Properties

Label 285.2.k.c.77.8
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.8
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.c.248.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0307908 - 0.0307908i) q^{2} +(0.939687 + 1.45499i) q^{3} +1.99810i q^{4} +(1.20318 + 1.88477i) q^{5} +(0.0737341 + 0.0158665i) q^{6} +(-0.715376 - 0.715376i) q^{7} +(0.123105 + 0.123105i) q^{8} +(-1.23398 + 2.73447i) q^{9} +O(q^{10})\) \(q+(0.0307908 - 0.0307908i) q^{2} +(0.939687 + 1.45499i) q^{3} +1.99810i q^{4} +(1.20318 + 1.88477i) q^{5} +(0.0737341 + 0.0158665i) q^{6} +(-0.715376 - 0.715376i) q^{7} +(0.123105 + 0.123105i) q^{8} +(-1.23398 + 2.73447i) q^{9} +(0.0950807 + 0.0209865i) q^{10} -5.75603i q^{11} +(-2.90722 + 1.87759i) q^{12} +(-1.65056 + 1.65056i) q^{13} -0.0440541 q^{14} +(-1.61169 + 3.52171i) q^{15} -3.98863 q^{16} +(4.22727 - 4.22727i) q^{17} +(0.0462014 + 0.122192i) q^{18} -1.00000i q^{19} +(-3.76596 + 2.40409i) q^{20} +(0.368633 - 1.71309i) q^{21} +(-0.177233 - 0.177233i) q^{22} +(1.96284 + 1.96284i) q^{23} +(-0.0634360 + 0.294796i) q^{24} +(-2.10469 + 4.53545i) q^{25} +0.101644i q^{26} +(-5.13816 + 0.774125i) q^{27} +(1.42939 - 1.42939i) q^{28} +5.38666 q^{29} +(0.0588110 + 0.158062i) q^{30} +4.85064 q^{31} +(-0.369023 + 0.369023i) q^{32} +(8.37495 - 5.40887i) q^{33} -0.260323i q^{34} +(0.487588 - 2.20905i) q^{35} +(-5.46375 - 2.46561i) q^{36} +(6.33347 + 6.33347i) q^{37} +(-0.0307908 - 0.0307908i) q^{38} +(-3.95255 - 0.850533i) q^{39} +(-0.0839062 + 0.380142i) q^{40} -1.84462i q^{41} +(-0.0413970 - 0.0640981i) q^{42} +(-1.35872 + 1.35872i) q^{43} +11.5011 q^{44} +(-6.63853 + 0.964311i) q^{45} +0.120875 q^{46} +(-5.93582 + 5.93582i) q^{47} +(-3.74806 - 5.80340i) q^{48} -5.97648i q^{49} +(0.0748449 + 0.204456i) q^{50} +(10.1229 + 2.17831i) q^{51} +(-3.29799 - 3.29799i) q^{52} +(0.615292 + 0.615292i) q^{53} +(-0.134372 + 0.182044i) q^{54} +(10.8488 - 6.92556i) q^{55} -0.176133i q^{56} +(1.45499 - 0.939687i) q^{57} +(0.165860 - 0.165860i) q^{58} +2.01172 q^{59} +(-7.03674 - 3.22033i) q^{60} -5.22784 q^{61} +(0.149355 - 0.149355i) q^{62} +(2.83893 - 1.07341i) q^{63} -7.95453i q^{64} +(-5.09685 - 1.12499i) q^{65} +(0.0913281 - 0.424415i) q^{66} +(-8.61810 - 8.61810i) q^{67} +(8.44653 + 8.44653i) q^{68} +(-1.01145 + 4.70035i) q^{69} +(-0.0530052 - 0.0830316i) q^{70} -8.55888i q^{71} +(-0.488535 + 0.184718i) q^{72} +(-8.09254 + 8.09254i) q^{73} +0.390026 q^{74} +(-8.57677 + 1.19960i) q^{75} +1.99810 q^{76} +(-4.11772 + 4.11772i) q^{77} +(-0.147891 + 0.0955138i) q^{78} -13.6363i q^{79} +(-4.79905 - 7.51763i) q^{80} +(-5.95461 - 6.74853i) q^{81} +(-0.0567975 - 0.0567975i) q^{82} +(1.52493 + 1.52493i) q^{83} +(3.42294 + 0.736567i) q^{84} +(13.0536 + 2.88124i) q^{85} +0.0836722i q^{86} +(5.06177 + 7.83751i) q^{87} +(0.708596 - 0.708596i) q^{88} -7.80034 q^{89} +(-0.174714 + 0.234098i) q^{90} +2.36154 q^{91} +(-3.92195 + 3.92195i) q^{92} +(4.55808 + 7.05761i) q^{93} +0.365538i q^{94} +(1.88477 - 1.20318i) q^{95} +(-0.883691 - 0.190158i) q^{96} +(9.06784 + 9.06784i) q^{97} +(-0.184021 - 0.184021i) q^{98} +(15.7397 + 7.10280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 2 q^{3} - 12 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 2 q^{3} - 12 q^{6} - 8 q^{10} + 34 q^{12} + 8 q^{13} - 14 q^{15} - 20 q^{16} - 24 q^{18} - 4 q^{21} - 32 q^{22} + 8 q^{25} + 22 q^{27} - 28 q^{28} + 12 q^{30} + 72 q^{31} - 84 q^{36} - 12 q^{37} + 20 q^{40} + 48 q^{42} - 12 q^{43} - 52 q^{45} + 8 q^{46} + 46 q^{48} + 28 q^{51} - 76 q^{52} + 104 q^{55} + 2 q^{57} - 60 q^{58} - 22 q^{60} + 96 q^{61} + 56 q^{63} - 28 q^{66} - 72 q^{67} + 68 q^{70} + 20 q^{72} - 72 q^{73} + 2 q^{75} - 36 q^{76} + 76 q^{78} - 100 q^{81} - 116 q^{82} - 44 q^{85} + 4 q^{87} + 60 q^{88} - 36 q^{90} - 80 q^{91} + 52 q^{93} - 80 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0307908 0.0307908i 0.0217724 0.0217724i −0.696137 0.717909i \(-0.745099\pi\)
0.717909 + 0.696137i \(0.245099\pi\)
\(3\) 0.939687 + 1.45499i 0.542529 + 0.840037i
\(4\) 1.99810i 0.999052i
\(5\) 1.20318 + 1.88477i 0.538080 + 0.842893i
\(6\) 0.0737341 + 0.0158665i 0.0301018 + 0.00647748i
\(7\) −0.715376 0.715376i −0.270387 0.270387i 0.558869 0.829256i \(-0.311235\pi\)
−0.829256 + 0.558869i \(0.811235\pi\)
\(8\) 0.123105 + 0.123105i 0.0435242 + 0.0435242i
\(9\) −1.23398 + 2.73447i −0.411325 + 0.911489i
\(10\) 0.0950807 + 0.0209865i 0.0300671 + 0.00663652i
\(11\) 5.75603i 1.73551i −0.496994 0.867754i \(-0.665563\pi\)
0.496994 0.867754i \(-0.334437\pi\)
\(12\) −2.90722 + 1.87759i −0.839241 + 0.542014i
\(13\) −1.65056 + 1.65056i −0.457783 + 0.457783i −0.897927 0.440144i \(-0.854927\pi\)
0.440144 + 0.897927i \(0.354927\pi\)
\(14\) −0.0440541 −0.0117739
\(15\) −1.61169 + 3.52171i −0.416138 + 0.909302i
\(16\) −3.98863 −0.997157
\(17\) 4.22727 4.22727i 1.02526 1.02526i 0.0255918 0.999672i \(-0.491853\pi\)
0.999672 0.0255918i \(-0.00814703\pi\)
\(18\) 0.0462014 + 0.122192i 0.0108898 + 0.0288009i
\(19\) 1.00000i 0.229416i
\(20\) −3.76596 + 2.40409i −0.842094 + 0.537570i
\(21\) 0.368633 1.71309i 0.0804423 0.373827i
\(22\) −0.177233 0.177233i −0.0377862 0.0377862i
\(23\) 1.96284 + 1.96284i 0.409280 + 0.409280i 0.881487 0.472208i \(-0.156543\pi\)
−0.472208 + 0.881487i \(0.656543\pi\)
\(24\) −0.0634360 + 0.294796i −0.0129488 + 0.0601751i
\(25\) −2.10469 + 4.53545i −0.420939 + 0.907089i
\(26\) 0.101644i 0.0199341i
\(27\) −5.13816 + 0.774125i −0.988840 + 0.148980i
\(28\) 1.42939 1.42939i 0.270130 0.270130i
\(29\) 5.38666 1.00028 0.500138 0.865945i \(-0.333282\pi\)
0.500138 + 0.865945i \(0.333282\pi\)
\(30\) 0.0588110 + 0.158062i 0.0107374 + 0.0288580i
\(31\) 4.85064 0.871200 0.435600 0.900140i \(-0.356536\pi\)
0.435600 + 0.900140i \(0.356536\pi\)
\(32\) −0.369023 + 0.369023i −0.0652347 + 0.0652347i
\(33\) 8.37495 5.40887i 1.45789 0.941563i
\(34\) 0.260323i 0.0446450i
