Properties

Label 285.2.k.d.77.10
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.10
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.d.248.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0580413 - 0.0580413i) q^{2} +(1.62284 - 0.605290i) q^{3} +1.99326i q^{4} +(1.89399 + 1.18861i) q^{5} +(0.0590602 - 0.129324i) q^{6} +(-2.14350 - 2.14350i) q^{7} +(0.231774 + 0.231774i) q^{8} +(2.26725 - 1.96458i) q^{9} +O(q^{10})\) \(q+(0.0580413 - 0.0580413i) q^{2} +(1.62284 - 0.605290i) q^{3} +1.99326i q^{4} +(1.89399 + 1.18861i) q^{5} +(0.0590602 - 0.129324i) q^{6} +(-2.14350 - 2.14350i) q^{7} +(0.231774 + 0.231774i) q^{8} +(2.26725 - 1.96458i) q^{9} +(0.178918 - 0.0409414i) q^{10} +4.16350i q^{11} +(1.20650 + 3.23476i) q^{12} +(2.98648 - 2.98648i) q^{13} -0.248823 q^{14} +(3.79311 + 0.782512i) q^{15} -3.95962 q^{16} +(-1.86072 + 1.86072i) q^{17} +(0.0175672 - 0.245621i) q^{18} +1.00000i q^{19} +(-2.36921 + 3.77523i) q^{20} +(-4.77601 - 2.18113i) q^{21} +(0.241655 + 0.241655i) q^{22} +(-5.35400 - 5.35400i) q^{23} +(0.516424 + 0.235843i) q^{24} +(2.17442 + 4.50243i) q^{25} -0.346678i q^{26} +(2.49025 - 4.56055i) q^{27} +(4.27256 - 4.27256i) q^{28} +5.48965 q^{29} +(0.265575 - 0.174739i) q^{30} -0.743102 q^{31} +(-0.693369 + 0.693369i) q^{32} +(2.52013 + 6.75672i) q^{33} +0.215997i q^{34} +(-1.51199 - 6.60756i) q^{35} +(3.91593 + 4.51922i) q^{36} +(-3.93981 - 3.93981i) q^{37} +(0.0580413 + 0.0580413i) q^{38} +(3.03891 - 6.65428i) q^{39} +(0.163490 + 0.714467i) q^{40} -7.30907i q^{41} +(-0.403801 + 0.150610i) q^{42} +(2.54619 - 2.54619i) q^{43} -8.29896 q^{44} +(6.62927 - 1.02603i) q^{45} -0.621506 q^{46} +(-4.88333 + 4.88333i) q^{47} +(-6.42585 + 2.39672i) q^{48} +2.18918i q^{49} +(0.387533 + 0.135121i) q^{50} +(-1.89338 + 4.14593i) q^{51} +(5.95284 + 5.95284i) q^{52} +(-1.58196 - 1.58196i) q^{53} +(-0.120163 - 0.409238i) q^{54} +(-4.94878 + 7.88565i) q^{55} -0.993615i q^{56} +(0.605290 + 1.62284i) q^{57} +(0.318626 - 0.318626i) q^{58} -12.7007 q^{59} +(-1.55975 + 7.56066i) q^{60} -5.26300 q^{61} +(-0.0431306 + 0.0431306i) q^{62} +(-9.07093 - 0.648767i) q^{63} -7.83875i q^{64} +(9.20613 - 2.10662i) q^{65} +(0.538440 + 0.245897i) q^{66} +(1.58677 + 1.58677i) q^{67} +(-3.70890 - 3.70890i) q^{68} +(-11.9294 - 5.44799i) q^{69} +(-0.471269 - 0.295753i) q^{70} +7.97592i q^{71} +(0.980828 + 0.0701504i) q^{72} +(3.09062 - 3.09062i) q^{73} -0.457343 q^{74} +(6.25402 + 5.99059i) q^{75} -1.99326 q^{76} +(8.92447 - 8.92447i) q^{77} +(-0.209841 - 0.562605i) q^{78} +4.68054i q^{79} +(-7.49949 - 4.70644i) q^{80} +(1.28084 - 8.90839i) q^{81} +(-0.424228 - 0.424228i) q^{82} +(0.803758 + 0.803758i) q^{83} +(4.34756 - 9.51983i) q^{84} +(-5.73586 + 1.31252i) q^{85} -0.295569i q^{86} +(8.90884 - 3.32283i) q^{87} +(-0.964992 + 0.964992i) q^{88} -7.94955 q^{89} +(0.325219 - 0.444324i) q^{90} -12.8030 q^{91} +(10.6719 - 10.6719i) q^{92} +(-1.20594 + 0.449792i) q^{93} +0.566869i q^{94} +(-1.18861 + 1.89399i) q^{95} +(-0.705541 + 1.54492i) q^{96} +(11.4514 + 11.4514i) q^{97} +(0.127063 + 0.127063i) q^{98} +(8.17954 + 9.43970i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 36 q - 2 q^{3} + 4 q^{6} + 4 q^{7} - 4 q^{10} - 18 q^{12} - 8 q^{13} - 8 q^{15} - 84 q^{16} + 8 q^{21} + 40 q^{22} - 20 q^{25} - 14 q^{27} + 36 q^{28} + 28 q^{30} - 28 q^{33} + 92 q^{36} - 4 q^{37} - 20 q^{40} - 100 q^{42} + 16 q^{43} + 28 q^{45} - 24 q^{46} - 58 q^{48} + 32 q^{51} + 148 q^{52} - 72 q^{55} - 2 q^{57} - 12 q^{58} + 58 q^{60} - 112 q^{61} - 64 q^{63} + 92 q^{66} - 8 q^{67} + 8 q^{70} - 88 q^{72} + 76 q^{73} + 80 q^{75} + 36 q^{76} - 36 q^{78} + 4 q^{81} + 20 q^{82} - 28 q^{85} - 4 q^{87} + 140 q^{88} + 76 q^{90} - 24 q^{91} - 48 q^{93} + 32 q^{96} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0580413 0.0580413i 0.0410414 0.0410414i −0.686288 0.727330i \(-0.740761\pi\)
0.727330 + 0.686288i \(0.240761\pi\)
\(3\) 1.62284 0.605290i 0.936950 0.349464i
\(4\) 1.99326i 0.996631i
\(5\) 1.89399 + 1.18861i 0.847020 + 0.531562i
\(6\) 0.0590602 0.129324i 0.0241112 0.0527962i
\(7\) −2.14350 2.14350i −0.810167 0.810167i 0.174492 0.984659i \(-0.444172\pi\)
−0.984659 + 0.174492i \(0.944172\pi\)
\(8\) 0.231774 + 0.231774i 0.0819445 + 0.0819445i
\(9\) 2.26725 1.96458i 0.755750 0.654861i
\(10\) 0.178918 0.0409414i 0.0565789 0.0129468i
\(11\) 4.16350i 1.25534i 0.778478 + 0.627672i \(0.215992\pi\)
−0.778478 + 0.627672i \(0.784008\pi\)
\(12\) 1.20650 + 3.23476i 0.348287 + 0.933793i
\(13\) 2.98648 2.98648i 0.828300 0.828300i −0.158981 0.987282i \(-0.550821\pi\)
0.987282 + 0.158981i \(0.0508210\pi\)
\(14\) −0.248823 −0.0665007
\(15\) 3.79311 + 0.782512i 0.979376 + 0.202044i
\(16\) −3.95962 −0.989905
\(17\) −1.86072 + 1.86072i −0.451291 + 0.451291i −0.895783 0.444492i \(-0.853384\pi\)
0.444492 + 0.895783i \(0.353384\pi\)
\(18\) 0.0175672 0.245621i 0.00414063 0.0578934i
\(19\) 1.00000i 0.229416i
\(20\) −2.36921 + 3.77523i −0.529771 + 0.844166i
\(21\) −4.77601 2.18113i −1.04221 0.475961i
\(22\) 0.241655 + 0.241655i 0.0515210 + 0.0515210i
\(23\) −5.35400 5.35400i −1.11639 1.11639i −0.992267 0.124120i \(-0.960389\pi\)
−0.124120 0.992267i \(-0.539611\pi\)
\(24\) 0.516424 + 0.235843i 0.105415 + 0.0481412i
\(25\) 2.17442 + 4.50243i 0.434884 + 0.900486i
\(26\) 0.346678i 0.0679892i
\(27\) 2.49025 4.56055i 0.479249 0.877679i
\(28\) 4.27256 4.27256i 0.807438 0.807438i
\(29\) 5.48965 1.01940 0.509701 0.860352i \(-0.329756\pi\)
0.509701 + 0.860352i \(0.329756\pi\)
\(30\) 0.265575 0.174739i 0.0484871 0.0319028i
\(31\) −0.743102 −0.133465 −0.0667325 0.997771i \(-0.521257\pi\)
−0.0667325 + 0.997771i \(0.521257\pi\)
\(32\) −0.693369 + 0.693369i −0.122572 + 0.122572i
\(33\) 2.52013 + 6.75672i 0.438698 + 1.17619i
\(34\) 0.215997i 0.0370432i
\(35\) −1.51199 6.60756i −0.255573 1.11688i
\(36\) 3.91593 + 4.51922i 0.652655 + 0.753204i
