Properties

Label 285.2.k.c.77.7
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.7
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.c.248.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0307908 + 0.0307908i) q^{2} +(-1.45499 - 0.939687i) q^{3} +1.99810i q^{4} +(-1.20318 - 1.88477i) q^{5} +(0.0737341 - 0.0158665i) q^{6} +(-0.715376 - 0.715376i) q^{7} +(-0.123105 - 0.123105i) q^{8} +(1.23398 + 2.73447i) q^{9} +O(q^{10})\) \(q+(-0.0307908 + 0.0307908i) q^{2} +(-1.45499 - 0.939687i) q^{3} +1.99810i q^{4} +(-1.20318 - 1.88477i) q^{5} +(0.0737341 - 0.0158665i) q^{6} +(-0.715376 - 0.715376i) q^{7} +(-0.123105 - 0.123105i) q^{8} +(1.23398 + 2.73447i) q^{9} +(0.0950807 + 0.0209865i) q^{10} +5.75603i q^{11} +(1.87759 - 2.90722i) q^{12} +(-1.65056 + 1.65056i) q^{13} +0.0440541 q^{14} +(-0.0204736 + 3.87293i) q^{15} -3.98863 q^{16} +(-4.22727 + 4.22727i) q^{17} +(-0.122192 - 0.0462014i) q^{18} -1.00000i q^{19} +(3.76596 - 2.40409i) q^{20} +(0.368633 + 1.71309i) q^{21} +(-0.177233 - 0.177233i) q^{22} +(-1.96284 - 1.96284i) q^{23} +(0.0634360 + 0.294796i) q^{24} +(-2.10469 + 4.53545i) q^{25} -0.101644i q^{26} +(0.774125 - 5.13816i) q^{27} +(1.42939 - 1.42939i) q^{28} -5.38666 q^{29} +(-0.118620 - 0.119881i) q^{30} +4.85064 q^{31} +(0.369023 - 0.369023i) q^{32} +(5.40887 - 8.37495i) q^{33} -0.260323i q^{34} +(-0.487588 + 2.20905i) q^{35} +(-5.46375 + 2.46561i) q^{36} +(6.33347 + 6.33347i) q^{37} +(0.0307908 + 0.0307908i) q^{38} +(3.95255 - 0.850533i) q^{39} +(-0.0839062 + 0.380142i) q^{40} +1.84462i q^{41} +(-0.0640981 - 0.0413970i) q^{42} +(-1.35872 + 1.35872i) q^{43} -11.5011 q^{44} +(3.66913 - 5.61582i) q^{45} +0.120875 q^{46} +(5.93582 - 5.93582i) q^{47} +(5.80340 + 3.74806i) q^{48} -5.97648i q^{49} +(-0.0748449 - 0.204456i) q^{50} +(10.1229 - 2.17831i) q^{51} +(-3.29799 - 3.29799i) q^{52} +(-0.615292 - 0.615292i) q^{53} +(0.134372 + 0.182044i) q^{54} +(10.8488 - 6.92556i) q^{55} +0.176133i q^{56} +(-0.939687 + 1.45499i) q^{57} +(0.165860 - 0.165860i) q^{58} -2.01172 q^{59} +(-7.73851 - 0.0409085i) q^{60} -5.22784 q^{61} +(-0.149355 + 0.149355i) q^{62} +(1.07341 - 2.83893i) q^{63} -7.95453i q^{64} +(5.09685 + 1.12499i) q^{65} +(0.0913281 + 0.424415i) q^{66} +(-8.61810 - 8.61810i) q^{67} +(-8.44653 - 8.44653i) q^{68} +(1.01145 + 4.70035i) q^{69} +(-0.0530052 - 0.0830316i) q^{70} +8.55888i q^{71} +(0.184718 - 0.488535i) q^{72} +(-8.09254 + 8.09254i) q^{73} -0.390026 q^{74} +(7.32420 - 4.62126i) q^{75} +1.99810 q^{76} +(4.11772 - 4.11772i) q^{77} +(-0.0955138 + 0.147891i) q^{78} -13.6363i q^{79} +(4.79905 + 7.51763i) q^{80} +(-5.95461 + 6.74853i) q^{81} +(-0.0567975 - 0.0567975i) q^{82} +(-1.52493 - 1.52493i) q^{83} +(-3.42294 + 0.736567i) q^{84} +(13.0536 + 2.88124i) q^{85} -0.0836722i q^{86} +(7.83751 + 5.06177i) q^{87} +(0.708596 - 0.708596i) q^{88} +7.80034 q^{89} +(0.0599403 + 0.285892i) q^{90} +2.36154 q^{91} +(3.92195 - 3.92195i) q^{92} +(-7.05761 - 4.55808i) q^{93} +0.365538i q^{94} +(-1.88477 + 1.20318i) q^{95} +(-0.883691 + 0.190158i) q^{96} +(9.06784 + 9.06784i) q^{97} +(0.184021 + 0.184021i) q^{98} +(-15.7397 + 7.10280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 2 q^{3} - 12 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 2 q^{3} - 12 q^{6} - 8 q^{10} + 34 q^{12} + 8 q^{13} - 14 q^{15} - 20 q^{16} - 24 q^{18} - 4 q^{21} - 32 q^{22} + 8 q^{25} + 22 q^{27} - 28 q^{28} + 12 q^{30} + 72 q^{31} - 84 q^{36} - 12 q^{37} + 20 q^{40} + 48 q^{42} - 12 q^{43} - 52 q^{45} + 8 q^{46} + 46 q^{48} + 28 q^{51} - 76 q^{52} + 104 q^{55} + 2 q^{57} - 60 q^{58} - 22 q^{60} + 96 q^{61} + 56 q^{63} - 28 q^{66} - 72 q^{67} + 68 q^{70} + 20 q^{72} - 72 q^{73} + 2 q^{75} - 36 q^{76} + 76 q^{78} - 100 q^{81} - 116 q^{82} - 44 q^{85} + 4 q^{87} + 60 q^{88} - 36 q^{90} - 80 q^{91} + 52 q^{93} - 80 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0307908 + 0.0307908i −0.0217724 + 0.0217724i −0.717909 0.696137i \(-0.754901\pi\)
0.696137 + 0.717909i \(0.254901\pi\)
\(3\) −1.45499 0.939687i −0.840037 0.542529i
\(4\) 1.99810i 0.999052i
\(5\) −1.20318 1.88477i −0.538080 0.842893i
\(6\) 0.0737341 0.0158665i 0.0301018 0.00647748i
\(7\) −0.715376 0.715376i −0.270387 0.270387i 0.558869 0.829256i \(-0.311235\pi\)
−0.829256 + 0.558869i \(0.811235\pi\)
\(8\) −0.123105 0.123105i −0.0435242 0.0435242i
\(9\) 1.23398 + 2.73447i 0.411325 + 0.911489i
\(10\) 0.0950807 + 0.0209865i 0.0300671 + 0.00663652i
\(11\) 5.75603i 1.73551i 0.496994 + 0.867754i \(0.334437\pi\)
−0.496994 + 0.867754i \(0.665563\pi\)
\(12\) 1.87759 2.90722i 0.542014 0.839241i
\(13\) −1.65056 + 1.65056i −0.457783 + 0.457783i −0.897927 0.440144i \(-0.854927\pi\)
0.440144 + 0.897927i \(0.354927\pi\)
\(14\) 0.0440541 0.0117739
\(15\) −0.0204736 + 3.87293i −0.00528627 + 0.999986i
\(16\) −3.98863 −0.997157
\(17\) −4.22727 + 4.22727i −1.02526 + 1.02526i −0.0255918 + 0.999672i \(0.508147\pi\)
−0.999672 + 0.0255918i \(0.991853\pi\)
\(18\) −0.122192 0.0462014i −0.0288009 0.0108898i
\(19\) 1.00000i 0.229416i
\(20\) 3.76596 2.40409i 0.842094 0.537570i
\(21\) 0.368633 + 1.71309i 0.0804423 + 0.373827i
\(22\) −0.177233 0.177233i −0.0377862 0.0377862i
