 0.840436i
\(747\) 12.1182 25.4779i 0.443382 0.932186i
\(748\) 3.06707 3.06707i 0.112143 0.112143i
\(749\) −53.3221 −1.94835
\(750\) −3.24088 + 16.9801i −0.118340 + 0.620027i
\(751\) −3.77036 −0.137583 −0.0687913 0.997631i \(-0.521914\pi\)
−0.0687913 + 0.997631i \(0.521914\pi\)
\(752\) 0.586175 0.586175i 0.0213756 0.0213756i
\(753\) 8.40892 + 5.93596i 0.306438 + 0.216318i
\(754\) 14.0377i 0.511225i
\(755\) −12.1951 + 16.2646i −0.443825 + 0.591930i
\(756\) 23.9632 13.4717i 0.871535 0.489959i
\(757\) 9.12642 + 9.12642i 0.331705 + 0.331705i 0.853234 0.521529i \(-0.174638\pi\)
−0.521529 + 0.853234i \(0.674638\pi\)
\(758\) −6.10446 6.10446i −0.221724 0.221724i
\(759\) −0.536979 3.11485i −0.0194911 0.113062i
\(760\) −0.905048 6.32935i −0.0328295 0.229590i
\(761\) 31.0451i 1.12538i −0.826666 0.562692i \(-0.809766\pi\)
0.826666 0.562692i \(-0.190234\pi\)
\(762\) −15.6437 + 22.1609i −0.566710 + 0.802805i
\(763\) 9.14850 9.14850i 0.331198 0.331198i
\(764\) −2.57558 −0.0931811
\(765\) −44.1558 + 23.1825i −1.59646 + 0.838166i
\(766\) 8.20955 0.296623
\(767\) −7.03222 + 7.03222i −0.253919 + 0.253919i
\(768\) 16.3121 23.1078i 0.588612 0.833832i
\(769\) 24.4566i 0.881927i 0.897525 + 0.440964i \(0.145363\pi\)
−0.897525 + 0.440964i \(0.854637\pi\)
\(770\) 3.40554 + 2.55345i 0.122727 + 0.0920199i
\(771\) 2.68506 + 15.5752i 0.0967001