\(37\) −3.93981 3.93981i −0.647701 0.647701i 0.304736 0.952437i \(-0.401432\pi\)
−0.952437 + 0.304736i \(0.901432\pi\)
\(38\) 0.0580413 + 0.0580413i 0.00941554 + 0.00941554i
\(39\) 3.03891 6.65428i 0.486615 1.06554i
\(40\) 0.163490 + 0.714467i 0.0258500 + 0.112967i
\(41\) 7.30907i 1.14148i −0.821129 0.570742i \(-0.806655\pi\)
0.821129 0.570742i \(-0.193345\pi\)
\(42\) −0.403801 + 0.150610i −0.0623078 + 0.0232396i
\(43\) 2.54619 2.54619i 0.388291 0.388291i −0.485786 0.874078i \(-0.661467\pi\)
0.874078 + 0.485786i \(0.161467\pi\)
\(44\) −8.29896 −1.25111
\(45\) 6.62927 1.02603i 0.988234 0.152952i
\(46\) −0.621506 −0.0916361
\(47\) −4.88333 + 4.88333i −0.712306 + 0.712306i −0.967017 0.254711i \(-0.918020\pi\)
0.254711 + 0.967017i \(0.418020\pi\)
\(48\) −6.42585 + 2.39672i −0.927491 + 0.345936i
\(49\) 2.18918i 0.312741i
\(50\) 0.387533 + 0.135121i 0.0548054 + 0.0191090i
\(51\) −1.89338 + 4.14593i −0.265127 + 0.580547i
\(52\) 5.95284 + 5.95284i 0.825510 + 0.825510i
\(53\) −1.58196 1.58196i −0.217299 0.217299i 0.590060 0.807359i \(-0.299104\pi\)
−0.807359 + 0.590060i \(0.799104\pi\)
\(54\) −0.120163 0.409238i −0.0163521 0.0556902i
\(55\) −4.94878 + 7.88565i −0.667293 + 1.06330i
\(56\) 0.993615i 0.132777i
\(57\) 0.605290 + 1.62284i 0.0801726 + 0.214951i
\(58\) 0.318626 0.318626i 0.0418376 0.0418376i
\(59\) −12.7007 −1.65349 −0.826746 0.562575i \(-0.809811\pi\)
−0.826746 + 0.562575i \(0.809811\pi\)
\(60\) −1.55975 + 7.56066i −0.201363 + 0.976077i
\(61\) −5.26300 −0.673858 −0.336929 0.941530i \(-0.609388\pi\)
−0.336929 + 0.941530i \(0.609388\pi\)
\(62\) −0.0431306 + 0.0431306i −0.00547759 + 0.00547759i
\(63\) −9.07093 0.648767i −1.14283 0.0817370i
\(64\) 7.83875i 0.979844i
\(65\) 9.20613 2.10662i 1.14188 0.261294i
\(66\) 0.538440 + 0.245897i 0.0662774 + 0.0302679i
\(67\) 1.58677 + 1.58677i 0.193855 + 0.193855i 0.797360 0.603505i \(-0.206229\pi\)
−0.603505 + 0.797360i \(0.706229\pi\)
\(68\) −3.70890 3.70890i −0.449771 0.449771i
\(69\) −11.9294 5.44799i −1.43614 0.655861i
\(70\) −0.471269 0.295753i −0.0563274 0.0353492i
\(71\) 7.97592i 0.946568i 0.880910 + 0.473284i \(0.156932\pi\)
−0.880910 + 0.473284i \(0.843068\pi\)
\(72\) 0.980828 + 0.0701504i 0.115592 + 0.00826730i
\(73\) 3.09062 3.09062i 0.361729 0.361729i −0.502720 0.864449i \(-0.667667\pi\)
0.864449 + 0.502720i \(0.167667\pi\)
\(74\) −0.457343 −0.0531650
\(75\) 6.25402 + 5.99059i 0.722152 + 0.691734i
\(76\) −1.99326 −0.228643
\(77\) 8.92447 8.92447i 1.01704 1.01704i
\(78\) −0.209841 0.562605i −0.0237598 0.0637024i
\(79\) 4.68054i 0.526602i 0.964714 + 0.263301i \(0.0848113\pi\)
−0.964714 + 0.263301i \(0.915189\pi\)
\(80\) −7.49949 4.70644i −0.838469 0.526196i
\(81\) 1.28084 8.90839i 0.142315 0.989821i
\(82\) −0.424228 0.424228i −0.0468481 0.0468481i
\(83\) 0.803758 + 0.803758i 0.0882239 + 0.0882239i 0.749841 0.661618i \(-0.230130\pi\)
−0.661618 + 0.749841i \(0.730130\pi\)
\(84\) 4.34756 9.51983i 0.474358 1.03870i
\(85\) −5.73586 + 1.31252i −0.622141 + 0.142363i
\(86\) 0.295569i 0.0318720i
\(87\) 8.90884 3.32283i 0.955128 0.356244i
\(88\) −0.964992 + 0.964992i −0.102868 + 0.102868i
\(89\) −7.94955 −0.842650 −0.421325 0.906910i \(-0.638435\pi\)
−0.421325 + 0.906910i \(0.638435\pi\)
\(90\) 0.325219 0.444324i 0.0342811 0.0468358i
\(91\) −12.8030 −1.34212
\(92\) 10.6719 10.6719i 1.11263 1.11263i
\(93\) −1.20594 + 0.449792i −0.125050 + 0.0466412i
\(94\) 0.566869i 0.0584681i
\(95\) −1.18861 + 1.89399i −0.121949 + 0.194320i
\(96\) −0.705541 + 1.54492i −0.0720090 + 0.157678i
\(97\) 11.4514 + 11.4514i 1.16271 + 1.16271i 0.983880 + 0.178830i \(0.0572313\pi\)
0.178830 + 0.983880i \(0.442769\pi\)
\(98\) 0.127063 + 0.127063i 0.0128353 + 0.0128353i
\(99\) 8.17954 + 9.43970i 0.822075 + 0.948726i
\(100\) −8.97453 + 4.33419i −0.897453 + 0.433419i
\(101\) 3.95414i 0.393451i 0.980459 + 0.196726i \(0.0630308\pi\)
−0.980459 + 0.196726i \(0.936969\pi\)
\(102\) 0.130741 + 0.350530i 0.0129453 + 0.0347076i
\(103\) 4.59293 4.59293i 0.452554 0.452554i −0.443647 0.896202i \(-0.646316\pi\)
0.896202 + 0.443647i \(0.146316\pi\)
\(104\) 1.38438 0.135749
\(105\) −6.45321 9.80784i −0.629769 0.957147i
\(106\) −0.183638 −0.0178365
\(107\) −5.73547 + 5.73547i −0.554469 + 0.554469i −0.927727 0.373259i \(-0.878240\pi\)
0.373259 + 0.927727i \(0.378240\pi\)
\(108\) 9.09038 + 4.96373i 0.874722 + 0.477635i
\(109\) 15.4746i 1.48220i −0.671397 0.741098i \(-0.734306\pi\)
0.671397 0.741098i \(-0.265694\pi\)
\(110\) 0.170460 + 0.744926i 0.0162527 + 0.0710259i
\(111\) −8.77842 4.00897i −0.833211 0.380515i
\(112\) 8.48744 + 8.48744i 0.801988 + 0.801988i
\(113\) 9.52067 + 9.52067i 0.895629 + 0.895629i 0.995046 0.0994165i \(-0.0316976\pi\)
−0.0994165 + 0.995046i \(0.531698\pi\)
\(114\) 0.129324 + 0.0590602i 0.0121123 + 0.00553149i
\(115\) −3.77663 16.5043i −0.352173 1.53903i
\(116\) 10.9423i 1.01597i
\(117\) 0.903909 12.6383i 0.0835665 1.16841i
\(118\) −0.737165 + 0.737165i −0.0678616 + 0.0678616i
\(119\) 7.97691 0.731242
\(120\) 0.697778 + 1.06051i 0.0636981 + 0.0968109i
\(121\) −6.33476 −0.575888
\(122\) −0.305471 + 0.305471i −0.0276561 + 0.0276561i
\(123\) −4.42410 11.8615i −0.398908 1.06951i
\(124\) 1.48120i 0.133015i
\(125\) −1.23329 + 11.1121i −0.110309 + 0.993897i
\(126\) −0.564143 + 0.488833i −0.0502579 + 0.0435487i
\(127\) 4.31844 + 4.31844i 0.383199 + 0.383199i 0.872253 0.489054i \(-0.162658\pi\)
−0.489054 + 0.872253i \(0.662658\pi\)
\(128\) −1.84171 1.84171i −0.162786 0.162786i
\(129\) 2.59089 5.67326i 0.228115 0.499503i
\(130\) 0.412064 0.656606i 0.0361404 0.0575881i
\(131\) 5.60156i 0.489410i −0.969598 0.244705i \(-0.921309\pi\)
0.969598 0.244705i \(-0.0786912\pi\)
\(132\) −13.4679 + 5.02327i −1.17223 + 0.437220i
\(133\) 2.14350 2.14350i 0.185865 0.185865i
\(134\) 0.184196 0.0159121
\(135\) 10.1372 5.67772i 0.872474 0.488661i
\(136\) −0.862533 −0.0739616