\(35\) 0.487588 2.20905i 0.0824173 0.373397i
\(36\) −5.46375 2.46561i −0.910625 0.410935i
\(37\) 6.33347 + 6.33347i 1.04122 + 1.04122i 0.999113 + 0.0421033i \(0.0134059\pi\)
0.0421033 + 0.999113i \(0.486594\pi\)
\(38\) −0.0307908 0.0307908i −0.00499494 0.00499494i
\(39\) −3.95255 0.850533i −0.632915 0.136194i
\(40\) −0.0839062 + 0.380142i −0.0132667 + 0.0601058i
\(41\) 1.84462i 0.288081i −0.989572 0.144041i \(-0.953990\pi\)
0.989572 0.144041i \(-0.0460096\pi\)
\(42\) −0.0413970 0.0640981i −0.00638770 0.00989055i
\(43\) −1.35872 + 1.35872i −0.207203 + 0.207203i −0.803077 0.595875i \(-0.796805\pi\)
0.595875 + 0.803077i \(0.296805\pi\)
\(44\) 11.5011 1.73386
\(45\) −6.63853 + 0.964311i −0.989614 + 0.143751i
\(46\) 0.120875 0.0178220
\(47\) −5.93582 + 5.93582i −0.865829 + 0.865829i −0.992008 0.126179i \(-0.959729\pi\)
0.126179 + 0.992008i \(0.459729\pi\)
\(48\) −3.74806 5.80340i −0.540986 0.837649i
\(49\) 5.97648i 0.853782i
\(50\) 0.0748449 + 0.204456i 0.0105847 + 0.0289144i
\(51\) 10.1229 + 2.17831i 1.41750 + 0.305025i
\(52\) −3.29799 3.29799i −0.457349 0.457349i
\(53\) 0.615292 + 0.615292i 0.0845168 + 0.0845168i 0.748101 0.663585i \(-0.230966\pi\)
−0.663585 + 0.748101i \(0.730966\pi\)
\(54\) −0.134372 + 0.182044i −0.0182858 + 0.0247731i
\(55\) 10.8488 6.92556i 1.46285 0.933843i
\(56\) 0.176133i 0.0235367i
\(57\) 1.45499 0.939687i 0.192718 0.124465i
\(58\) 0.165860 0.165860i 0.0217784 0.0217784i
\(59\) 2.01172 0.261904 0.130952 0.991389i \(-0.458197\pi\)
0.130952 + 0.991389i \(0.458197\pi\)
\(60\) −7.03674 3.22033i −0.908439 0.415743i
\(61\) −5.22784 −0.669356 −0.334678 0.942333i \(-0.608628\pi\)
−0.334678 + 0.942333i \(0.608628\pi\)
\(62\) 0.149355 0.149355i 0.0189681 0.0189681i
\(63\) 2.83893 1.07341i 0.357671 0.135238i
\(64\) 7.95453i 0.994316i
\(65\) −5.09685 1.12499i −0.632186 0.139538i
\(66\) 0.0913281 0.424415i 0.0112417 0.0522419i
\(67\) −8.61810 8.61810i −1.05287 1.05287i −0.998522 0.0543460i \(-0.982693\pi\)
−0.0543460 0.998522i \(-0.517307\pi\)
\(68\) 8.44653 + 8.44653i 1.02429 + 1.02429i
\(69\) −1.01145 + 4.70035i −0.121764 + 0.565856i
\(70\) −0.0530052 0.0830316i −0.00633533 0.00992418i
\(71\) 8.55888i 1.01575i −0.861430 0.507876i \(-0.830431\pi\)
0.861430 0.507876i \(-0.169569\pi\)
\(72\) −0.488535 + 0.184718i −0.0575744 + 0.0217692i
\(73\) −8.09254 + 8.09254i −0.947160 + 0.947160i −0.998672 0.0515119i \(-0.983596\pi\)
0.0515119 + 0.998672i \(0.483596\pi\)
\(74\) 0.390026 0.0453396
\(75\) −8.57677 + 1.19960i −0.990360 + 0.138518i
\(76\) 1.99810 0.229198
\(77\) −4.11772 + 4.11772i −0.469258 + 0.469258i
\(78\) −0.147891 + 0.0955138i −0.0167454 + 0.0108148i
\(79\) 13.6363i 1.53421i −0.641522 0.767104i \(-0.721697\pi\)
0.641522 0.767104i \(-0.278303\pi\)
\(80\) −4.79905 7.51763i −0.536551 0.840497i
\(81\) −5.95461 6.74853i −0.661623 0.749836i
\(82\) −0.0567975 0.0567975i −0.00627223 0.00627223i
\(83\) 1.52493 + 1.52493i 0.167383 + 0.167383i 0.785828 0.618445i \(-0.212237\pi\)
−0.618445 + 0.785828i \(0.712237\pi\)
\(84\) 3.42294 + 0.736567i 0.373473 + 0.0803660i
\(85\) 13.0536 + 2.88124i 1.41586 + 0.312514i
\(86\) 0.0836722i 0.00902260i
\(87\) 5.06177 + 7.83751i 0.542679 + 0.840270i
\(88\) 0.708596 0.708596i 0.0755366 0.0755366i
\(89\) −7.80034 −0.826834 −0.413417 0.910542i \(-0.635665\pi\)
−0.413417 + 0.910542i \(0.635665\pi\)
\(90\) −0.174714 + 0.234098i −0.0184165 + 0.0246761i
\(91\) 2.36154 0.247557
\(92\) −3.92195 + 3.92195i −0.408891 + 0.408891i
\(93\) 4.55808 + 7.05761i 0.472651 + 0.731840i
\(94\) 0.365538i 0.0377024i
\(95\) 1.88477 1.20318i 0.193373 0.123444i
\(96\) −0.883691 0.190158i −0.0901913 0.0194079i
\(97\) 9.06784 + 9.06784i 0.920699 + 0.920699i 0.997079 0.0763795i \(-0.0243360\pi\)
−0.0763795 + 0.997079i \(0.524336\pi\)
\(98\) −0.184021 0.184021i −0.0185889 0.0185889i
\(99\) 15.7397 + 7.10280i 1.58190 + 0.713858i
\(100\) −9.06229 4.20540i −0.906229 0.420540i
\(101\) 14.3494i 1.42782i −0.700237 0.713911i \(-0.746922\pi\)
0.700237 0.713911i \(-0.253078\pi\)
\(102\) 0.378766 0.244622i 0.0375034 0.0242212i
\(103\) 2.97737 2.97737i 0.293369 0.293369i −0.545041 0.838410i \(-0.683486\pi\)
0.838410 + 0.545041i \(0.183486\pi\)
\(104\) −0.406384 −0.0398493
\(105\) 3.67231 1.36638i 0.358381 0.133345i
\(106\) 0.0378907 0.00368027
\(107\) 12.2500 12.2500i 1.18425 1.18425i 0.205618 0.978632i \(-0.434080\pi\)
0.978632 0.205618i \(-0.0659204\pi\)
\(108\) −1.54678 10.2666i −0.148839 0.987903i
\(109\) 5.76977i 0.552644i 0.961065 + 0.276322i \(0.0891156\pi\)
−0.961065 + 0.276322i \(0.910884\pi\)
\(110\) 0.120799 0.547287i 0.0115177 0.0521818i
\(111\) −3.26364 + 15.1666i −0.309771 + 1.43955i
\(112\) 2.85337 + 2.85337i 0.269618 + 0.269618i
\(113\) −4.31678 4.31678i −0.406089 0.406089i 0.474283 0.880372i \(-0.342707\pi\)
−0.880372 + 0.474283i \(0.842707\pi\)
\(114\) 0.0158665 0.0737341i 0.00148604 0.00690583i
\(115\) −1.33783 + 6.06114i −0.124754 + 0.565204i
\(116\) 10.7631i 0.999328i
\(117\) −2.47665 6.55015i −0.228966 0.605562i
\(118\) 0.0619426 0.0619426i 0.00570228 0.00570228i
\(119\) −6.04818 −0.554435
\(120\) −0.631948 + 0.235132i −0.0576887 + 0.0214646i
\(121\) −22.1319 −2.01199
\(122\) −0.160970 + 0.160970i −0.0145735 + 0.0145735i
\(123\) 2.68390 1.73337i 0.241999 0.156292i
\(124\) 9.69207i 0.870374i
\(125\) −11.0806 + 1.49012i −0.991078 + 0.133280i
\(126\) 0.0543616 0.120464i 0.00484292 0.0107318i
\(127\) 4.63157 + 4.63157i 0.410986 + 0.410986i 0.882082 0.471096i \(-0.156142\pi\)
−0.471096 + 0.882082i \(0.656142\pi\)
\(128\) −0.982973 0.982973i −0.0868834 0.0868834i
\(129\) −3.25369 0.700147i −0.286471 0.0616445i
\(130\) −0.191576 + 0.122297i −0.0168023 + 0.0107261i
\(131\) 4.39475i 0.383971i 0.981398 + 0.191985i \(0.0614926\pi\)
−0.981398 + 0.191985i \(0.938507\pi\)
\(132\) 10.8075 + 16.7340i 0.940670 + 1.45651i
\(133\) −0.715376 + 0.715376i −0.0620309 + 0.0620309i
\(134\) −0.530717 −0.0458470
\(135\) −7.64120 8.75283i −0.657650 0.753323i