\(23\) −1.96284 1.96284i −0.409280 0.409280i 0.472208 0.881487i \(-0.343457\pi\)
−0.881487 + 0.472208i \(0.843457\pi\)
\(24\) 0.0634360 + 0.294796i 0.0129488 + 0.0601751i
\(25\) −2.10469 + 4.53545i −0.420939 + 0.907089i
\(26\) 0.101644i 0.0199341i
\(27\) 0.774125 5.13816i 0.148980 0.988840i
\(28\) 1.42939 1.42939i 0.270130 0.270130i
\(29\) −5.38666 −1.00028 −0.500138 0.865945i \(-0.666718\pi\)
−0.500138 + 0.865945i \(0.666718\pi\)
\(30\) −0.118620 0.119881i −0.0216570 0.0218872i
\(31\) 4.85064 0.871200 0.435600 0.900140i \(-0.356536\pi\)
0.435600 + 0.900140i \(0.356536\pi\)
\(32\) 0.369023 0.369023i 0.0652347 0.0652347i
\(33\) 5.40887 8.37495i 0.941563 1.45789i
\(34\) 0.260323i 0.0446450i
\(35\) −0.487588 + 2.20905i −0.0824173 + 0.373397i
\(36\) −5.46375 + 2.46561i −0.910625 + 0.410935i
\(37\) 6.33347 + 6.33347i 1.04122 + 1.04122i 0.999113 + 0.0421033i \(0.0134059\pi\)
0.0421033 + 0.999113i \(0.486594\pi\)
\(38\) 0.0307908 + 0.0307908i 0.00499494 + 0.00499494i
\(39\) 3.95255 0.850533i 0.632915 0.136194i
\(40\) −0.0839062 + 0.380142i −0.0132667 + 0.0601058i
\(41\) 1.84462i 0.288081i 0.989572 + 0.144041i \(0.0460096\pi\)
−0.989572 + 0.144041i \(0.953990\pi\)
\(42\) −0.0640981 0.0413970i −0.00989055 0.00638770i
\(43\) −1.35872 + 1.35872i −0.207203 + 0.207203i −0.803077 0.595875i \(-0.796805\pi\)
0.595875 + 0.803077i \(0.296805\pi\)
\(44\) −11.5011 −1.73386
\(45\) 3.66913 5.61582i 0.546962 0.837158i
\(46\) 0.120875 0.0178220
\(47\) 5.93582 5.93582i 0.865829 0.865829i −0.126179 0.992008i \(-0.540271\pi\)
0.992008 + 0.126179i \(0.0402712\pi\)
\(48\) 5.80340 + 3.74806i 0.837649 + 0.540986i
\(49\) 5.97648i 0.853782i
\(50\) −0.0748449 0.204456i −0.0105847 0.0289144i
\(51\) 10.1229 2.17831i 1.41750 0.305025i
\(52\) −3.29799 3.29799i −0.457349 0.457349i
\(53\) −0.615292 0.615292i −0.0845168 0.0845168i 0.663585 0.748101i \(-0.269034\pi\)
−0.748101 + 0.663585i \(0.769034\pi\)
\(54\) 0.134372 + 0.182044i 0.0182858 + 0.0247731i
\(55\) 10.8488 6.92556i 1.46285 0.933843i
\(56\) 0.176133i 0.0235367i
\(57\) −0.939687 + 1.45499i −0.124465 + 0.192718i
\(58\) 0.165860 0.165860i 0.0217784 0.0217784i
\(59\) −2.01172 −0.261904 −0.130952 0.991389i \(-0.541803\pi\)
−0.130952 + 0.991389i \(0.541803\pi\)
\(60\) −7.73851 0.0409085i −0.999038 0.00528126i
\(61\) −5.22784 −0.669356 −0.334678 0.942333i \(-0.608628\pi\)
−0.334678 + 0.942333i \(0.608628\pi\)
\(62\) −0.149355 + 0.149355i −0.0189681 + 0.0189681i
\(63\) 1.07341 2.83893i 0.135238 0.357671i
\(64\) 7.95453i 0.994316i
\(65\) 5.09685 + 1.12499i 0.632186 + 0.139538i
\(66\) 0.0913281 + 0.424415i 0.0112417 + 0.0522419i