\(137\) −10.8653 + 10.8653i −0.928282 + 0.928282i −0.997595 0.0693125i \(-0.977919\pi\)
0.0693125 + 0.997595i \(0.477919\pi\)
\(138\) −1.00861 + 0.376191i −0.0858584 + 0.0320235i
\(139\) 17.0106i 1.44282i 0.692509 + 0.721409i \(0.256505\pi\)
−0.692509 + 0.721409i \(0.743495\pi\)
\(140\) 13.1706 3.01380i 1.11312 0.254712i
\(141\) −4.96905 + 10.8807i −0.418470 + 0.916321i
\(142\) 0.462933 + 0.462933i 0.0388484 + 0.0388484i
\(143\) 12.4342 + 12.4342i 1.03980 + 1.03980i
\(144\) −8.97744 + 7.77900i −0.748120 + 0.648250i
\(145\) 10.3974 + 6.52504i 0.863453 + 0.541875i
\(146\) 0.358767i 0.0296917i
\(147\) 1.32509 + 3.55270i 0.109292 + 0.293022i
\(148\) 7.85307 7.85307i 0.645519 0.645519i
\(149\) 18.4556 1.51194 0.755972 0.654604i \(-0.227165\pi\)
0.755972 + 0.654604i \(0.227165\pi\)
\(150\) 0.710693 0.0152897i 0.0580278 0.00124840i
\(151\) 22.7751 1.85341 0.926707 0.375786i \(-0.122627\pi\)
0.926707 + 0.375786i \(0.122627\pi\)
\(152\) −0.231774 + 0.231774i −0.0187994 + 0.0187994i
\(153\) −0.563179 + 7.87425i −0.0455303 + 0.636596i
\(154\) 1.03597i 0.0834812i
\(155\) −1.40743 0.883257i −0.113047 0.0709449i
\(156\) 13.2637 + 6.05734i 1.06195 + 0.484975i
\(157\) −13.8123 13.8123i −1.10234 1.10234i −0.994127 0.108216i \(-0.965486\pi\)
−0.108216 0.994127i \(-0.534514\pi\)
\(158\) 0.271665 + 0.271665i 0.0216125 + 0.0216125i
\(159\) −3.52482 1.60973i −0.279536 0.127660i
\(160\) −2.13738 + 0.489092i −0.168975 + 0.0386661i
\(161\) 22.9526i 1.80892i
\(162\) −0.442713 0.591396i −0.0347828 0.0464644i
\(163\) 5.45224 5.45224i 0.427052 0.427052i −0.460571 0.887623i \(-0.652355\pi\)
0.887623 + 0.460571i \(0.152355\pi\)
\(164\) 14.5689 1.13764
\(165\) −3.25799 + 15.7926i −0.253634 + 1.22945i
\(166\) 0.0933023 0.00724166
\(167\) 7.44685 7.44685i 0.576254 0.576254i −0.357615 0.933869i \(-0.616410\pi\)
0.933869 + 0.357615i \(0.116410\pi\)
\(168\) −0.601425 1.61248i −0.0464009 0.124406i
\(169\) 4.83812i 0.372163i
\(170\) −0.256736 + 0.409097i −0.0196907 + 0.0313763i
\(171\) 1.96458 + 2.26725i 0.150235 + 0.173381i
\(172\) 5.07523 + 5.07523i 0.386983 + 0.386983i
\(173\) 8.58517 + 8.58517i 0.652718 + 0.652718i 0.953647 0.300929i \(-0.0972966\pi\)
−0.300929 + 0.953647i \(0.597297\pi\)
\(174\) 0.324219 0.709941i 0.0245790 0.0538205i
\(175\) 4.99009 14.3118i 0.377216 1.08187i
\(176\) 16.4859i 1.24267i
\(177\) −20.6113 + 7.68761i −1.54924 + 0.577836i
\(178\) −0.461402 + 0.461402i −0.0345835 + 0.0345835i
\(179\) 3.44269 0.257319 0.128659 0.991689i \(-0.458933\pi\)
0.128659 + 0.991689i \(0.458933\pi\)
\(180\) 2.04515 + 13.2139i 0.152437 + 0.984904i
\(181\) 4.53119 0.336800 0.168400 0.985719i \(-0.446140\pi\)
0.168400 + 0.985719i \(0.446140\pi\)
\(182\) −0.743104 + 0.743104i −0.0550826 + 0.0550826i
\(183\) −8.54104 + 3.18564i −0.631372 + 0.235489i
\(184\) 2.48184i 0.182964i
\(185\) −2.77908 12.1449i −0.204322 0.892908i
\(186\) −0.0438877 + 0.0961007i −0.00321800 + 0.00704644i
\(187\) −7.74711 7.74711i −0.566525 0.566525i
\(188\) −9.73375 9.73375i −0.709907 0.709907i
\(189\) −15.1134 + 4.43769i −1.09934 + 0.322794i
\(190\) 0.0409414 + 0.178918i 0.00297020 + 0.0129801i
\(191\) 16.7193i 1.20976i −0.796315 0.604882i \(-0.793220\pi\)
0.796315 0.604882i \(-0.206780\pi\)
\(192\) −4.74471 12.7211i −0.342420 0.918065i
\(193\) −1.70638 + 1.70638i −0.122828 + 0.122828i −0.765849 0.643021i \(-0.777681\pi\)
0.643021 + 0.765849i \(0.277681\pi\)
\(194\) 1.32930 0.0954384
\(195\) 13.6650 8.99108i 0.978571 0.643865i
\(196\) −4.36362 −0.311687
\(197\) 18.8065 18.8065i 1.33991 1.33991i 0.443770 0.896141i \(-0.353641\pi\)
0.896141 0.443770i \(-0.146359\pi\)
\(198\) 1.02264 + 0.0731411i 0.0726761 + 0.00519791i
\(199\) 14.8863i 1.05526i 0.849475 + 0.527630i \(0.176919\pi\)
−0.849475 + 0.527630i \(0.823081\pi\)
\(200\) −0.539573 + 1.54752i −0.0381535 + 0.109426i
\(201\) 3.53554 + 1.61463i 0.249378 + 0.113887i
\(202\) 0.229503 + 0.229503i 0.0161478 + 0.0161478i
\(203\) −11.7671 11.7671i −0.825885 0.825885i
\(204\) −8.26393 3.77401i −0.578591 0.264234i
\(205\) 8.68762 13.8433i 0.606770 0.966860i
\(206\) 0.533158i 0.0371469i
\(207\) −22.6572 1.62048i −1.57479 0.112631i
\(208\) −11.8253 + 11.8253i −0.819939 + 0.819939i
\(209\) −4.16350 −0.287996
\(210\) −0.943812 0.194707i −0.0651292 0.0134361i
\(211\) −14.2111 −0.978335 −0.489168 0.872190i \(-0.662699\pi\)
−0.489168 + 0.872190i \(0.662699\pi\)
\(212\) 3.15326 3.15326i 0.216567 0.216567i
\(213\) 4.82774 + 12.9437i 0.330791 + 0.886887i
\(214\) 0.665788i 0.0455123i
\(215\) 7.84890 1.79605i 0.535291 0.122489i
\(216\) 1.63419 0.479842i 0.111193 0.0326491i
\(217\) 1.59284 + 1.59284i 0.108129 + 0.108129i
\(218\) −0.898164 0.898164i −0.0608313 0.0608313i
\(219\) 3.14487 6.88631i 0.212511 0.465334i
\(220\) −15.7182 9.86421i −1.05972 0.665045i
\(221\) 11.1140i 0.747609i
\(222\) −0.742197 + 0.276825i −0.0498130 + 0.0185793i
\(223\) −18.1315 + 18.1315i −1.21417 + 1.21417i −0.244532 + 0.969641i \(0.578634\pi\)
−0.969641 + 0.244532i \(0.921366\pi\)
\(224\) 2.97247 0.198607
\(225\) 13.7753 + 5.93631i 0.918357 + 0.395754i
\(226\) 1.10518 0.0735157
\(227\) −18.1839 + 18.1839i −1.20691 + 1.20691i −0.234888 + 0.972022i \(0.575472\pi\)
−0.972022 + 0.234888i \(0.924528\pi\)
\(228\) −3.23476 + 1.20650i −0.214227 + 0.0799025i
\(229\) 29.0631i 1.92055i 0.279061 + 0.960273i \(0.409977\pi\)
−0.279061 + 0.960273i \(0.590023\pi\)
\(230\) −1.17713 0.738728i −0.0776176 0.0487103i
\(231\) 9.08114 19.8849i 0.597495 1.30833i
\(232\) 1.27236 + 1.27236i 0.0835343 + 0.0835343i
\(233\) 7.51531 + 7.51531i 0.492345 + 0.492345i 0.909044 0.416700i \(-0.136813\pi\)
−0.416700 + 0.909044i \(0.636813\pi\)
\(234\) −0.681077 0.786005i −0.0445234 0.0513828i
\(235\) −15.0533 + 3.44462i −0.981972 + 0.224703i
\(236\) 25.3159i 1.64792i
\(237\) 2.83309 + 7.59580i 0.184029 + 0.493400i
\(238\) 0.462990 0.462990i 0.0300112 0.0300112i