\(136\) 1.04080 0.0892476
\(137\) −6.22701 + 6.22701i −0.532009 + 0.532009i −0.921170 0.389161i \(-0.872765\pi\)
0.389161 + 0.921170i \(0.372765\pi\)
\(138\) 0.113584 + 0.175871i 0.00966895 + 0.0149712i
\(139\) 4.03818i 0.342514i −0.985226 0.171257i \(-0.945217\pi\)
0.985226 0.171257i \(-0.0547828\pi\)
\(140\) 4.41390 + 0.974251i 0.373043 + 0.0823392i
\(141\) −14.2144 3.05873i −1.19707 0.257591i
\(142\) −0.263535 0.263535i −0.0221154 0.0221154i
\(143\) 9.50067 + 9.50067i 0.794486 + 0.794486i
\(144\) 4.92187 10.9068i 0.410156 0.908897i
\(145\) 6.48114 + 10.1526i 0.538229 + 0.843127i
\(146\) 0.498353i 0.0412439i
\(147\) 8.69569 5.61602i 0.717209 0.463201i
\(148\) −12.6549 + 12.6549i −1.04023 + 1.04023i
\(149\) 0.976556 0.0800026 0.0400013 0.999200i \(-0.487264\pi\)
0.0400013 + 0.999200i \(0.487264\pi\)
\(150\) −0.227149 + 0.301023i −0.0185467 + 0.0245784i
\(151\) 19.5347 1.58971 0.794856 0.606799i \(-0.207547\pi\)
0.794856 + 0.606799i \(0.207547\pi\)
\(152\) 0.123105 0.123105i 0.00998514 0.00998514i
\(153\) 6.34298 + 16.7757i 0.512800 + 1.35623i
\(154\) 0.253576i 0.0204338i
\(155\) 5.83621 + 9.14232i 0.468776 + 0.734329i
\(156\) 1.69945 7.89761i 0.136065 0.632315i
\(157\) −5.94396 5.94396i −0.474379 0.474379i 0.428949 0.903329i \(-0.358884\pi\)
−0.903329 + 0.428949i \(0.858884\pi\)
\(158\) −0.419875 0.419875i −0.0334034 0.0334034i
\(159\) −0.317060 + 1.47342i −0.0251445 + 0.116850i
\(160\) −1.13953 0.251520i −0.0900874 0.0198844i
\(161\) 2.80833i 0.221327i
\(162\) −0.391140 0.0244454i −0.0307309 0.00192061i
\(163\) −6.35340 + 6.35340i −0.497637 + 0.497637i −0.910702 0.413065i \(-0.864458\pi\)
0.413065 + 0.910702i \(0.364458\pi\)
\(164\) 3.68575 0.287808
\(165\) 20.2711 + 9.27696i 1.57810 + 0.722210i
\(166\) 0.0939078 0.00728866
\(167\) −6.81647 + 6.81647i −0.527474 + 0.527474i −0.919818 0.392344i \(-0.871664\pi\)
0.392344 + 0.919818i \(0.371664\pi\)
\(168\) 0.256271 0.165510i 0.0197717 0.0127693i
\(169\) 7.55130i 0.580870i
\(170\) 0.490648 0.313216i 0.0376310 0.0240226i
\(171\) 2.73447 + 1.23398i 0.209110 + 0.0943645i
\(172\) −2.71486 2.71486i −0.207006 0.207006i
\(173\) −1.59429 1.59429i −0.121212 0.121212i 0.643899 0.765111i \(-0.277316\pi\)
−0.765111 + 0.643899i \(0.777316\pi\)
\(174\) 0.397180 + 0.0854675i 0.0301101 + 0.00647927i
\(175\) 4.75019 1.73890i 0.359081 0.131449i
\(176\) 22.9586i 1.73057i
\(177\) 1.89039 + 2.92703i 0.142090 + 0.220009i
\(178\) −0.240179 + 0.240179i −0.0180022 + 0.0180022i
\(179\) −14.9885 −1.12029 −0.560146 0.828394i \(-0.689255\pi\)
−0.560146 + 0.828394i \(0.689255\pi\)
\(180\) −1.92679 13.2645i −0.143615 0.988676i
\(181\) 0.256961 0.0190997 0.00954986 0.999954i \(-0.496960\pi\)
0.00954986 + 0.999954i \(0.496960\pi\)
\(182\) 0.0727139 0.0727139i 0.00538991 0.00538991i
\(183\) −4.91253 7.60643i −0.363145 0.562284i
\(184\) 0.483270i 0.0356271i
\(185\) −4.31678 + 19.5575i −0.317376 + 1.43789i
\(186\) 0.357657 + 0.0769627i 0.0262247 + 0.00564318i
\(187\) −24.3323 24.3323i −1.77935 1.77935i
\(188\) −11.8604 11.8604i −0.865008 0.865008i
\(189\) 4.22951 + 3.12193i 0.307651 + 0.227087i
\(190\) 0.0209865 0.0950807i 0.00152252 0.00689788i
\(191\) 19.0570i 1.37892i −0.724326 0.689458i \(-0.757849\pi\)
0.724326 0.689458i \(-0.242151\pi\)
\(192\) 11.5737 7.47477i 0.835262 0.539445i
\(193\) −16.2572 + 16.2572i −1.17022 + 1.17022i −0.188061 + 0.982157i \(0.560220\pi\)
−0.982157 + 0.188061i \(0.939780\pi\)
\(194\) 0.558413 0.0400917
\(195\) −3.15259 8.47299i −0.225762 0.606764i
\(196\) 11.9416 0.852973
\(197\) 7.18518 7.18518i 0.511923 0.511923i −0.403193 0.915115i \(-0.632100\pi\)
0.915115 + 0.403193i \(0.132100\pi\)
\(198\) 0.703339 0.265936i 0.0499841 0.0188993i
\(199\) 8.55905i 0.606735i 0.952874 + 0.303367i \(0.0981110\pi\)
−0.952874 + 0.303367i \(0.901889\pi\)
\(200\) −0.817434 + 0.299238i −0.0578013 + 0.0211593i
\(201\) 4.44090 20.6375i 0.313237 1.45566i
\(202\) −0.441831 0.441831i −0.0310871 0.0310871i
\(203\) −3.85348 3.85348i −0.270461 0.270461i
\(204\) −4.35250 + 20.2267i −0.304736 + 1.41615i
\(205\) 3.47668 2.21942i 0.242822 0.155011i
\(206\) 0.183352i 0.0127747i
\(207\) −7.78940 + 2.94522i −0.541401 + 0.204707i
\(208\) 6.58347 6.58347i 0.456481 0.456481i
\(209\) −5.75603 −0.398153
\(210\) 0.0710017 0.155146i 0.00489958 0.0107061i
\(211\) 12.5202 0.861926 0.430963 0.902370i \(-0.358174\pi\)
0.430963 + 0.902370i \(0.358174\pi\)
\(212\) −1.22942 + 1.22942i −0.0844367 + 0.0844367i
\(213\) 12.4531 8.04267i 0.853270 0.551075i
\(214\) 0.754375i 0.0515680i
\(215\) −4.19566 0.926079i −0.286141 0.0631580i
\(216\) −0.727832 0.537235i −0.0495227 0.0365542i
\(217\) −3.47003 3.47003i −0.235561 0.235561i
\(218\) 0.177656 + 0.177656i 0.0120324 + 0.0120324i
\(219\) −19.3790 4.17009i −1.30951 0.281788i
\(220\) 13.8380 + 21.6770i 0.932958 + 1.46146i
\(221\) 13.9547i 0.938697i
\(222\) 0.366503 + 0.567483i 0.0245980 + 0.0380870i
\(223\) 7.87422 7.87422i 0.527297 0.527297i −0.392468 0.919765i \(-0.628379\pi\)
0.919765 + 0.392468i \(0.128379\pi\)
\(224\) 0.527981 0.0352772
\(225\) −9.80488 11.3518i −0.653659 0.756789i
\(226\) −0.265835 −0.0176831
\(227\) 5.71556 5.71556i 0.379355 0.379355i −0.491515 0.870869i \(-0.663557\pi\)
0.870869 + 0.491515i \(0.163557\pi\)
\(228\) 1.87759 + 2.90722i 0.124347 + 0.192535i
\(229\) 7.50215i 0.495756i −0.968791 0.247878i \(-0.920267\pi\)
0.968791 0.247878i \(-0.0797332\pi\)
\(230\) 0.145435 + 0.227821i 0.00958968 + 0.0150221i
\(231\) −9.86061 2.12186i −0.648780 0.139608i
\(232\) 0.663124 + 0.663124i 0.0435362 + 0.0435362i
\(233\) −5.76894 5.76894i −0.377936 0.377936i 0.492421 0.870357i \(-0.336112\pi\)
−0.870357 + 0.492421i \(0.836112\pi\)
\(234\) −0.277943 0.125427i −0.0181697 0.00819939i
\(235\) −18.3295 4.04575i −1.19569 0.263916i
\(236\) 4.01963i 0.261656i
\(237\) 19.8407 12.8139i 1.28879 0.832352i
\(238\) −0.186229 + 0.186229i −0.0120714 + 0.0120714i