\(67\) −8.61810 8.61810i −1.05287 1.05287i −0.998522 0.0543460i \(-0.982693\pi\)
−0.0543460 0.998522i \(-0.517307\pi\)
\(68\) −8.44653 8.44653i −1.02429 1.02429i
\(69\) 1.01145 + 4.70035i 0.121764 + 0.565856i
\(70\) −0.0530052 0.0830316i −0.00633533 0.00992418i
\(71\) 8.55888i 1.01575i 0.861430 + 0.507876i \(0.169569\pi\)
−0.861430 + 0.507876i \(0.830431\pi\)
\(72\) 0.184718 0.488535i 0.0217692 0.0575744i
\(73\) −8.09254 + 8.09254i −0.947160 + 0.947160i −0.998672 0.0515119i \(-0.983596\pi\)
0.0515119 + 0.998672i \(0.483596\pi\)
\(74\) −0.390026 −0.0453396
\(75\) 7.32420 4.62126i 0.845726 0.533617i
\(76\) 1.99810 0.229198
\(77\) 4.11772 4.11772i 0.469258 0.469258i
\(78\) −0.0955138 + 0.147891i −0.0108148 + 0.0167454i
\(79\) 13.6363i 1.53421i −0.641522 0.767104i \(-0.721697\pi\)
0.641522 0.767104i \(-0.278303\pi\)
\(80\) 4.79905 + 7.51763i 0.536551 + 0.840497i
\(81\) −5.95461 + 6.74853i −0.661623 + 0.749836i
\(82\) −0.0567975 0.0567975i −0.00627223 0.00627223i
\(83\) −1.52493 1.52493i −0.167383 0.167383i 0.618445 0.785828i \(-0.287763\pi\)
−0.785828 + 0.618445i \(0.787763\pi\)
\(84\) −3.42294 + 0.736567i −0.373473 + 0.0803660i
\(85\) 13.0536 + 2.88124i 1.41586 + 0.312514i
\(86\) 0.0836722i 0.00902260i
\(87\) 7.83751 + 5.06177i 0.840270 + 0.542679i
\(88\) 0.708596 0.708596i 0.0755366 0.0755366i
\(89\) 7.80034 0.826834 0.413417 0.910542i \(-0.364335\pi\)
0.413417 + 0.910542i \(0.364335\pi\)
\(90\) 0.0599403 + 0.285892i 0.00631826 + 0.0301356i
\(91\) 2.36154 0.247557
\(92\) 3.92195 3.92195i 0.408891 0.408891i
\(93\) −7.05761 4.55808i −0.731840 0.472651i
\(94\) 0.365538i 0.0377024i
\(95\) −1.88477 + 1.20318i −0.193373 + 0.123444i
\(96\) −0.883691 + 0.190158i −0.0901913 + 0.0194079i
\(97\) 9.06784 + 9.06784i 0.920699 + 0.920699i 0.997079 0.0763795i \(-0.0243360\pi\)
−0.0763795 + 0.997079i \(0.524336\pi\)
\(98\) 0.184021 + 0.184021i 0.0185889 + 0.0185889i
\(99\) −15.7397 + 7.10280i −1.58190 + 0.713858i
\(100\) −9.06229 4.20540i −0.906229 0.420540i
\(101\) 14.3494i 1.42782i 0.700237 + 0.713911i \(0.253078\pi\)
−0.700237 + 0.713911i \(0.746922\pi\)
\(102\) −0.244622 + 0.378766i −0.0242212 + 0.0375034i
\(103\) 2.97737 2.97737i 0.293369 0.293369i −0.545041 0.838410i \(-0.683486\pi\)
0.838410 + 0.545041i \(0.183486\pi\)
\(104\) 0.406384 0.0398493
\(105\) 2.78525 2.75595i 0.271812 0.268953i
\(106\) 0.0378907 0.00368027
\(107\) −12.2500 + 12.2500i −1.18425 + 1.18425i −0.205618 + 0.978632i \(0.565920\pi\)
−0.978632 + 0.205618i \(0.934080\pi\)
\(108\) 10.2666 + 1.54678i 0.987903 + 0.148839i