\(239\) 2.82540 0.182760 0.0913799 0.995816i \(-0.470872\pi\)
0.0913799 + 0.995816i \(0.470872\pi\)
\(240\) −15.0193 3.09845i −0.969490 0.200004i
\(241\) −8.64879 −0.557118 −0.278559 0.960419i \(-0.589857\pi\)
−0.278559 + 0.960419i \(0.589857\pi\)
\(242\) −0.367678 + 0.367678i −0.0236352 + 0.0236352i
\(243\) −3.31356 15.2322i −0.212565 0.977147i
\(244\) 10.4905i 0.671588i
\(245\) −2.60208 + 4.14630i −0.166241 + 0.264897i
\(246\) −0.945236 0.431675i −0.0602660 0.0275226i
\(247\) 2.98648 + 2.98648i 0.190025 + 0.190025i
\(248\) −0.172232 0.172232i −0.0109367 0.0109367i
\(249\) 1.79088 + 0.817868i 0.113492 + 0.0518303i
\(250\) 0.573379 + 0.716543i 0.0362637 + 0.0453181i
\(251\) 11.8528i 0.748144i −0.927400 0.374072i \(-0.877961\pi\)
0.927400 0.374072i \(-0.122039\pi\)
\(252\) 1.29316 18.0807i 0.0814616 1.13898i
\(253\) 22.2914 22.2914i 1.40145 1.40145i
\(254\) 0.501295 0.0314541
\(255\) −8.51395 + 5.60188i −0.533164 + 0.350803i
\(256\) 15.4637 0.966482
\(257\) −0.0936028 + 0.0936028i −0.00583878 + 0.00583878i −0.710020 0.704181i \(-0.751314\pi\)
0.704181 + 0.710020i \(0.251314\pi\)
\(258\) −0.178905 0.479662i −0.0111381 0.0298625i
\(259\) 16.8900i 1.04949i
\(260\) 4.19904 + 18.3502i 0.260413 + 1.13803i
\(261\) 12.4464 10.7849i 0.770412 0.667566i
\(262\) −0.325122 0.325122i −0.0200861 0.0200861i
\(263\) −9.94320 9.94320i −0.613124 0.613124i 0.330635 0.943759i \(-0.392737\pi\)
−0.943759 + 0.330635i \(0.892737\pi\)
\(264\) −0.981932 + 2.15013i −0.0604338 + 0.132331i
\(265\) −1.11589 4.87655i −0.0685486 0.299564i
\(266\) 0.248823i 0.0152563i
\(267\) −12.9009 + 4.81178i −0.789521 + 0.294476i
\(268\) −3.16285 + 3.16285i −0.193202 + 0.193202i
\(269\) 17.9294 1.09317 0.546587 0.837402i \(-0.315927\pi\)
0.546587 + 0.837402i \(0.315927\pi\)
\(270\) 0.258836 0.917920i 0.0157522 0.0558628i
\(271\) 7.52729 0.457250 0.228625 0.973515i \(-0.426577\pi\)
0.228625 + 0.973515i \(0.426577\pi\)
\(272\) 7.36774 7.36774i 0.446735 0.446735i
\(273\) −20.7773 + 7.74954i −1.25750 + 0.469024i
\(274\) 1.26127i 0.0761960i
\(275\) −18.7459 + 9.05321i −1.13042 + 0.545929i
\(276\) 10.8593 23.7785i 0.653652 1.43130i
\(277\) 7.53970 + 7.53970i 0.453017 + 0.453017i 0.896355 0.443338i \(-0.146206\pi\)
−0.443338 + 0.896355i \(0.646206\pi\)
\(278\) 0.987315 + 0.987315i 0.0592152 + 0.0592152i
\(279\) −1.68480 + 1.45988i −0.100866 + 0.0874010i
\(280\) 1.18102 1.88190i 0.0705794 0.112465i
\(281\) 30.1264i 1.79719i 0.438780 + 0.898594i \(0.355411\pi\)
−0.438780 + 0.898594i \(0.644589\pi\)
\(282\) 0.343120 + 0.919940i 0.0204325 + 0.0547816i
\(283\) 10.5281 10.5281i 0.625832 0.625832i −0.321184 0.947017i \(-0.604081\pi\)
0.947017 + 0.321184i \(0.104081\pi\)
\(284\) −15.8981 −0.943379
\(285\) −0.782512 + 3.79311i −0.0463520 + 0.224684i
\(286\) 1.44340 0.0853498
\(287\) −15.6670 + 15.6670i −0.924793 + 0.924793i
\(288\) −0.209860 + 2.93422i −0.0123661 + 0.172901i
\(289\) 10.0754i 0.592673i
\(290\) 0.982197 0.224754i 0.0576766 0.0131980i
\(291\) 25.5152 + 11.6524i 1.49573 + 0.683076i
\(292\) 6.16041 + 6.16041i 0.360511 + 0.360511i
\(293\) −12.9048 12.9048i −0.753906 0.753906i 0.221300 0.975206i \(-0.428970\pi\)
−0.975206 + 0.221300i \(0.928970\pi\)
\(294\) 0.283113 + 0.129294i 0.0165115 + 0.00754055i
\(295\) −24.0551 15.0962i −1.40054 0.878933i
\(296\) 1.82629i 0.106151i
\(297\) 18.9879 + 10.3682i 1.10179 + 0.601622i
\(298\) 1.07119 1.07119i 0.0620523 0.0620523i
\(299\) −31.9792 −1.84941
\(300\) −11.9408 + 12.4659i −0.689404 + 0.719719i
\(301\) −10.9155 −0.629161
\(302\) 1.32190 1.32190i 0.0760666 0.0760666i
\(303\) 2.39340 + 6.41695i 0.137497 + 0.368644i
\(304\) 3.95962i 0.227100i
\(305\) −9.96809 6.25565i −0.570771 0.358197i
\(306\) 0.424344 + 0.489719i 0.0242581 + 0.0279954i
\(307\) −2.49080 2.49080i −0.142157 0.142157i 0.632447 0.774604i \(-0.282051\pi\)
−0.774604 + 0.632447i \(0.782051\pi\)
\(308\) 17.7888 + 17.7888i 1.01361 + 1.01361i
\(309\) 4.67355 10.2337i 0.265869 0.582172i
\(310\) −0.132954 + 0.0304236i −0.00755130 + 0.00172795i
\(311\) 28.0331i 1.58961i −0.606863 0.794806i \(-0.707572\pi\)
0.606863 0.794806i \(-0.292428\pi\)
\(312\) 2.24663 0.837949i 0.127190 0.0474395i
\(313\) −4.14796 + 4.14796i −0.234457 + 0.234457i −0.814550 0.580093i \(-0.803016\pi\)
0.580093 + 0.814550i \(0.303016\pi\)
\(314\) −1.60337 −0.0904834
\(315\) −16.4091 12.0105i −0.924551 0.676717i
\(316\) −9.32955 −0.524828
\(317\) −12.4734 + 12.4734i −0.700577 + 0.700577i −0.964534 0.263957i \(-0.914972\pi\)
0.263957 + 0.964534i \(0.414972\pi\)
\(318\) −0.298016 + 0.111154i −0.0167119 + 0.00623322i
\(319\) 22.8562i 1.27970i
\(320\) 9.31721 14.8465i 0.520848 0.829947i
\(321\) −5.83616 + 12.7794i −0.325742 + 0.713276i
\(322\) 1.33220 + 1.33220i 0.0742405 + 0.0742405i
\(323\) −1.86072 1.86072i −0.103533 0.103533i
\(324\) 17.7568 + 2.55304i 0.986487 + 0.141836i
\(325\) 19.9403 + 6.95256i 1.10609 + 0.385659i
\(326\) 0.632910i 0.0350536i
\(327\) −9.36660 25.1128i −0.517974 1.38874i
\(328\) 1.69405 1.69405i 0.0935384 0.0935384i
\(329\) 20.9348 1.15417
\(330\) 0.727526 + 1.10572i 0.0400490 + 0.0608680i
\(331\) 13.2958 0.730803 0.365401 0.930850i \(-0.380932\pi\)
0.365401 + 0.930850i \(0.380932\pi\)
\(332\) −1.60210 + 1.60210i −0.0879267 + 0.0879267i
\(333\) −16.6726 1.19245i −0.913653 0.0653459i
\(334\) 0.864449i 0.0473005i
\(335\) 1.11928 + 4.89138i 0.0611531 + 0.267245i
\(336\) 18.9112 + 8.63644i 1.03169 + 0.471157i
\(337\) −7.67694 7.67694i −0.418190 0.418190i 0.466390 0.884579i \(-0.345554\pi\)
−0.884579 + 0.466390i \(0.845554\pi\)
\(338\) −0.280810 0.280810i −0.0152741 0.0152741i
\(339\) 21.2133 + 9.68781i 1.15215 + 0.526169i
\(340\) −2.61620 11.4331i −0.141884 0.620045i
\(341\) 3.09391i 0.167544i
\(342\) 0.245621 + 0.0175672i 0.0132817 + 0.000949925i
\(343\) −10.3120 + 10.3120i −0.556795 + 0.556795i
\(344\) 1.18028 0.0636366
\(345\) −16.1187 24.4979i −0.867804 1.31892i