\(239\) −5.65839 −0.366011 −0.183005 0.983112i \(-0.558583\pi\)
−0.183005 + 0.983112i \(0.558583\pi\)
\(240\) 6.42845 14.0468i 0.414955 0.906716i
\(241\) 13.5737 0.874356 0.437178 0.899375i \(-0.355978\pi\)
0.437178 + 0.899375i \(0.355978\pi\)
\(242\) −0.681459 + 0.681459i −0.0438058 + 0.0438058i
\(243\) 4.22355 15.0054i 0.270941 0.962596i
\(244\) 10.4458i 0.668721i
\(245\) 11.2643 7.19080i 0.719647 0.459404i
\(246\) 0.0292677 0.136011i 0.00186604 0.00867177i
\(247\) 1.65056 + 1.65056i 0.105023 + 0.105023i
\(248\) 0.597138 + 0.597138i 0.0379183 + 0.0379183i
\(249\) −0.785796 + 3.65171i −0.0497978 + 0.231418i
\(250\) −0.295299 + 0.387063i −0.0186763 + 0.0244800i
\(251\) 7.98748i 0.504165i 0.967706 + 0.252083i \(0.0811155\pi\)
−0.967706 + 0.252083i \(0.918884\pi\)
\(252\) 2.14479 + 5.67247i 0.135109 + 0.357332i
\(253\) 11.2981 11.2981i 0.710308 0.710308i
\(254\) 0.285220 0.0178963
\(255\) 8.07416 + 21.7003i 0.505623 + 1.35893i
\(256\) 15.8485 0.990533
\(257\) 0.794562 0.794562i 0.0495634 0.0495634i −0.681891 0.731454i \(-0.738842\pi\)
0.731454 + 0.681891i \(0.238842\pi\)
\(258\) −0.121742 + 0.0786257i −0.00757932 + 0.00489502i
\(259\) 9.06163i 0.563062i
\(260\) 2.24785 10.1840i 0.139406 0.631587i
\(261\) −6.64700 + 14.7296i −0.411439 + 0.911741i
\(262\) 0.135318 + 0.135318i 0.00835998 + 0.00835998i
\(263\) −17.8613 17.8613i −1.10137 1.10137i −0.994245 0.107128i \(-0.965835\pi\)
−0.107128 0.994245i \(-0.534165\pi\)
\(264\) 1.69686 + 0.365139i 0.104434 + 0.0224728i
\(265\) −0.419372 + 1.89999i −0.0257618 + 0.116716i
\(266\) 0.0440541i 0.00270113i
\(267\) −7.32988 11.3494i −0.448581 0.694571i
\(268\) 17.2199 17.2199i 1.05187 1.05187i
\(269\) −15.7810 −0.962182 −0.481091 0.876671i \(-0.659759\pi\)
−0.481091 + 0.876671i \(0.659759\pi\)
\(270\) −0.504786 0.0342278i −0.0307203 0.00208304i
\(271\) −22.9601 −1.39473 −0.697364 0.716717i \(-0.745644\pi\)
−0.697364 + 0.716717i \(0.745644\pi\)
\(272\) −16.8610 + 16.8610i −1.02235 + 1.02235i
\(273\) 2.21911 + 3.43601i 0.134307 + 0.207957i
\(274\) 0.383470i 0.0231663i
\(275\) 26.1062 + 12.1147i 1.57426 + 0.730543i
\(276\) −9.39179 2.02098i −0.565319 0.121649i
\(277\) −15.1916 15.1916i −0.912775 0.912775i 0.0837146 0.996490i \(-0.473322\pi\)
−0.996490 + 0.0837146i \(0.973322\pi\)
\(278\) −0.124339 0.124339i −0.00745736 0.00745736i
\(279\) −5.98557 + 13.2639i −0.358346 + 0.794089i
\(280\) 0.331969 0.211920i 0.0198389 0.0126646i
\(281\) 31.3848i 1.87226i 0.351652 + 0.936131i \(0.385620\pi\)
−0.351652 + 0.936131i \(0.614380\pi\)
\(282\) −0.531853 + 0.343492i −0.0316714 + 0.0204546i
\(283\) 2.23864 2.23864i 0.133073 0.133073i −0.637433 0.770506i \(-0.720004\pi\)
0.770506 + 0.637433i \(0.220004\pi\)
\(284\) 17.1015 1.01479
\(285\) 3.52171 + 1.61169i 0.208608 + 0.0954686i
\(286\) 0.585067 0.0345958
\(287\) −1.31960 + 1.31960i −0.0778934 + 0.0778934i
\(288\) −0.553716 1.46445i −0.0326280 0.0862934i
\(289\) 18.7397i 1.10233i
\(290\) 0.512167 + 0.113047i 0.0300755 + 0.00663835i
\(291\) −4.67265 + 21.7145i −0.273916 + 1.27293i
\(292\) −16.1697 16.1697i −0.946262 0.946262i
\(293\) 3.28779 + 3.28779i 0.192075 + 0.192075i 0.796592 0.604517i \(-0.206634\pi\)
−0.604517 + 0.796592i \(0.706634\pi\)
\(294\) 0.0948259 0.440670i 0.00553036 0.0257004i
\(295\) 2.42047 + 3.79163i 0.140925 + 0.220757i
\(296\) 1.55936i 0.0906362i
\(297\) 4.45588 + 29.5754i 0.258557 + 1.71614i
\(298\) 0.0300690 0.0300690i 0.00174185 0.00174185i
\(299\) −6.47956 −0.374722
\(300\) −2.39692 17.1373i −0.138386 0.989421i
\(301\) 1.94399 0.112050
\(302\) 0.601490 0.601490i 0.0346119 0.0346119i
\(303\) 20.8782 13.4840i 1.19942 0.774634i
\(304\) 3.98863i 0.228763i
\(305\) −6.29005 9.85325i −0.360167 0.564196i
\(306\) 0.711843 + 0.321232i 0.0406934 + 0.0183636i
\(307\) −7.27587 7.27587i −0.415256 0.415256i 0.468309 0.883565i \(-0.344863\pi\)
−0.883565 + 0.468309i \(0.844863\pi\)
\(308\) −8.22764 8.22764i −0.468813 0.468813i
\(309\) 7.12983 + 1.53424i 0.405602 + 0.0872798i
\(310\) 0.461202 + 0.101798i 0.0261945 + 0.00578173i
\(311\) 6.65091i 0.377139i 0.982060 + 0.188569i \(0.0603850\pi\)
−0.982060 + 0.188569i \(0.939615\pi\)
\(312\) −0.381874 0.591284i −0.0216194 0.0334749i
\(313\) −13.7782 + 13.7782i −0.778791 + 0.778791i −0.979625 0.200834i \(-0.935635\pi\)
0.200834 + 0.979625i \(0.435635\pi\)
\(314\) −0.366039 −0.0206568
\(315\) 5.43889 + 4.05920i 0.306447 + 0.228710i
\(316\) 27.2468 1.53275
\(317\) 20.9085 20.9085i 1.17434 1.17434i 0.193171 0.981165i \(-0.438123\pi\)
0.981165 0.193171i \(-0.0618771\pi\)
\(318\) 0.0356054 + 0.0551305i 0.00199665 + 0.00309156i
\(319\) 31.0057i 1.73599i
\(320\) 14.9924 9.57077i 0.838102 0.535022i
\(321\) 29.3347 + 6.31241i 1.63730 + 0.352325i
\(322\) −0.0864709 0.0864709i −0.00481883 0.00481883i
\(323\) −4.22727 4.22727i −0.235212 0.235212i
\(324\) 13.4843 11.8979i 0.749126 0.660996i
\(325\) −4.01210 10.9599i −0.222551 0.607948i
\(326\) 0.391253i 0.0216695i
\(327\) −8.39494 + 5.42178i −0.464241 + 0.299825i
\(328\) 0.227082 0.227082i 0.0125385 0.0125385i
\(329\) 8.49269 0.468217
\(330\) 0.909809 0.338518i 0.0500833 0.0186348i
\(331\) −11.2312 −0.617322 −0.308661 0.951172i \(-0.599881\pi\)
−0.308661 + 0.951172i \(0.599881\pi\)
\(332\) −3.04697 + 3.04697i −0.167224 + 0.167224i
\(333\) −25.1340 + 9.50332i −1.37734 + 0.520779i
\(334\) 0.419770i 0.0229688i
\(335\) 5.87394 26.6123i 0.320928 1.45398i
\(336\) −1.47034 + 6.83288i −0.0802136 + 0.372764i
\(337\) 21.0475 + 21.0475i 1.14653 + 1.14653i 0.987230 + 0.159301i \(0.0509239\pi\)
0.159301 + 0.987230i \(0.449076\pi\)
\(338\) 0.232511 + 0.232511i 0.0126469 + 0.0126469i
\(339\) 2.22444 10.3373i 0.120815 0.561445i
\(340\) −5.75701 + 26.0825i −0.312218 + 1.41452i
\(341\) 27.9204i 1.51197i
\(342\) 0.122192 0.0462014i 0.00660737 0.00249828i
\(343\) −9.28306 + 9.28306i −0.501238 + 0.501238i
\(344\) −0.334530 −0.0180367
\(345\) −10.0760 + 3.74905i −0.542475 + 0.201842i