\(109\) 5.76977i 0.552644i 0.961065 + 0.276322i \(0.0891156\pi\)
−0.961065 + 0.276322i \(0.910884\pi\)
\(110\) −0.120799 + 0.547287i −0.0115177 + 0.0521818i
\(111\) −3.26364 15.1666i −0.309771 1.43955i
\(112\) 2.85337 + 2.85337i 0.269618 + 0.269618i
\(113\) 4.31678 + 4.31678i 0.406089 + 0.406089i 0.880372 0.474283i \(-0.157293\pi\)
−0.474283 + 0.880372i \(0.657293\pi\)
\(114\) −0.0158665 0.0737341i −0.00148604 0.00690583i
\(115\) −1.33783 + 6.06114i −0.124754 + 0.565204i
\(116\) 10.7631i 0.999328i
\(117\) −6.55015 2.47665i −0.605562 0.228966i
\(118\) 0.0619426 0.0619426i 0.00570228 0.00570228i
\(119\) 6.04818 0.554435
\(120\) 0.479297 0.474257i 0.0437537 0.0432935i
\(121\) −22.1319 −2.01199
\(122\) 0.160970 0.160970i 0.0145735 0.0145735i
\(123\) 1.73337 2.68390i 0.156292 0.241999i
\(124\) 9.69207i 0.870374i
\(125\) 11.0806 1.49012i 0.991078 0.133280i
\(126\) 0.0543616 + 0.120464i 0.00484292 + 0.0107318i
\(127\) 4.63157 + 4.63157i 0.410986 + 0.410986i 0.882082 0.471096i \(-0.156142\pi\)
−0.471096 + 0.882082i \(0.656142\pi\)
\(128\) 0.982973 + 0.982973i 0.0868834 + 0.0868834i
\(129\) 3.25369 0.700147i 0.286471 0.0616445i
\(130\) −0.191576 + 0.122297i −0.0168023 + 0.0107261i
\(131\) 4.39475i 0.383971i −0.981398 0.191985i \(-0.938507\pi\)
0.981398 0.191985i \(-0.0614926\pi\)
\(132\) 16.7340 + 10.8075i 1.45651 + 0.940670i
\(133\) −0.715376 + 0.715376i −0.0620309 + 0.0620309i
\(134\) 0.530717 0.0458470
\(135\) −10.6157 + 4.72311i −0.913650 + 0.406501i
\(136\) 1.04080 0.0892476
\(137\) 6.22701 6.22701i 0.532009 0.532009i −0.389161 0.921170i \(-0.627235\pi\)
0.921170 + 0.389161i \(0.127235\pi\)
\(138\) −0.175871 0.113584i −0.0149712 0.00966895i
\(139\) 4.03818i 0.342514i −0.985226 0.171257i \(-0.945217\pi\)
0.985226 0.171257i \(-0.0547828\pi\)
\(140\) −4.41390 0.974251i −0.373043 0.0823392i
\(141\) −14.2144 + 3.05873i −1.19707 + 0.257591i
\(142\) −0.263535 0.263535i −0.0221154 0.0221154i
\(143\) −9.50067 9.50067i −0.794486 0.794486i
\(144\) −4.92187 10.9068i −0.410156 0.908897i
\(145\) 6.48114 + 10.1526i 0.538229 + 0.843127i
\(146\) 0.498353i 0.0412439i
\(147\) −5.61602 + 8.69569i −0.463201 + 0.717209i
\(148\) −12.6549 + 12.6549i −1.04023 + 1.04023i
\(149\) −0.976556 −0.0800026 −0.0400013 0.999200i \(-0.512736\pi\)
−0.0400013 + 0.999200i \(0.512736\pi\)
\(150\) −0.0832259 + 0.367811i −0.00679537 + 0.0300316i
\(151\) 19.5347 1.58971 0.794856 0.606799i \(-0.207547\pi\)
0.794856 + 0.606799i \(0.207547\pi\)
\(152\) −0.123105 + 0.123105i −0.00998514 + 0.00998514i
\(153\) −16.7757 6.34298i −1.35623 0.512800i
\(154\) 0.253576i 0.0204338i