\(346\) 0.996588 0.0535769
\(347\) −8.99478 + 8.99478i −0.482865 + 0.482865i −0.906045 0.423181i \(-0.860914\pi\)
0.423181 + 0.906045i \(0.360914\pi\)
\(348\) 6.62326 + 17.7577i 0.355044 + 0.951911i
\(349\) 22.1560i 1.18598i −0.805208 0.592992i \(-0.797947\pi\)
0.805208 0.592992i \(-0.202053\pi\)
\(350\) −0.541046 1.12031i −0.0289201 0.0598830i
\(351\) −6.18291 21.0571i −0.330019 1.12394i
\(352\) −2.88685 2.88685i −0.153869 0.153869i
\(353\) −7.83365 7.83365i −0.416943 0.416943i 0.467206 0.884149i \(-0.345261\pi\)
−0.884149 + 0.467206i \(0.845261\pi\)
\(354\) −0.750106 + 1.64250i −0.0398677 + 0.0872981i
\(355\) −9.48025 + 15.1063i −0.503159 + 0.801761i
\(356\) 15.8455i 0.839812i
\(357\) 12.9453 4.82834i 0.685137 0.255543i
\(358\) 0.199818 0.199818i 0.0105607 0.0105607i
\(359\) 14.2080 0.749871 0.374935 0.927051i \(-0.377665\pi\)
0.374935 + 0.927051i \(0.377665\pi\)
\(360\) 1.77430 + 1.29869i 0.0935139 + 0.0684467i
\(361\) −1.00000 −0.0526316
\(362\) 0.262996 0.262996i 0.0138228 0.0138228i
\(363\) −10.2803 + 3.83437i −0.539578 + 0.201252i
\(364\) 25.5198i 1.33760i
\(365\) 9.52714 2.18007i 0.498673 0.114110i
\(366\) −0.310834 + 0.680631i −0.0162475 + 0.0355772i
\(367\) −18.5949 18.5949i −0.970647 0.970647i 0.0289348 0.999581i \(-0.490788\pi\)
−0.999581 + 0.0289348i \(0.990788\pi\)
\(368\) 21.1998 + 21.1998i 1.10512 + 1.10512i
\(369\) −14.3593 16.5715i −0.747513 0.862677i
\(370\) −0.866205 0.543602i −0.0450318 0.0282605i
\(371\) 6.78186i 0.352097i
\(372\) −0.896553 2.40375i −0.0464841 0.124629i
\(373\) 18.8554 18.8554i 0.976298 0.976298i −0.0234275 0.999726i \(-0.507458\pi\)
0.999726 + 0.0234275i \(0.00745787\pi\)
\(374\) −0.899305 −0.0465019
\(375\) 4.72461 + 18.7797i 0.243978 + 0.969781i
\(376\) −2.26366 −0.116739
\(377\) 16.3947 16.3947i 0.844371 0.844371i
\(378\) −0.619632 + 1.13477i −0.0318704 + 0.0583663i
\(379\) 19.1917i 0.985812i 0.870082 + 0.492906i \(0.164065\pi\)
−0.870082 + 0.492906i \(0.835935\pi\)
\(380\) −3.77523 2.36921i −0.193665 0.121538i
\(381\) 9.62206 + 4.39425i 0.492953 + 0.225124i
\(382\) −0.970407 0.970407i −0.0496503 0.0496503i
\(383\) −1.59570 1.59570i −0.0815367 0.0815367i 0.665162 0.746699i \(-0.268362\pi\)
−0.746699 + 0.665162i \(0.768362\pi\)
\(384\) −4.10358 1.87404i −0.209410 0.0956342i
\(385\) 27.5106 6.29519i 1.40207 0.320832i
\(386\) 0.198081i 0.0100821i
\(387\) 0.770650 10.7751i 0.0391743 0.547727i
\(388\) −22.8256 + 22.8256i −1.15879 + 1.15879i
\(389\) −26.5340 −1.34533 −0.672664 0.739948i \(-0.734850\pi\)
−0.672664 + 0.739948i \(0.734850\pi\)
\(390\) 0.271280 1.31499i 0.0137368 0.0665870i
\(391\) 19.9246 1.00763
\(392\) −0.507396 + 0.507396i −0.0256274 + 0.0256274i
\(393\) −3.39057 9.09046i −0.171031 0.458553i
\(394\) 2.18311i 0.109984i
\(395\) −5.56333 + 8.86492i −0.279922 + 0.446043i
\(396\) −18.8158 + 16.3040i −0.945529 + 0.819306i
\(397\) 9.81676 + 9.81676i 0.492689 + 0.492689i 0.909152 0.416463i \(-0.136731\pi\)
−0.416463 + 0.909152i \(0.636731\pi\)
\(398\) 0.864018 + 0.864018i 0.0433093 + 0.0433093i
\(399\) 2.18113 4.77601i 0.109193 0.239099i
\(400\) −8.60988 17.8279i −0.430494 0.891396i
\(401\) 16.5299i 0.825463i 0.910853 + 0.412732i \(0.135425\pi\)
−0.910853 + 0.412732i \(0.864575\pi\)
\(402\) 0.298922 0.111492i 0.0149089 0.00556072i
\(403\) −2.21926 + 2.21926i −0.110549 + 0.110549i
\(404\) −7.88163 −0.392126
\(405\) 13.0145 15.3500i 0.646695 0.762749i
\(406\) −1.36595 −0.0677909
\(407\) 16.4034 16.4034i 0.813087 0.813087i
\(408\) −1.39976 + 0.522082i −0.0692983 + 0.0258469i
\(409\) 16.1593i 0.799027i 0.916727 + 0.399514i \(0.130821\pi\)
−0.916727 + 0.399514i \(0.869179\pi\)
\(410\) −0.299244 1.30772i −0.0147786 0.0645839i
\(411\) −11.0560 + 24.2093i −0.545353 + 1.19416i
\(412\) 9.15491 + 9.15491i 0.451030 + 0.451030i
\(413\) 27.2240 + 27.2240i 1.33960 + 1.33960i
\(414\) −1.40911 + 1.22100i −0.0692540 + 0.0600089i
\(415\) 0.566959 + 2.47767i 0.0278309 + 0.121624i
\(416\) 4.14147i 0.203052i
\(417\) 10.2963 + 27.6055i 0.504213 + 1.35185i
\(418\) −0.241655 + 0.241655i −0.0118197 + 0.0118197i
\(419\) 1.25815 0.0614648 0.0307324 0.999528i \(-0.490216\pi\)
0.0307324 + 0.999528i \(0.490216\pi\)
\(420\) 19.5496 12.8629i 0.953923 0.627648i
\(421\) −1.51285 −0.0737318 −0.0368659 0.999320i \(-0.511737\pi\)
−0.0368659 + 0.999320i \(0.511737\pi\)
\(422\) −0.824833 + 0.824833i −0.0401522 + 0.0401522i
\(423\) −1.47802 + 20.6654i −0.0718639 + 1.00479i
\(424\) 0.733315i 0.0356129i
\(425\) −12.4238 4.33178i −0.602641 0.210122i
\(426\) 1.03148 + 0.471059i 0.0499752 + 0.0228229i
\(427\) 11.2812 + 11.2812i 0.545938 + 0.545938i
\(428\) −11.4323 11.4323i −0.552601 0.552601i
\(429\) 27.7051 + 12.6525i 1.33762 + 0.610868i
\(430\) 0.351315 0.559805i 0.0169419 0.0269962i
\(431\) 4.23722i 0.204100i 0.994779 + 0.102050i \(0.0325401\pi\)
−0.994779 + 0.102050i \(0.967460\pi\)
\(432\) −9.86045 + 18.0581i −0.474411 + 0.868819i
\(433\) −0.883249 + 0.883249i −0.0424463 + 0.0424463i −0.728011 0.685565i \(-0.759555\pi\)
0.685565 + 0.728011i \(0.259555\pi\)
\(434\) 0.184901 0.00887552
\(435\) 20.8228 + 4.29572i 0.998378 + 0.205964i
\(436\) 30.8449 1.47720
\(437\) 5.35400 5.35400i 0.256117 0.256117i
\(438\) −0.217158 0.582222i −0.0103762 0.0278197i
\(439\) 18.5835i 0.886943i −0.896289 0.443471i \(-0.853747\pi\)
0.896289 0.443471i \(-0.146253\pi\)
\(440\) −2.97469 + 0.680691i −0.141813 + 0.0324507i
\(441\) 4.30083 + 4.96342i 0.204801 + 0.236354i
\(442\) 0.645071 + 0.645071i 0.0306829 + 0.0306829i
\(443\) −3.18658 3.18658i −0.151399 0.151399i 0.627344 0.778743i \(-0.284142\pi\)
−0.778743 + 0.627344i \(0.784142\pi\)
\(444\) 7.99093 17.4977i 0.379233 0.830404i
\(445\) −15.0564 9.44890i −0.713741 0.447921i
\(446\) 2.10475i 0.0996626i
\(447\) 29.9506 11.1710i 1.41662 0.528370i
\(448\) −16.8024 + 16.8024i −0.793837 + 0.793837i