\(346\) −0.0981792 −0.00527815
\(347\) −6.49171 + 6.49171i −0.348493 + 0.348493i −0.859548 0.511055i \(-0.829255\pi\)
0.511055 + 0.859548i \(0.329255\pi\)
\(348\) −15.6602 + 10.1139i −0.839473 + 0.542164i
\(349\) 32.1452i 1.72069i 0.509709 + 0.860347i \(0.329753\pi\)
−0.509709 + 0.860347i \(0.670247\pi\)
\(350\) 0.0927203 0.199805i 0.00495611 0.0106800i
\(351\) 7.20311 9.75859i 0.384473 0.520875i
\(352\) 2.12411 + 2.12411i 0.113215 + 0.113215i
\(353\) 11.4461 + 11.4461i 0.609212 + 0.609212i 0.942740 0.333528i \(-0.108239\pi\)
−0.333528 + 0.942740i \(0.608239\pi\)
\(354\) 0.148332 + 0.0319190i 0.00788378 + 0.00169648i
\(355\) 16.1315 10.2979i 0.856171 0.546557i
\(356\) 15.5859i 0.826050i
\(357\) −5.68340 8.80002i −0.300797 0.465746i
\(358\) −0.461508 + 0.461508i −0.0243915 + 0.0243915i
\(359\) −27.9920 −1.47736 −0.738681 0.674055i \(-0.764551\pi\)
−0.738681 + 0.674055i \(0.764551\pi\)
\(360\) −0.935948 0.698525i −0.0493288 0.0368155i
\(361\) −1.00000 −0.0526316
\(362\) 0.00791203 0.00791203i 0.000415847 0.000415847i
\(363\) −20.7970 32.2016i −1.09156 1.69014i
\(364\) 4.71860i 0.247322i
\(365\) −24.9894 5.51574i −1.30800 0.288707i
\(366\) −0.385470 0.0829476i −0.0201488 0.00433574i
\(367\) 21.2644 + 21.2644i 1.10999 + 1.10999i 0.993151 + 0.116840i \(0.0372766\pi\)
0.116840 + 0.993151i \(0.462723\pi\)
\(368\) −7.82902 7.82902i −0.408116 0.408116i
\(369\) 5.04405 + 2.27622i 0.262583 + 0.118495i
\(370\) 0.469273 + 0.735108i 0.0243964 + 0.0382165i
\(371\) 0.880329i 0.0457044i
\(372\) −14.1018 + 9.10752i −0.731147 + 0.472203i
\(373\) −11.2544 + 11.2544i −0.582731 + 0.582731i −0.935653 0.352922i \(-0.885188\pi\)
0.352922 + 0.935653i \(0.385188\pi\)
\(374\) −1.49842 −0.0774817
\(375\) −12.5804 14.7219i −0.649649 0.760234i
\(376\) −1.46146 −0.0753690
\(377\) −8.89100 + 8.89100i −0.457910 + 0.457910i
\(378\) 0.226357 0.0341033i 0.0116425 0.00175409i
\(379\) 32.4069i 1.66463i 0.554302 + 0.832316i \(0.312985\pi\)
−0.554302 + 0.832316i \(0.687015\pi\)
\(380\) 2.40409 + 3.76596i 0.123327 + 0.193190i
\(381\) −2.38665 + 11.0911i −0.122272 + 0.568215i
\(382\) −0.586781 0.586781i −0.0300223 0.0300223i
\(383\) 16.2815 + 16.2815i 0.831948 + 0.831948i 0.987783 0.155836i \(-0.0498070\pi\)
−0.155836 + 0.987783i \(0.549807\pi\)
\(384\) 0.506526 2.35390i 0.0258485 0.120122i
\(385\) −12.7153 2.80657i −0.648033 0.143036i
\(386\) 1.00115i 0.0509570i
\(387\) −2.03874 5.39199i −0.103635 0.274090i
\(388\) −18.1185 + 18.1185i −0.919826 + 0.919826i
\(389\) −3.75811 −0.190544 −0.0952720 0.995451i \(-0.530372\pi\)
−0.0952720 + 0.995451i \(0.530372\pi\)
\(390\) −0.357962 0.163820i −0.0181261 0.00829532i
\(391\) 16.5949 0.839239
\(392\) 0.735734 0.735734i 0.0371602 0.0371602i
\(393\) −6.39430 + 4.12969i −0.322550 + 0.208315i
\(394\) 0.442475i 0.0222916i
\(395\) 25.7013 16.4070i 1.29317 0.825528i
\(396\) −14.1921 + 31.4495i −0.713181 + 1.58040i
\(397\) −3.94169 3.94169i −0.197828 0.197828i 0.601240 0.799068i \(-0.294673\pi\)
−0.799068 + 0.601240i \(0.794673\pi\)
\(398\) 0.263540 + 0.263540i 0.0132101 + 0.0132101i
\(399\) −1.71309 0.368633i −0.0857619 0.0184547i
\(400\) 8.39484 18.0902i 0.419742 0.904510i
\(401\) 30.5168i 1.52394i 0.647614 + 0.761969i \(0.275767\pi\)
−0.647614 + 0.761969i \(0.724233\pi\)
\(402\) −0.498708 0.772187i −0.0248733 0.0385132i
\(403\) −8.00626 + 8.00626i −0.398820 + 0.398820i
\(404\) 28.6717 1.42647
\(405\) 5.55491 19.3428i 0.276026 0.961150i
\(406\) −0.237304 −0.0117772
\(407\) 36.4557 36.4557i 1.80704 1.80704i
\(408\) 0.978024 + 1.51435i 0.0484194 + 0.0749713i
\(409\) 21.4607i 1.06117i −0.847633 0.530583i \(-0.821973\pi\)
0.847633 0.530583i \(-0.178027\pi\)
\(410\) 0.0387122 0.175388i 0.00191186 0.00866179i
\(411\) −14.9117 3.20878i −0.735538 0.158277i
\(412\) 5.94910 + 5.94910i 0.293091 + 0.293091i
\(413\) −1.43914 1.43914i −0.0708153 0.0708153i
\(414\) −0.149156 + 0.330528i −0.00733064 + 0.0162446i
\(415\) −1.03937 + 4.70891i −0.0510205 + 0.231151i
\(416\) 1.21819i 0.0597267i
\(417\) 5.87550 3.79463i 0.287725 0.185824i
\(418\) −0.177233 + 0.177233i −0.00866875 + 0.00866875i
\(419\) 19.7884 0.966728 0.483364 0.875420i \(-0.339415\pi\)
0.483364 + 0.875420i \(0.339415\pi\)
\(420\) 2.73017 + 7.33766i 0.133218 + 0.358041i
\(421\) −24.7194 −1.20475 −0.602374 0.798214i \(-0.705778\pi\)
−0.602374 + 0.798214i \(0.705778\pi\)
\(422\) 0.385508 0.385508i 0.0187662 0.0187662i
\(423\) −8.90665 23.5560i −0.433056 1.14533i
\(424\) 0.151491i 0.00735705i
\(425\) 10.2755 + 28.0697i 0.498433 + 1.36158i
\(426\) 0.135800 0.631081i 0.00657952 0.0305760i
\(427\) 3.73987 + 3.73987i 0.180985 + 0.180985i
\(428\) 24.4767 + 24.4767i 1.18313 + 1.18313i
\(429\) −4.89569 + 22.7510i −0.236366 + 1.09843i
\(430\) −0.157703 + 0.100673i −0.00760509 + 0.00485489i
\(431\) 21.6637i 1.04350i 0.853097 + 0.521752i \(0.174722\pi\)
−0.853097 + 0.521752i \(0.825278\pi\)
\(432\) 20.4942 3.08769i 0.986029 0.148557i
\(433\) 1.70629 1.70629i 0.0819989 0.0819989i −0.664918 0.746917i \(-0.731533\pi\)
0.746917 + 0.664918i \(0.231533\pi\)
\(434\) −0.213690 −0.0102575
\(435\) −8.68164 + 18.9702i −0.416253 + 0.909553i
\(436\) −11.5286 −0.552120
\(437\) 1.96284 1.96284i 0.0938952 0.0938952i
\(438\) −0.725097 + 0.468296i −0.0346465 + 0.0223760i
\(439\) 27.8614i 1.32975i 0.746954 + 0.664875i \(0.231515\pi\)
−0.746954 + 0.664875i \(0.768485\pi\)
\(440\) 2.18811 + 0.482967i 0.104314 + 0.0230245i
\(441\) 16.3425 + 7.37482i 0.778213 + 0.351182i
\(442\) 0.429678 + 0.429678i 0.0204377 + 0.0204377i
\(443\) −18.0096 18.0096i −0.855661 0.855661i 0.135162 0.990823i \(-0.456844\pi\)
−0.990823 + 0.135162i \(0.956844\pi\)
\(444\) −30.3045 6.52109i −1.43819 0.309477i
\(445\) −9.38525 14.7018i −0.444903 0.696933i
\(446\) 0.484908i 0.0229611i
\(447\) 0.917658 + 1.42088i 0.0434037 + 0.0672052i
\(448\) −5.69048 + 5.69048i −0.268850 + 0.268850i
\(449\) −18.2496 −0.861253 −0.430627 0.902530i \(-0.641707\pi\)