\(155\) −5.83621 9.14232i −0.468776 0.734329i
\(156\) 1.69945 + 7.89761i 0.136065 + 0.632315i
\(157\) −5.94396 5.94396i −0.474379 0.474379i 0.428949 0.903329i \(-0.358884\pi\)
−0.903329 + 0.428949i \(0.858884\pi\)
\(158\) 0.419875 + 0.419875i 0.0334034 + 0.0334034i
\(159\) 0.317060 + 1.47342i 0.0251445 + 0.116850i
\(160\) −1.13953 0.251520i −0.0900874 0.0198844i
\(161\) 2.80833i 0.221327i
\(162\) −0.0244454 0.391140i −0.00192061 0.0307309i
\(163\) −6.35340 + 6.35340i −0.497637 + 0.497637i −0.910702 0.413065i \(-0.864458\pi\)
0.413065 + 0.910702i \(0.364458\pi\)
\(164\) −3.68575 −0.287808
\(165\) −22.2927 0.117847i −1.73548 0.00917437i
\(166\) 0.0939078 0.00728866
\(167\) 6.81647 6.81647i 0.527474 0.527474i −0.392344 0.919818i \(-0.628336\pi\)
0.919818 + 0.392344i \(0.128336\pi\)
\(168\) 0.165510 0.256271i 0.0127693 0.0197717i
\(169\) 7.55130i 0.580870i
\(170\) −0.490648 + 0.313216i −0.0376310 + 0.0240226i
\(171\) 2.73447 1.23398i 0.209110 0.0943645i
\(172\) −2.71486 2.71486i −0.207006 0.207006i
\(173\) 1.59429 + 1.59429i 0.121212 + 0.121212i 0.765111 0.643899i \(-0.222684\pi\)
−0.643899 + 0.765111i \(0.722684\pi\)
\(174\) −0.397180 + 0.0854675i −0.0301101 + 0.00647927i
\(175\) 4.75019 1.73890i 0.359081 0.131449i
\(176\) 22.9586i 1.73057i
\(177\) 2.92703 + 1.89039i 0.220009 + 0.142090i
\(178\) −0.240179 + 0.240179i −0.0180022 + 0.0180022i
\(179\) 14.9885 1.12029 0.560146 0.828394i \(-0.310745\pi\)
0.560146 + 0.828394i \(0.310745\pi\)
\(180\) 11.2210 + 7.33131i 0.836364 + 0.546443i
\(181\) 0.256961 0.0190997 0.00954986 0.999954i \(-0.496960\pi\)
0.00954986 + 0.999954i \(0.496960\pi\)
\(182\) −0.0727139 + 0.0727139i −0.00538991 + 0.00538991i
\(183\) 7.60643 + 4.91253i 0.562284 + 0.363145i
\(184\) 0.483270i 0.0356271i
\(185\) 4.31678 19.5575i 0.317376 1.43789i
\(186\) 0.357657 0.0769627i 0.0262247 0.00564318i
\(187\) −24.3323 24.3323i −1.77935 1.77935i
\(188\) 11.8604 + 11.8604i 0.865008 + 0.865008i
\(189\) −4.22951 + 3.12193i −0.307651 + 0.227087i
\(190\) 0.0209865 0.0950807i 0.00152252 0.00689788i
\(191\) 19.0570i 1.37892i 0.724326 + 0.689458i \(0.242151\pi\)
−0.724326 + 0.689458i \(0.757849\pi\)
\(192\) −7.47477 + 11.5737i −0.539445 + 0.835262i
\(193\) −16.2572 + 16.2572i −1.17022 + 1.17022i −0.188061 + 0.982157i \(0.560220\pi\)
−0.982157 + 0.188061i \(0.939780\pi\)
\(194\) −0.558413 −0.0400917
\(195\) −6.35871 6.42629i −0.455357 0.460197i
\(196\) 11.9416 0.852973
\(197\) −7.18518 + 7.18518i −0.511923 + 0.511923i −0.915115 0.403193i \(-0.867900\pi\)
0.403193 + 0.915115i \(0.367900\pi\)
\(198\) 0.265936 0.703339i 0.0188993 0.0499841i