\(449\) −18.3534 −0.866152 −0.433076 0.901358i \(-0.642572\pi\)
−0.433076 + 0.901358i \(0.642572\pi\)
\(450\) 1.14409 0.454988i 0.0539329 0.0214483i
\(451\) 30.4313 1.43296
\(452\) −18.9772 + 18.9772i −0.892612 + 0.892612i
\(453\) 36.9605 13.7855i 1.73656 0.647701i
\(454\) 2.11084i 0.0990665i
\(455\) −24.2489 15.2178i −1.13680 0.713421i
\(456\) −0.235843 + 0.516424i −0.0110444 + 0.0241837i
\(457\) −1.96587 1.96587i −0.0919595 0.0919595i 0.659631 0.751590i \(-0.270713\pi\)
−0.751590 + 0.659631i \(0.770713\pi\)
\(458\) 1.68686 + 1.68686i 0.0788219 + 0.0788219i
\(459\) 3.85225 + 13.1196i 0.179808 + 0.612369i
\(460\) 32.8973 7.52782i 1.53385 0.350986i
\(461\) 21.1757i 0.986249i 0.869959 + 0.493125i \(0.164145\pi\)
−0.869959 + 0.493125i \(0.835855\pi\)
\(462\) −0.627065 1.68123i −0.0291737 0.0782177i
\(463\) 7.13956 7.13956i 0.331803 0.331803i −0.521468 0.853271i \(-0.674615\pi\)
0.853271 + 0.521468i \(0.174615\pi\)
\(464\) −21.7369 −1.00911
\(465\) −2.81867 0.581486i −0.130712 0.0269658i
\(466\) 0.872397 0.0404130
\(467\) −13.3425 + 13.3425i −0.617416 + 0.617416i −0.944868 0.327452i \(-0.893810\pi\)
0.327452 + 0.944868i \(0.393810\pi\)
\(468\) 25.1914 + 1.80173i 1.16447 + 0.0832849i
\(469\) 6.80249i 0.314110i
\(470\) −0.673785 + 1.07365i −0.0310794 + 0.0495236i
\(471\) −30.7757 14.0548i −1.41807 0.647611i
\(472\) −2.94369 2.94369i −0.135495 0.135495i
\(473\) 10.6011 + 10.6011i 0.487439 + 0.487439i
\(474\) 0.605305 + 0.276434i 0.0278026 + 0.0126970i
\(475\) −4.50243 + 2.17442i −0.206586 + 0.0997693i
\(476\) 15.9001i 0.728778i
\(477\) −6.69459 0.478808i −0.306524 0.0219231i
\(478\) 0.163990 0.163990i 0.00750071 0.00750071i
\(479\) 3.39094 0.154936 0.0774680 0.996995i \(-0.475316\pi\)
0.0774680 + 0.996995i \(0.475316\pi\)
\(480\) −3.17260 + 2.08746i −0.144808 + 0.0952789i
\(481\) −23.5323 −1.07298
\(482\) −0.501987 + 0.501987i −0.0228649 + 0.0228649i
\(483\) 13.8930 + 37.2485i 0.632152 + 1.69487i
\(484\) 12.6268i 0.573948i
\(485\) 8.07762 + 35.3000i 0.366786 + 1.60289i
\(486\) −1.07642 0.691774i −0.0488274 0.0313795i
\(487\) −17.5894 17.5894i −0.797054 0.797054i 0.185576 0.982630i \(-0.440585\pi\)
−0.982630 + 0.185576i \(0.940585\pi\)
\(488\) −1.21983 1.21983i −0.0552190 0.0552190i
\(489\) 5.54795 12.1483i 0.250887 0.549366i
\(490\) 0.0896283 + 0.391685i 0.00404899 + 0.0176945i
\(491\) 31.4184i 1.41789i −0.705262 0.708947i \(-0.749171\pi\)
0.705262 0.708947i \(-0.250829\pi\)
\(492\) 23.6430 8.81840i 1.06591 0.397564i
\(493\) −10.2147 + 10.2147i −0.460047 + 0.460047i
\(494\) 0.346678 0.0155978
\(495\) 4.27189 + 27.6010i 0.192007 + 1.24057i
\(496\) 2.94240 0.132118
\(497\) 17.0964 17.0964i 0.766878 0.766878i
\(498\) 0.151415 0.0564749i 0.00678507 0.00253070i
\(499\) 7.12338i 0.318886i 0.987207 + 0.159443i \(0.0509698\pi\)
−0.987207 + 0.159443i \(0.949030\pi\)
\(500\) −22.1494 2.45827i −0.990549 0.109937i
\(501\) 7.57758 16.5926i 0.338541 0.741302i
\(502\) −0.687953 0.687953i −0.0307049 0.0307049i
\(503\) 2.12362 + 2.12362i 0.0946874 + 0.0946874i 0.752864 0.658176i \(-0.228672\pi\)
−0.658176 + 0.752864i \(0.728672\pi\)
\(504\) −1.95204 2.25277i −0.0869507 0.100346i
\(505\) −4.69992 + 7.48911i −0.209144 + 0.333261i
\(506\) 2.58764i 0.115035i
\(507\) −2.92846 7.85151i −0.130058 0.348698i
\(508\) −8.60778 + 8.60778i −0.381908 + 0.381908i
\(509\) 21.0531 0.933164 0.466582 0.884478i \(-0.345485\pi\)
0.466582 + 0.884478i \(0.345485\pi\)
\(510\) −0.169020 + 0.819300i −0.00748435 + 0.0362792i
\(511\) −13.2495 −0.586122
\(512\) 4.58095 4.58095i 0.202451 0.202451i
\(513\) 4.56055 + 2.49025i 0.201353 + 0.109947i
\(514\) 0.0108657i 0.000479263i
\(515\) 14.1582 3.23978i 0.623883 0.142762i
\(516\) 11.3083 + 5.16433i 0.497820 + 0.227347i
\(517\) −20.3317 20.3317i −0.894189 0.894189i
\(518\) 0.980315 + 0.980315i 0.0430726 + 0.0430726i
\(519\) 19.1289 + 8.73588i 0.839666 + 0.383463i
\(520\) 2.62200 + 1.64548i 0.114982 + 0.0721591i
\(521\) 16.1667i 0.708278i −0.935193 0.354139i \(-0.884774\pi\)
0.935193 0.354139i \(-0.115226\pi\)
\(522\) 0.0964376 1.34837i 0.00422096 0.0590166i
\(523\) 22.4211 22.4211i 0.980407 0.980407i −0.0194047 0.999812i \(-0.506177\pi\)
0.999812 + 0.0194047i \(0.00617708\pi\)
\(524\) 11.1654 0.487762
\(525\) −0.564658 26.2463i −0.0246437 1.14548i
\(526\) −1.15423 −0.0503269
\(527\) 1.38270 1.38270i 0.0602315 0.0602315i
\(528\) −9.97874 26.7540i −0.434269 1.16432i
\(529\) 34.3307i 1.49264i
\(530\) −0.347809 0.218274i −0.0151079 0.00948120i
\(531\) −28.7957 + 24.9516i −1.24963 + 1.08281i
\(532\) 4.27256 + 4.27256i 0.185239 + 0.185239i
\(533\) −21.8284 21.8284i −0.945492 0.945492i
\(534\) −0.469502 + 1.02806i −0.0203173 + 0.0444887i
\(535\) −17.6802 + 4.04571i −0.764380 + 0.174911i
\(536\) 0.735545i 0.0317707i
\(537\) 5.58695 2.08382i 0.241095 0.0899236i
\(538\) 1.04065 1.04065i 0.0448654 0.0448654i
\(539\) −9.11467 −0.392597
\(540\) 11.3172 + 20.2062i 0.487014 + 0.869535i
\(541\) −17.2312 −0.740829 −0.370415 0.928867i \(-0.620784\pi\)
−0.370415 + 0.928867i \(0.620784\pi\)
\(542\) 0.436893 0.436893i 0.0187662 0.0187662i
\(543\) 7.35341 2.74268i 0.315565 0.117700i
\(544\) 2.58033i 0.110631i
\(545\) 18.3932 29.3087i 0.787878 1.25545i
\(546\) −0.756150 + 1.65574i −0.0323602 + 0.0708590i
\(547\) −1.75956 1.75956i −0.0752335 0.0752335i 0.668489 0.743722i \(-0.266941\pi\)
−0.743722 + 0.668489i \(0.766941\pi\)
\(548\) −21.6573 21.6573i −0.925155 0.925155i
\(549\) −11.9325 + 10.3396i −0.509268 + 0.441283i
\(550\) −0.562576 + 1.61349i −0.0239883 + 0.0687997i
\(551\) 5.48965i 0.233867i
\(552\) −1.50223 4.02764i −0.0639392 0.171428i
\(553\) 10.0327 10.0327i 0.426636 0.426636i
\(554\) 0.875227 0.0371848
\(555\) −11.8612 18.0271i −0.503479 0.765207i
\(556\) −33.9065 −1.43796
\(557\) −17.9419 + 17.9419i −0.760224 + 0.760224i −0.976363 0.216138i \(-0.930654\pi\)
0.216138 + 0.976363i \(0.430654\pi\)