−0.430627 + 0.902530i \(0.641707\pi\)
\(450\) −0.651433 0.0476322i −0.0307089 0.00224541i
\(451\) −10.6177 −0.499968
\(452\) 8.62538 8.62538i 0.405704 0.405704i
\(453\) 18.3565 + 28.4227i 0.862464 + 1.33542i
\(454\) 0.351974i 0.0165189i
\(455\) 2.84137 + 4.45095i 0.133205 + 0.208664i
\(456\) 0.294796 + 0.0634360i 0.0138051 + 0.00297066i
\(457\) 4.86447 + 4.86447i 0.227550 + 0.227550i 0.811669 0.584118i \(-0.198560\pi\)
−0.584118 + 0.811669i \(0.698560\pi\)
\(458\) −0.230998 0.230998i −0.0107938 0.0107938i
\(459\) −18.4480 + 24.9929i −0.861078 + 1.16657i
\(460\) −12.1108 2.67313i −0.564668 0.124635i
\(461\) 1.24666i 0.0580627i 0.999579 + 0.0290313i \(0.00924226\pi\)
−0.999579 + 0.0290313i \(0.990758\pi\)
\(462\) −0.368950 + 0.238283i −0.0171651 + 0.0110859i
\(463\) 3.85448 3.85448i 0.179133 0.179133i −0.611845 0.790978i \(-0.709572\pi\)
0.790978 + 0.611845i \(0.209572\pi\)
\(464\) −21.4854 −0.997433
\(465\) −7.81774 + 17.0825i −0.362539 + 0.792183i
\(466\) −0.355261 −0.0164572
\(467\) −0.787433 + 0.787433i −0.0364380 + 0.0364380i −0.725091 0.688653i \(-0.758202\pi\)
0.688653 + 0.725091i \(0.258202\pi\)
\(468\) 13.0879 4.94860i 0.604987 0.228749i
\(469\) 12.3304i 0.569363i
\(470\) −0.688954 + 0.439810i −0.0317791 + 0.0202869i
\(471\) 3.06292 14.2338i 0.141132 0.655861i
\(472\) 0.247653 + 0.247653i 0.0113992 + 0.0113992i
\(473\) 7.82082 + 7.82082i 0.359602 + 0.359602i
\(474\) 0.216361 1.00546i 0.00993781 0.0461825i
\(475\) 4.53545 + 2.10469i 0.208101 + 0.0965700i
\(476\) 12.0849i 0.553910i
\(477\) −2.44175 + 0.923239i −0.111800 + 0.0422722i
\(478\) −0.174226 + 0.174226i −0.00796893 + 0.00796893i
\(479\) 31.8183 1.45382 0.726909 0.686734i \(-0.240956\pi\)
0.726909 + 0.686734i \(0.240956\pi\)
\(480\) −0.704840 1.89435i −0.0321714 0.0864646i
\(481\) −20.9076 −0.953302
\(482\) 0.417944 0.417944i 0.0190368 0.0190368i
\(483\) 4.08608 2.63895i 0.185923 0.120076i
\(484\) 44.2218i 2.01008i
\(485\) −6.18048 + 28.0010i −0.280641 + 1.27146i
\(486\) −0.331982 0.592075i −0.0150590 0.0268571i
\(487\) −1.51114 1.51114i −0.0684761 0.0684761i 0.672039 0.740515i \(-0.265419\pi\)
−0.740515 + 0.672039i \(0.765419\pi\)
\(488\) −0.643573 0.643573i −0.0291332 0.0291332i
\(489\) −15.2143 3.27391i −0.688016 0.148051i
\(490\) 0.125425 0.568247i 0.00566614 0.0256708i
\(491\) 7.72391i 0.348575i −0.984695 0.174288i \(-0.944238\pi\)
0.984695 0.174288i \(-0.0557622\pi\)
\(492\) 3.46345 + 5.36271i 0.156144 + 0.241770i
\(493\) 22.7709 22.7709i 1.02555 1.02555i
\(494\) 0.101644 0.00457319
\(495\) 5.55060 + 38.2116i 0.249481 + 1.71748i
\(496\) −19.3474 −0.868723
\(497\) −6.12282 + 6.12282i −0.274646 + 0.274646i
\(498\) 0.0882440 + 0.136635i 0.00395431 + 0.00612274i
\(499\) 4.52199i 0.202432i 0.994864 + 0.101216i \(0.0322734\pi\)
−0.994864 + 0.101216i \(0.967727\pi\)
\(500\) −2.97741 22.1402i −0.133154 0.990139i
\(501\) −16.3232 3.51253i −0.729268 0.156928i
\(502\) 0.245941 + 0.245941i 0.0109769 + 0.0109769i
\(503\) 6.02978 + 6.02978i 0.268855 + 0.268855i 0.828639 0.559784i \(-0.189116\pi\)
−0.559784 + 0.828639i \(0.689116\pi\)
\(504\) 0.481629 + 0.217343i 0.0214535 + 0.00968124i
\(505\) 27.0453 17.2650i 1.20350 0.768283i
\(506\) 0.695759i 0.0309302i
\(507\) −10.9871 + 7.09587i −0.487952 + 0.315138i
\(508\) −9.25436 + 9.25436i −0.410596 + 0.410596i
\(509\) 39.7460 1.76171 0.880856 0.473385i \(-0.156968\pi\)
0.880856 + 0.473385i \(0.156968\pi\)
\(510\) 0.916781 + 0.419561i 0.0405957 + 0.0185785i
\(511\) 11.5784 0.512199
\(512\) 2.45394 2.45394i 0.108450 0.108450i
\(513\) 0.774125 + 5.13816i 0.0341784 + 0.226855i
\(514\) 0.0489305i 0.00215823i
\(515\) 9.19398 + 2.02932i 0.405135 + 0.0894227i
\(516\) 1.39897 6.50121i 0.0615861 0.286200i
\(517\) 34.1668 + 34.1668i 1.50265 + 1.50265i
\(518\) −0.279015 0.279015i −0.0122592 0.0122592i
\(519\) 0.821539 3.81781i 0.0360615 0.167583i
\(520\) −0.488955 0.765940i −0.0214421 0.0335887i
\(521\) 20.4179i 0.894524i −0.894403 0.447262i \(-0.852399\pi\)
0.894403 0.447262i \(-0.147601\pi\)
\(522\) 0.248871 + 0.658204i 0.0108928 + 0.0288088i
\(523\) 10.2255 10.2255i 0.447131 0.447131i −0.447269 0.894400i \(-0.647603\pi\)
0.894400 + 0.447269i \(0.147603\pi\)
\(524\) −8.78116 −0.383607
\(525\) 6.99378 + 5.27745i 0.305233 + 0.230327i
\(526\) −1.09993 −0.0479591
\(527\) 20.5050 20.5050i 0.893210 0.893210i
\(528\) −33.4045 + 21.5740i −1.45375 + 0.938886i
\(529\) 15.2946i 0.664981i
\(530\) 0.0455895 + 0.0714152i 0.00198028 + 0.00310208i
\(531\) −2.48242 + 5.50099i −0.107728 + 0.238722i
\(532\) −1.42939 1.42939i −0.0619721 0.0619721i
\(533\) 3.04466 + 3.04466i 0.131879 + 0.131879i
\(534\) −0.575151 0.123764i −0.0248892 0.00535580i
\(535\) 37.8273 + 8.34937i 1.63542 + 0.360975i
\(536\) 2.12186i 0.0916505i
\(537\) −14.0845 21.8081i −0.607791 0.941087i
\(538\) −0.485909 + 0.485909i −0.0209490 + 0.0209490i
\(539\) −34.4008 −1.48175
\(540\) 17.4891 15.2679i 0.752609 0.657027i
\(541\) 14.2122 0.611031 0.305516 0.952187i \(-0.401171\pi\)
0.305516 + 0.952187i \(0.401171\pi\)
\(542\) −0.706962 + 0.706962i −0.0303666 + 0.0303666i
\(543\) 0.241463 + 0.373874i 0.0103622 + 0.0160445i
\(544\) 3.11992i 0.133766i
\(545\) −10.8747 + 6.94210i −0.465820 + 0.297367i
\(546\) 0.174126 + 0.0374694i 0.00745191 + 0.00160354i
\(547\) −14.9064 14.9064i −0.637353 0.637353i 0.312549 0.949902i \(-0.398817\pi\)
−0.949902 + 0.312549i \(0.898817\pi\)
\(548\) −12.4422 12.4422i −0.531505 0.531505i
\(549\) 6.45102 14.2953i 0.275323 0.610110i
\(550\) 1.17685 0.430809i 0.0501811 0.0183698i
\(551\) 5.38666i 0.229479i
\(552\) −0.703151 + 0.454123i −0.0299281 + 0.0193287i
\(553\) −9.75511 + 9.75511i −0.414830 + 0.414830i
\(554\) −0.935525 −0.0397466
\(555\) −32.5123 + 12.0970i −1.38007 + 0.513490i
\(556\) 8.06870 0.342189
\(557\) 0.000743796 0 0.000743796i 3.15156e−5 0 3.15156e-5i −0.707091 0.707123i \(-0.749993\pi\)
0.707123 + 0.707091i \(0.249993\pi\)