\(199\) 8.55905i 0.606735i 0.952874 + 0.303367i \(0.0981110\pi\)
−0.952874 + 0.303367i \(0.901889\pi\)
\(200\) 0.817434 0.299238i 0.0578013 0.0211593i
\(201\) 4.44090 + 20.6375i 0.313237 + 1.45566i
\(202\) −0.441831 0.441831i −0.0310871 0.0310871i
\(203\) 3.85348 + 3.85348i 0.270461 + 0.270461i
\(204\) 4.35250 + 20.2267i 0.304736 + 1.41615i
\(205\) 3.47668 2.21942i 0.242822 0.155011i
\(206\) 0.183352i 0.0127747i
\(207\) 2.94522 7.78940i 0.204707 0.541401i
\(208\) 6.58347 6.58347i 0.456481 0.456481i
\(209\) 5.75603 0.398153
\(210\) −0.000901947 0.170618i −6.22403e−5 0.0117738i
\(211\) 12.5202 0.861926 0.430963 0.902370i \(-0.358174\pi\)
0.430963 + 0.902370i \(0.358174\pi\)
\(212\) 1.22942 1.22942i 0.0844367 0.0844367i
\(213\) 8.04267 12.4531i 0.551075 0.853270i
\(214\) 0.754375i 0.0515680i
\(215\) 4.19566 + 0.926079i 0.286141 + 0.0631580i
\(216\) −0.727832 + 0.537235i −0.0495227 + 0.0365542i
\(217\) −3.47003 3.47003i −0.235561 0.235561i
\(218\) −0.177656 0.177656i −0.0120324 0.0120324i
\(219\) 19.3790 4.17009i 1.30951 0.281788i
\(220\) 13.8380 + 21.6770i 0.932958 + 1.46146i
\(221\) 13.9547i 0.938697i
\(222\) 0.567483 + 0.366503i 0.0380870 + 0.0245980i
\(223\) 7.87422 7.87422i 0.527297 0.527297i −0.392468 0.919765i \(-0.628379\pi\)
0.919765 + 0.392468i \(0.128379\pi\)
\(224\) −0.527981 −0.0352772
\(225\) −14.9992 0.158586i −0.999944 0.0105724i
\(226\) −0.265835 −0.0176831
\(227\) −5.71556 + 5.71556i −0.379355 + 0.379355i −0.870869 0.491515i \(-0.836443\pi\)
0.491515 + 0.870869i \(0.336443\pi\)
\(228\) −2.90722 1.87759i −0.192535 0.124347i
\(229\) 7.50215i 0.495756i −0.968791 0.247878i \(-0.920267\pi\)
0.968791 0.247878i \(-0.0797332\pi\)
\(230\) −0.145435 0.227821i −0.00958968 0.0150221i
\(231\) −9.86061 + 2.12186i −0.648780 + 0.139608i
\(232\) 0.663124 + 0.663124i 0.0435362 + 0.0435362i
\(233\) 5.76894 + 5.76894i 0.377936 + 0.377936i 0.870357 0.492421i \(-0.163888\pi\)
−0.492421 + 0.870357i \(0.663888\pi\)
\(234\) 0.277943 0.125427i 0.0181697 0.00819939i
\(235\) −18.3295 4.04575i −1.19569 0.263916i
\(236\) 4.01963i 0.261656i
\(237\) −12.8139 + 19.8407i −0.832352 + 1.28879i
\(238\) −0.186229 + 0.186229i −0.0120714 + 0.0120714i
\(239\) 5.65839 0.366011 0.183005 0.983112i \(-0.441417\pi\)
0.183005 + 0.983112i \(0.441417\pi\)
\(240\) 0.0816617 15.4477i 0.00527124 0.997143i
\(241\) 13.5737 0.874356 0.437178 0.899375i \(-0.355978\pi\)
0.437178 + 0.899375i \(0.355978\pi\)
\(242\) 0.681459 0.681459i 0.0438058 0.0438058i
\(243\) 15.0054 4.22355i 0.962596 0.270941i
\(244\) 10.4458i 0.668721i