\(558\) −0.0130542 + 0.182521i −0.000552629 + 0.00772674i
\(559\) 15.2083i 0.643243i
\(560\) 5.98692 + 26.1634i 0.252993 + 1.10561i
\(561\) −17.2616 7.88312i −0.728786 0.332825i
\(562\) 1.74857 + 1.74857i 0.0737591 + 0.0737591i
\(563\) −26.0056 26.0056i −1.09601 1.09601i −0.994873 0.101132i \(-0.967754\pi\)
−0.101132 0.994873i \(-0.532246\pi\)
\(564\) −21.6881 9.90463i −0.913234 0.417060i
\(565\) 6.71574 + 29.3484i 0.282533 + 1.23470i
\(566\) 1.22213i 0.0513700i
\(567\) −21.8406 + 16.3497i −0.917219 + 0.686621i
\(568\) −1.84861 + 1.84861i −0.0775660 + 0.0775660i
\(569\) 4.70527 0.197255 0.0986277 0.995124i \(-0.468555\pi\)
0.0986277 + 0.995124i \(0.468555\pi\)
\(570\) 0.174739 + 0.265575i 0.00731900 + 0.0111237i
\(571\) 16.6581 0.697121 0.348560 0.937286i \(-0.386671\pi\)
0.348560 + 0.937286i \(0.386671\pi\)
\(572\) −24.7847 + 24.7847i −1.03630 + 1.03630i
\(573\) −10.1200 27.1328i −0.422769 1.13349i
\(574\) 1.81866i 0.0759095i
\(575\) 12.4642 35.7479i 0.519792 1.49079i
\(576\) −15.3999 17.7724i −0.641661 0.740517i
\(577\) 6.19286 + 6.19286i 0.257812 + 0.257812i 0.824164 0.566352i \(-0.191646\pi\)
−0.566352 + 0.824164i \(0.691646\pi\)
\(578\) 0.584791 + 0.584791i 0.0243241 + 0.0243241i
\(579\) −1.73634 + 3.80205i −0.0721598 + 0.158008i
\(580\) −13.0061 + 20.7247i −0.540050 + 0.860544i
\(581\) 3.44571i 0.142952i
\(582\) 2.15725 0.804614i 0.0894210 0.0333523i
\(583\) 6.58650 6.58650i 0.272785 0.272785i
\(584\) 1.43265 0.0592834
\(585\) 16.7340 22.8624i 0.691864 0.945244i
\(586\) −1.49802 −0.0618827
\(587\) 20.8935 20.8935i 0.862367 0.862367i −0.129246 0.991613i \(-0.541256\pi\)
0.991613 + 0.129246i \(0.0412555\pi\)
\(588\) −7.08147 + 2.64125i −0.292035 + 0.108923i
\(589\) 0.743102i 0.0306190i
\(590\) −2.27239 + 0.519985i −0.0935527 + 0.0214075i
\(591\) 19.1367 41.9035i 0.787178 1.72368i
\(592\) 15.6001 + 15.6001i 0.641162 + 0.641162i
\(593\) −24.7223 24.7223i −1.01522 1.01522i −0.999882 0.0153399i \(-0.995117\pi\)
−0.0153399 0.999882i \(-0.504883\pi\)
\(594\) 1.70386 0.500299i 0.0699103 0.0205275i
\(595\) 15.1082 + 9.48142i 0.619376 + 0.388700i
\(596\) 36.7869i 1.50685i
\(597\) 9.01050 + 24.1581i 0.368775 + 0.988725i
\(598\) −1.85612 + 1.85612i −0.0759022 + 0.0759022i
\(599\) 8.27020 0.337911 0.168956 0.985624i \(-0.445961\pi\)
0.168956 + 0.985624i \(0.445961\pi\)
\(600\) 0.0610558 + 2.83798i 0.00249259 + 0.115860i
\(601\) 3.70688 0.151207 0.0756034 0.997138i \(-0.475912\pi\)
0.0756034 + 0.997138i \(0.475912\pi\)
\(602\) −0.633551 + 0.633551i −0.0258216 + 0.0258216i
\(603\) 6.71495 + 0.480264i 0.273454 + 0.0195579i
\(604\) 45.3968i 1.84717i
\(605\) −11.9980 7.52955i −0.487788 0.306120i
\(606\) 0.511364 + 0.233532i 0.0207727 + 0.00948659i
\(607\) −10.6557 10.6557i −0.432501 0.432501i 0.456978 0.889478i \(-0.348932\pi\)
−0.889478 + 0.456978i \(0.848932\pi\)
\(608\) −0.693369 0.693369i −0.0281198 0.0281198i
\(609\) −26.2186 11.9736i −1.06243 0.485196i
\(610\) −0.941646 + 0.215475i −0.0381261 + 0.00872432i
\(611\) 29.1679i 1.18001i
\(612\) −15.6955 1.12256i −0.634451 0.0453769i
\(613\) −20.0322 + 20.0322i −0.809092 + 0.809092i −0.984496 0.175405i \(-0.943877\pi\)
0.175405 + 0.984496i \(0.443877\pi\)
\(614\) −0.289138 −0.0116687
\(615\) 5.71944 27.7241i 0.230630 1.11794i
\(616\) 4.13692 0.166681
\(617\) 16.5295 16.5295i 0.665452 0.665452i −0.291208 0.956660i \(-0.594057\pi\)
0.956660 + 0.291208i \(0.0940571\pi\)
\(618\) −0.322715 0.865233i −0.0129815 0.0348048i
\(619\) 23.0182i 0.925181i −0.886572 0.462590i \(-0.846920\pi\)
0.886572 0.462590i \(-0.153080\pi\)
\(620\) 1.76056 2.80538i 0.0707059 0.112667i
\(621\) −37.7500 + 11.0844i −1.51486 + 0.444802i
\(622\) −1.62708 1.62708i −0.0652399 0.0652399i
\(623\) 17.0399 + 17.0399i 0.682687 + 0.682687i
\(624\) −12.0329 + 26.3484i −0.481702 + 1.05478i
\(625\) −15.5438 + 19.5804i −0.621752 + 0.783214i
\(626\) 0.481506i 0.0192448i
\(627\) −6.75672 + 2.52013i −0.269837 + 0.100644i
\(628\) 27.5316 27.5316i 1.09863 1.09863i
\(629\) 14.6618 0.584603
\(630\) −1.64951 + 0.255301i −0.0657182 + 0.0101714i
\(631\) −23.9130 −0.951960 −0.475980 0.879456i \(-0.657907\pi\)
−0.475980 + 0.879456i \(0.657907\pi\)
\(632\) −1.08483 + 1.08483i −0.0431522 + 0.0431522i
\(633\) −23.0625 + 8.60186i −0.916651 + 0.341893i
\(634\) 1.44795i 0.0575053i
\(635\) 3.04616 + 13.3120i 0.120883 + 0.528272i
\(636\) 3.20862 7.02589i 0.127230 0.278595i
\(637\) 6.53795 + 6.53795i 0.259043 + 0.259043i
\(638\) 1.32660 + 1.32660i 0.0525206 + 0.0525206i
\(639\) 15.6694 + 18.0834i 0.619870 + 0.715368i
\(640\) −1.29911 5.67726i −0.0513520 0.224413i
\(641\) 25.2039i 0.995495i −0.867322 0.497748i \(-0.834161\pi\)
0.867322 0.497748i \(-0.165839\pi\)
\(642\) 0.402994 + 1.08047i 0.0159049 + 0.0426428i
\(643\) 8.60848 8.60848i 0.339485 0.339485i −0.516688 0.856174i \(-0.672835\pi\)
0.856174 + 0.516688i \(0.172835\pi\)
\(644\) −45.7506 −1.80283
\(645\) 11.6504 7.66556i 0.458735 0.301831i
\(646\) −0.215997 −0.00849829
\(647\) 12.4854 12.4854i 0.490852 0.490852i −0.417722 0.908575i \(-0.637172\pi\)
0.908575 + 0.417722i \(0.137172\pi\)
\(648\) 2.36160 1.76787i 0.0927723 0.0694485i
\(649\) 52.8795i 2.07570i
\(650\) 1.56089 0.753824i 0.0612233 0.0295674i
\(651\) 3.54906 + 1.62080i 0.139099 + 0.0635242i
\(652\) 10.8677 + 10.8677i 0.425614 + 0.425614i
\(653\) −7.77670 7.77670i −0.304326 0.304326i 0.538378 0.842704i \(-0.319037\pi\)
−0.842704 + 0.538378i \(0.819037\pi\)
\(654\) −2.00123 0.913931i −0.0782543 0.0357375i
\(655\) 6.65806 10.6093i 0.260152 0.414540i
\(656\) 28.9411i 1.12996i
\(657\) 0.935428 13.0790i 0.0364945 0.510259i
\(658\) 1.21508 1.21508i 0.0473689 0.0473689i
\(659\) −2.53638 −0.0988033 −0.0494017 0.998779i \(-0.515731\pi\)
−0.0494017 + 0.998779i \(0.515731\pi\)
\(660\) −31.4788 6.49403i −1.22531 0.252780i
\(661\) 4.77927 0.185892 0.0929460 0.995671i \(-0.470372\pi\)
0.0929460 + 0.995671i \(0.470372\pi\)