\(558\) 0.224106 + 0.592707i 0.00948717 + 0.0250913i
\(559\) 4.48529i 0.189708i
\(560\) −1.94480 + 8.81106i −0.0821830 + 0.372335i
\(561\) 12.5384 58.2679i 0.529373 2.46007i
\(562\) 0.966365 + 0.966365i 0.0407637 + 0.0407637i
\(563\) 1.87325 + 1.87325i 0.0789482 + 0.0789482i 0.745478 0.666530i \(-0.232221\pi\)
−0.666530 + 0.745478i \(0.732221\pi\)
\(564\) 6.11166 28.4018i 0.257347 1.19593i
\(565\) 2.94224 13.3300i 0.123781 0.560798i
\(566\) 0.137859i 0.00579465i
\(567\) −0.567950 + 9.08752i −0.0238517 + 0.381640i
\(568\) 1.05364 1.05364i 0.0442098 0.0442098i
\(569\) 7.94033 0.332876 0.166438 0.986052i \(-0.446773\pi\)
0.166438 + 0.986052i \(0.446773\pi\)
\(570\) 0.158062 0.0588110i 0.00662048 0.00246332i
\(571\) −23.2512 −0.973031 −0.486515 0.873672i \(-0.661732\pi\)
−0.486515 + 0.873672i \(0.661732\pi\)
\(572\) −18.9833 + 18.9833i −0.793733 + 0.793733i
\(573\) 27.7277 17.9076i 1.15834 0.748101i
\(574\) 0.0812630i 0.00339185i
\(575\) −13.0335 + 4.77117i −0.543535 + 0.198971i
\(576\) 21.7514 + 9.81569i 0.906308 + 0.408987i
\(577\) 10.9937 + 10.9937i 0.457674 + 0.457674i 0.897891 0.440217i \(-0.145099\pi\)
−0.440217 + 0.897891i \(0.645099\pi\)
\(578\) −0.577011 0.577011i −0.0240005 0.0240005i
\(579\) −38.9307 8.37733i −1.61790 0.348150i
\(580\) −20.2859 + 12.9500i −0.842327 + 0.537719i
\(581\) 2.18180i 0.0905161i
\(582\) 0.524733 + 0.812483i 0.0217509 + 0.0336785i
\(583\) 3.54164 3.54164i 0.146680 0.146680i
\(584\) −1.99247 −0.0824488
\(585\) 9.36564 12.5489i 0.387222 0.518835i
\(586\) 0.202467 0.00836385
\(587\) 4.80581 4.80581i 0.198357 0.198357i −0.600938 0.799295i \(-0.705206\pi\)
0.799295 + 0.600938i \(0.205206\pi\)
\(588\) 11.2214 + 17.3749i 0.462762 + 0.716529i
\(589\) 4.85064i 0.199867i
\(590\) 0.191276 + 0.0422190i 0.00787470 + 0.00173813i
\(591\) 17.2062 + 3.70252i 0.707767 + 0.152301i
\(592\) −25.2619 25.2619i −1.03826 1.03826i
\(593\) −4.70496 4.70496i −0.193209 0.193209i 0.603872 0.797081i \(-0.293624\pi\)
−0.797081 + 0.603872i \(0.793624\pi\)
\(594\) 1.04785 + 0.773452i 0.0429939 + 0.0317351i
\(595\) −7.27707 11.3994i −0.298331 0.467330i
\(596\) 1.95126i 0.0799268i
\(597\) −12.4533 + 8.04283i −0.509680 + 0.329171i
\(598\) −0.199511 + 0.199511i −0.00815861 + 0.00815861i
\(599\) −0.515729 −0.0210721 −0.0105361 0.999944i \(-0.503354\pi\)
−0.0105361 + 0.999944i \(0.503354\pi\)
\(600\) −1.20352 0.908167i −0.0491335 0.0370758i
\(601\) 2.07904 0.0848059 0.0424030 0.999101i \(-0.486499\pi\)
0.0424030 + 0.999101i \(0.486499\pi\)
\(602\) 0.0598571 0.0598571i 0.00243959 0.00243959i
\(603\) 34.2004 12.9314i 1.39275 0.526606i
\(604\) 39.0324i 1.58820i
\(605\) −26.6287 41.7134i −1.08261 1.69589i
\(606\) 0.227676 1.05804i 0.00924869 0.0429800i
\(607\) −9.43902 9.43902i −0.383118 0.383118i 0.489106 0.872224i \(-0.337323\pi\)
−0.872224 + 0.489106i \(0.837323\pi\)
\(608\) 0.369023 + 0.369023i 0.0149659 + 0.0149659i
\(609\) 1.98570 9.22784i 0.0804646 0.373931i
\(610\) −0.497066 0.109714i −0.0201256 0.00444219i
\(611\) 19.5949i 0.792723i
\(612\) −33.5196 + 12.6739i −1.35495 + 0.512314i
\(613\) 18.9990 18.9990i 0.767360 0.767360i −0.210281 0.977641i \(-0.567438\pi\)
0.977641 + 0.210281i \(0.0674378\pi\)
\(614\) −0.448061 −0.0180823
\(615\) 6.49622 + 2.97297i 0.261953 + 0.119882i
\(616\) −1.01382 −0.0408482
\(617\) 1.43061 1.43061i 0.0575942 0.0575942i −0.677723 0.735317i \(-0.737033\pi\)
0.735317 + 0.677723i \(0.237033\pi\)
\(618\) 0.266774 0.172293i 0.0107312 0.00693065i
\(619\) 15.4921i 0.622679i −0.950299 0.311340i \(-0.899222\pi\)
0.950299 0.311340i \(-0.100778\pi\)
\(620\) −18.2673 + 11.6614i −0.733632 + 0.468331i
\(621\) −11.6049 8.56589i −0.465687 0.343737i
\(622\) 0.204787 + 0.204787i 0.00821122 + 0.00821122i
\(623\) 5.58017 + 5.58017i 0.223565 + 0.223565i
\(624\) 15.7653 + 3.39246i 0.631116 + 0.135807i
\(625\) −16.1405 19.0914i −0.645621 0.763658i
\(626\) 0.848486i 0.0339123i
\(627\) −5.40887 8.37495i −0.216009 0.334463i
\(628\) 11.8766 11.8766i 0.473930 0.473930i
\(629\) 53.5466 2.13504
\(630\) 0.292454 0.0424818i 0.0116517 0.00169252i
\(631\) −4.39637 −0.175017 −0.0875084 0.996164i \(-0.527890\pi\)
−0.0875084 + 0.996164i \(0.527890\pi\)
\(632\) 1.67870 1.67870i 0.0667752 0.0667752i
\(633\) 11.7651 + 18.2167i 0.467620 + 0.724050i
\(634\) 1.28758i 0.0511363i
\(635\) −3.15680 + 14.3021i −0.125274 + 0.567560i
\(636\) −2.94405 0.633518i −0.116739 0.0251206i
\(637\) 9.86453 + 9.86453i 0.390847 + 0.390847i
\(638\) −0.954693 0.954693i −0.0377967 0.0377967i
\(639\) 23.4040 + 10.5615i 0.925847 + 0.417805i
\(640\) 0.669977 3.03537i 0.0264832 0.119984i
\(641\) 18.8163i 0.743198i −0.928393 0.371599i \(-0.878810\pi\)
0.928393 0.371599i \(-0.121190\pi\)
\(642\) 1.09761 0.708876i 0.0433190 0.0279771i
\(643\) −23.5681 + 23.5681i −0.929434 + 0.929434i −0.997669 0.0682352i \(-0.978263\pi\)
0.0682352 + 0.997669i \(0.478263\pi\)
\(644\) 5.61133 0.221118
\(645\) −2.59517 6.97485i −0.102185 0.274635i
\(646\) −0.260323 −0.0102423
\(647\) −10.3173 + 10.3173i −0.405617 + 0.405617i −0.880207 0.474590i \(-0.842596\pi\)
0.474590 + 0.880207i \(0.342596\pi\)
\(648\) 0.0977353 1.56382i 0.00383941 0.0614326i
\(649\) 11.5795i 0.454536i
\(650\) −0.461002 0.213930i −0.0180820 0.00839103i
\(651\) 1.78810 8.30959i 0.0700813 0.325678i
\(652\) −12.6948 12.6948i −0.497165 0.497165i
\(653\) 9.04616 + 9.04616i 0.354003 + 0.354003i 0.861597 0.507593i \(-0.169465\pi\)
−0.507593 + 0.861597i \(0.669465\pi\)
\(654\) −0.0915462 + 0.425429i −0.00357974 + 0.0166356i
\(655\) −8.28308 + 5.28769i −0.323647 + 0.206607i
\(656\) 7.35751i 0.287262i
\(657\) −12.1428 32.1148i −0.473735 1.25292i
\(658\) 0.261497 0.261497i 0.0101942 0.0101942i
\(659\) −24.1074 −0.939090 −0.469545 0.882909i \(-0.655582\pi\)
−0.469545 + 0.882909i \(0.655582\pi\)
\(660\) −18.5363 + 40.5037i −0.721526 + 1.57660i
\(661\) 29.3000 1.13964 0.569818 0.821771i \(-0.307014\pi\)
0.569818 + 0.821771i \(0.307014\pi\)
\(662\) −0.345818 + 0.345818i −0.0134406 + 0.0134406i
\(663\) −20.3040 + 13.1131i −0.788540 + 0.509270i
\(664\) 0.375453i 0.0145704i
\(665\) −2.20905 0.487588i −0.0856631 0.0189078i
\(666\) −0.481283 + 1.06651i −0.0186493 + 0.0413265i
\(667\) 10.5731 + 10.5731i 0.409393 + 0.409393i
\(668\) −13.6200 13.6200i −0.526974 0.526974i
\(669\) 18.8562 + 4.05759i 0.729023 + 0.156875i
\(670\) −0.638551 1.00028i −0.0246694 0.0386441i
\(671\) 30.0916i 1.16167i
\(672\) 0.496137 + 0.768205i 0.0191389 + 0.0296341i
\(673\) 29.7489 29.7489i 1.14674 1.14674i 0.159546 0.987190i \(-0.448997\pi\)
0.987190 0.159546i \(-0.0510031\pi\)
\(674\) 1.29614 0.0499255
\(675\) 7.30326 24.9332i 0.281103 0.959678i
\(676\) −15.0883 −0.580319
\(677\) −26.2496 + 26.2496i −1.00885 + 1.00885i −0.00889433 + 0.999960i \(0.502831\pi\)
−0.999960 + 0.00889433i \(0.997169\pi\)
\(678\) −0.249802 0.386786i −0.00959358 0.0148544i
\(679\) 12.9738i 0.497890i
\(680\) 1.25227 + 1.96166i 0.0480224 + 0.0752262i
\(681\) 13.6869 + 2.94523i 0.524483 + 0.112861i
\(682\) −0.859693 0.859693i −0.0329193 0.0329193i
\(683\) −16.0253 16.0253i −0.613190 0.613190i 0.330586 0.943776i \(-0.392754\pi\)
−0.943776 + 0.330586i \(0.892754\pi\)
\(684\) −2.46561 + 5.46375i −0.0942750 + 0.208912i
\(685\) −19.2287 4.24422i −0.734691 0.162163i
\(686\) 0.571666i 0.0218263i
\(687\) 10.9155 7.04967i 0.416453 0.268962i
\(688\) 5.41942 5.41942i 0.206613 0.206613i
\(689\) −2.03115 −0.0773807
\(690\) −0.194813 + 0.425686i −0.00741641 + 0.0162056i
\(691\) 37.0013 1.40759 0.703797 0.710401i \(-0.251486\pi\)
0.703797 + 0.710401i \(0.251486\pi\)
\(692\) 3.18556 3.18556i 0.121097 0.121097i
\(693\) −6.17861 16.3409i −0.234706 0.620741i
\(694\) 0.399771i 0.0151751i
\(695\) 7.61103 4.85868i 0.288703 0.184300i
\(696\) −0.341708 + 1.58797i −0.0129524 + 0.0601917i
\(697\) −7.79772 7.79772i −0.295360 0.295360i
\(698\) 0.989778 + 0.989778i 0.0374637 + 0.0374637i
\(699\) 2.97273 13.8147i 0.112439 0.522521i
\(700\) 3.47450 + 9.49138i 0.131324 + 0.358741i
\(701\) 45.9499i 1.73550i −0.496997 0.867752i \(-0.665564\pi\)
0.496997 0.867752i \(-0.334436\pi\)
\(702\) −0.0786854 0.522265i −0.00296979 0.0197116i
\(703\) 6.33347 6.33347i 0.238871 0.238871i
\(704\) −45.7865 −1.72564
\(705\) −11.3375 30.4710i −0.426996 1.14760i
\(706\) 0.704868 0.0265280
\(707\) −10.2652 + 10.2652i −0.386064 + 0.386064i
\(708\) −5.84851 + 3.77720i −0.219800 + 0.141956i
\(709\) 28.1949i 1.05888i 0.848347 + 0.529440i \(0.177598\pi\)
−0.848347 + 0.529440i \(0.822402\pi\)
\(710\) 0.179621 0.813784i 0.00674106 0.0305408i
\(711\) 37.2881 + 16.8269i 1.39841 + 0.631059i
\(712\) −0.960261 0.960261i −0.0359873 0.0359873i
\(713\) 9.52100 + 9.52100i 0.356564 + 0.356564i
\(714\) −0.445957 0.0959635i −0.0166895 0.00359134i
\(715\) −6.47549 + 29.3376i −0.242170 + 1.09716i
\(716\) 29.9486i 1.11923i
\(717\) −5.31711 8.23288i −0.198571 0.307462i
\(718\) −0.861898 + 0.861898i −0.0321658 + 0.0321658i
\(719\) 43.1986 1.61103 0.805517 0.592572i \(-0.201888\pi\)
0.805517 + 0.592572i \(0.201888\pi\)
\(720\) 26.4786 3.84628i 0.986800 0.143342i
\(721\) −4.25988 −0.158646
\(722\) −0.0307908 + 0.0307908i −0.00114592 + 0.00114592i
\(723\) 12.7550 + 19.7495i 0.474363 + 0.734492i
\(724\) 0.513434i 0.0190816i
\(725\) −11.3373 + 24.4309i −0.421055 + 0.907340i
\(726\) −1.63187 0.351156i −0.0605645 0.0130326i
\(727\) 27.6667 + 27.6667i 1.02610 + 1.02610i 0.999650 + 0.0264500i \(0.00842028\pi\)
0.0264500 + 0.999650i \(0.491580\pi\)
\(728\) 0.290718 + 0.290718i 0.0107747 + 0.0107747i
\(729\) 25.8015 7.95516i 0.955610 0.294636i
\(730\) −0.939278 + 0.599610i −0.0347643 + 0.0221926i
\(731\) 11.4873i 0.424875i
\(732\) 15.1984 9.81575i 0.561751 0.362800i
\(733\) −18.6962 + 18.6962i −0.690559 + 0.690559i −0.962355 0.271796i \(-0.912382\pi\)
0.271796 + 0.962355i \(0.412382\pi\)
\(734\) 1.30950 0.0483344
\(735\) 21.0474 + 9.63225i 0.776345 + 0.355291i
\(736\) −1.44866 −0.0533985
\(737\) −49.6060 + 49.6060i −1.82726 + 1.82726i
\(738\) 0.225397 0.0852241i 0.00829699 0.00313714i
\(739\) 28.2723i 1.04001i −0.854162 0.520006i \(-0.825930\pi\)
0.854162 0.520006i \(-0.174070\pi\)
\(740\) −39.0778 8.62538i −1.43653 0.317075i
\(741\) −0.850533 + 3.95255i −0.0312451 + 0.145201i
\(742\) −0.0271061 0.0271061i −0.000995096 0.000995096i
\(743\) 4.18182 + 4.18182i 0.153416 + 0.153416i 0.779642 0.626226i \(-0.215401\pi\)
−0.626226 + 0.779642i \(0.715401\pi\)
\(744\) −0.307705 + 1.42995i −0.0112810 + 0.0524245i
\(745\) 1.17498 + 1.84058i 0.0430478 + 0.0674337i
\(746\) 0.693066i 0.0253749i
\(747\) −6.05160 + 2.28814i −0.221416 + 0.0837188i
\(748\) 48.6185 48.6185i 1.77767 1.77767i
\(749\) −17.5267 −0.640411
\(750\) −0.840660 0.0659378i −0.0306966 0.00240771i
\(751\) −16.3729 −0.597454 −0.298727 0.954339i \(-0.596562\pi\)
−0.298727 + 0.954339i \(0.596562\pi\)
\(752\) 23.6758 23.6758i 0.863367 0.863367i
\(753\) −11.6217 + 7.50574i −0.423518 + 0.273524i
\(754\) 0.547523i 0.0199396i
\(755\) 23.5038 + 36.8184i 0.855393 + 1.33996i
\(756\) −6.23794 + 8.45100i −0.226872 + 0.307360i
\(757\) 31.0298 + 31.0298i 1.12780 + 1.12780i 0.990535 + 0.137261i \(0.0438300\pi\)
0.137261 + 0.990535i \(0.456170\pi\)
\(758\) 0.997836 + 0.997836i 0.0362430 + 0.0362430i
\(759\) 27.0554 + 5.82193i 0.982047 + 0.211323i
\(760\) 0.380142 + 0.0839062i 0.0137892 + 0.00304360i
\(761\) 31.2086i 1.13131i −0.824641 0.565656i \(-0.808623\pi\)
0.824641 0.565656i \(-0.191377\pi\)
\(762\) 0.268018 + 0.414992i 0.00970926 + 0.0150336i
\(763\) 4.12755 4.12755i 0.149427 0.149427i
\(764\) 38.0778 1.37761
\(765\) −23.9865 + 32.1393i −0.867233 + 1.16200i
\(766\) 1.00264 0.0362270
\(767\) −3.32047 + 3.32047i −0.119895 + 0.119895i
\(768\) 14.8927 + 23.0594i 0.537392 + 0.832084i
\(769\) 23.9097i 0.862204i 0.902303 + 0.431102i \(0.141875\pi\)
−0.902303 + 0.431102i \(0.858125\pi\)
\(770\) −0.477932 + 0.305099i −0.0172235 + 0.0109950i