\(662\) 0.771704 0.771704i 0.0299931 0.0299931i
\(663\) 6.72719 + 18.0363i 0.261262 + 0.700472i
\(664\) 0.372580i 0.0144589i
\(665\) 6.60756 1.51199i 0.256230 0.0586326i
\(666\) −1.03691 + 0.898488i −0.0401795 + 0.0348157i
\(667\) −29.3916 29.3916i −1.13805 1.13805i
\(668\) 14.8435 + 14.8435i 0.574313 + 0.574313i
\(669\) −18.4498 + 40.3993i −0.713309 + 1.56193i
\(670\) 0.348867 + 0.218937i 0.0134779 + 0.00845829i
\(671\) 21.9125i 0.845924i
\(672\) 4.82386 1.79921i 0.186085 0.0694059i
\(673\) 8.99234 8.99234i 0.346629 0.346629i −0.512223 0.858852i \(-0.671178\pi\)
0.858852 + 0.512223i \(0.171178\pi\)
\(674\) −0.891159 −0.0343262
\(675\) 25.9484 + 1.29563i 0.998756 + 0.0498688i
\(676\) 9.64363 0.370909
\(677\) −0.402985 + 0.402985i −0.0154880 + 0.0154880i −0.714808 0.699320i \(-0.753486\pi\)
0.699320 + 0.714808i \(0.253486\pi\)
\(678\) 1.79354 0.668956i 0.0688805 0.0256911i
\(679\) 49.0920i 1.88398i
\(680\) −1.63363 1.02521i −0.0626469 0.0393152i
\(681\) −18.5032 + 40.5163i −0.709043 + 1.55259i
\(682\) −0.179574 0.179574i −0.00687625 0.00687625i
\(683\) −10.4569 10.4569i −0.400122 0.400122i 0.478154 0.878276i \(-0.341306\pi\)
−0.878276 + 0.478154i \(0.841306\pi\)
\(684\) −4.51922 + 3.91593i −0.172797 + 0.149729i
\(685\) −33.4933 + 7.66420i −1.27971 + 0.292834i
\(686\) 1.19704i 0.0457032i
\(687\) 17.5916 + 47.1650i 0.671162 + 1.79946i
\(688\) −10.0820 + 10.0820i −0.384371 + 0.384371i
\(689\) −9.44898 −0.359978
\(690\) −2.35744 0.486336i −0.0897462 0.0185145i
\(691\) 21.9916 0.836600 0.418300 0.908309i \(-0.362626\pi\)
0.418300 + 0.908309i \(0.362626\pi\)
\(692\) −17.1125 + 17.1125i −0.650519 + 0.650519i
\(693\) 2.70114 37.7668i 0.102608 1.43464i
\(694\) 1.04414i 0.0396349i
\(695\) −20.2189 + 32.2179i −0.766947 + 1.22209i
\(696\) 2.83498 + 1.29469i 0.107460 + 0.0490752i
\(697\) 13.6001 + 13.6001i 0.515142 + 0.515142i
\(698\) −1.28596 1.28596i −0.0486744 0.0486744i
\(699\) 16.7451 + 7.64725i 0.633359 + 0.289245i
\(700\) 28.5272 + 9.94656i 1.07823 + 0.375945i
\(701\) 28.4018i 1.07272i −0.843989 0.536360i \(-0.819799\pi\)
0.843989 0.536360i \(-0.180201\pi\)
\(702\) −1.58104 0.863316i −0.0596726 0.0325837i
\(703\) 3.93981 3.93981i 0.148593 0.148593i
\(704\) 32.6367 1.23004
\(705\) −22.3443 + 14.7017i −0.841533 + 0.553699i
\(706\) −0.909350 −0.0342238
\(707\) 8.47569 8.47569i 0.318761 0.318761i
\(708\) −15.3234 41.0837i −0.575890 1.54402i
\(709\) 34.8235i 1.30782i 0.756571 + 0.653911i \(0.226873\pi\)
−0.756571 + 0.653911i \(0.773127\pi\)
\(710\) 0.326546 + 1.42704i 0.0122550 + 0.0535557i
\(711\) 9.19531 + 10.6120i 0.344851 + 0.397980i
\(712\) −1.84250 1.84250i −0.0690505 0.0690505i
\(713\) 3.97857 + 3.97857i 0.148999 + 0.148999i
\(714\) 0.471117 1.03160i 0.0176311 0.0386068i
\(715\) 8.77091 + 38.3297i 0.328013 + 1.43345i
\(716\) 6.86218i 0.256452i
\(717\) 4.58518 1.71018i 0.171237 0.0638680i
\(718\) 0.824652 0.824652i 0.0307757 0.0307757i
\(719\) −21.9447 −0.818401 −0.409200 0.912445i \(-0.634192\pi\)
−0.409200 + 0.912445i \(0.634192\pi\)
\(720\) −26.2494 + 4.06270i −0.978257 + 0.151408i
\(721\) −19.6899 −0.733289
\(722\) −0.0580413 + 0.0580413i −0.00216007 + 0.00216007i
\(723\) −14.0356 + 5.23502i −0.521991 + 0.194693i
\(724\) 9.03184i 0.335666i
\(725\) 11.9368 + 24.7168i 0.443322 + 0.917957i
\(726\) −0.374132 + 0.819235i −0.0138854 + 0.0304047i
\(727\) 10.2246 + 10.2246i 0.379210 + 0.379210i 0.870817 0.491607i \(-0.163590\pi\)
−0.491607 + 0.870817i \(0.663590\pi\)
\(728\) −2.96741 2.96741i −0.109980 0.109980i
\(729\) −14.5973 22.7139i −0.540640 0.841254i
\(730\) 0.426433 0.679501i 0.0157830 0.0251495i
\(731\) 9.47551i 0.350464i
\(732\) −6.34982 17.0245i −0.234696 0.629245i
\(733\) −3.06750 + 3.06750i −0.113301 + 0.113301i −0.761484 0.648184i \(-0.775529\pi\)
0.648184 + 0.761484i \(0.275529\pi\)
\(734\) −2.15854 −0.0796733
\(735\) −1.71306 + 8.30381i −0.0631873 + 0.306291i
\(736\) 7.42460 0.273675
\(737\) −6.60653 + 6.60653i −0.243355 + 0.243355i
\(738\) −1.79526 0.128400i −0.0660844 0.00472646i
\(739\) 42.4693i 1.56226i −0.624368 0.781130i \(-0.714644\pi\)
0.624368 0.781130i \(-0.285356\pi\)
\(740\) 24.2079 5.53944i 0.889900 0.203634i
\(741\) 6.65428 + 3.03891i 0.244451 + 0.111637i
\(742\) 0.393628 + 0.393628i 0.0144505 + 0.0144505i
\(743\) 9.98634 + 9.98634i 0.366363 + 0.366363i 0.866149 0.499786i \(-0.166588\pi\)
−0.499786 + 0.866149i \(0.666588\pi\)
\(744\) −0.383755 0.175255i −0.0140691 0.00642517i
\(745\) 34.9548 + 21.9365i 1.28065 + 0.803692i
\(746\) 2.18879i 0.0801372i
\(747\) 3.40137 + 0.243271i 0.124450 + 0.00890083i
\(748\) 15.4420 15.4420i 0.564617 0.564617i
\(749\) 24.5880 0.898424
\(750\) 1.36422 + 0.815777i 0.0498143 + 0.0297880i
\(751\) 28.8689 1.05344 0.526721 0.850038i \(-0.323421\pi\)
0.526721 + 0.850038i \(0.323421\pi\)
\(752\) 19.3361 19.3361i 0.705116 0.705116i
\(753\) −7.17440 19.2353i −0.261450 0.700974i
\(754\) 1.90314i 0.0693083i
\(755\) 43.1359 + 27.0707i 1.56988 + 0.985204i
\(756\) −8.84548 30.1250i −0.321707 1.09563i
\(757\) −21.2675 21.2675i −0.772981 0.772981i 0.205646 0.978627i \(-0.434071\pi\)
−0.978627 + 0.205646i \(0.934071\pi\)
\(758\) 1.11391 + 1.11391i 0.0404591 + 0.0404591i
\(759\) 22.6827 49.6683i 0.823331 1.80284i
\(760\) −0.714467 + 0.163490i −0.0259164 + 0.00593040i
\(761\) 28.9626i 1.04989i −0.851135 0.524947i \(-0.824085\pi\)
0.851135 0.524947i \(-0.175915\pi\)
\(762\) 0.813524 0.303429i 0.0294709 0.0109921i
\(763\) −33.1697 + 33.1697i −1.20083 + 1.20083i
\(764\) 33.3259 1.20569
\(765\) −10.4261 + 14.2444i −0.376955 + 0.515007i
\(766\) −0.185233 −0.00669276
\(767\) −37.9304 + 37.9304i −1.36959 + 1.36959i
\(768\) 25.0952 9.36002i 0.905545 0.337751i
\(769\) 37.3396i 1.34650i −0.739415 0.673250i \(-0.764898\pi\)
0.739415 0.673250i \(-0.235102\pi\)
\(770\) 1.23137 1.96213i 0.0443754 0.0707102i
\(771\) −0.0952460 + 0.208560i