\(245\) −11.2643 + 7.19080i −0.719647 + 0.459404i
\(246\) 0.0292677 + 0.136011i 0.00186604 + 0.00867177i
\(247\) 1.65056 + 1.65056i 0.105023 + 0.105023i
\(248\) −0.597138 0.597138i −0.0379183 0.0379183i
\(249\) 0.785796 + 3.65171i 0.0497978 + 0.231418i
\(250\) −0.295299 + 0.387063i −0.0186763 + 0.0244800i
\(251\) 7.98748i 0.504165i −0.967706 0.252083i \(-0.918884\pi\)
0.967706 0.252083i \(-0.0811155\pi\)
\(252\) 5.67247 + 2.14479i 0.357332 + 0.135109i
\(253\) 11.2981 11.2981i 0.710308 0.710308i
\(254\) −0.285220 −0.0178963
\(255\) −16.2854 16.4585i −1.01983 1.03067i
\(256\) 15.8485 0.990533
\(257\) −0.794562 + 0.794562i −0.0495634 + 0.0495634i −0.731454 0.681891i \(-0.761158\pi\)
0.681891 + 0.731454i \(0.261158\pi\)
\(258\) −0.0786257 + 0.121742i −0.00489502 + 0.00757932i
\(259\) 9.06163i 0.563062i
\(260\) −2.24785 + 10.1840i −0.139406 + 0.631587i
\(261\) −6.64700 14.7296i −0.411439 0.911741i
\(262\) 0.135318 + 0.135318i 0.00835998 + 0.00835998i
\(263\) 17.8613 + 17.8613i 1.10137 + 1.10137i 0.994245 + 0.107128i \(0.0341653\pi\)
0.107128 + 0.994245i \(0.465835\pi\)
\(264\) −1.69686 + 0.365139i −0.104434 + 0.0224728i
\(265\) −0.419372 + 1.89999i −0.0257618 + 0.116716i
\(266\) 0.0440541i 0.00270113i
\(267\) −11.3494 7.32988i −0.694571 0.448581i
\(268\) 17.2199 17.2199i 1.05187 1.05187i
\(269\) 15.7810 0.962182 0.481091 0.876671i \(-0.340241\pi\)
0.481091 + 0.876671i \(0.340241\pi\)
\(270\) 0.181436 0.472294i 0.0110419 0.0287429i
\(271\) −22.9601 −1.39473 −0.697364 0.716717i \(-0.745644\pi\)
−0.697364 + 0.716717i \(0.745644\pi\)
\(272\) 16.8610 16.8610i 1.02235 1.02235i
\(273\) −3.43601 2.21911i −0.207957 0.134307i
\(274\) 0.383470i 0.0231663i
\(275\) −26.1062 12.1147i −1.57426 0.730543i
\(276\) −9.39179 + 2.02098i −0.565319 + 0.121649i
\(277\) −15.1916 15.1916i −0.912775 0.912775i 0.0837146 0.996490i \(-0.473322\pi\)
−0.996490 + 0.0837146i \(0.973322\pi\)
\(278\) 0.124339 + 0.124339i 0.00745736 + 0.00745736i
\(279\) 5.98557 + 13.2639i 0.358346 + 0.794089i
\(280\) 0.331969 0.211920i 0.0198389 0.0126646i
\(281\) 31.3848i 1.87226i −0.351652 0.936131i \(-0.614380\pi\)
0.351652 0.936131i \(-0.385620\pi\)
\(282\) 0.343492 0.531853i 0.0204546 0.0316714i
\(283\) 2.23864 2.23864i 0.133073 0.133073i −0.637433 0.770506i \(-0.720004\pi\)
0.770506 + 0.637433i \(0.220004\pi\)
\(284\) −17.1015 −1.01479
\(285\) 3.87293 + 0.0204736i 0.229413 + 0.00121275i
\(286\) 0.585067 0.0345958
\(287\) 1.31960 1.31960i 0.0778934 0.0778934i
\(288\) 1.46445 + 0.553716i 0.0862934 + 0.0326280i
\(289\) 18.7397i 1.10233i
\(290\) −0.512167 0.113047i −0.0300755 0.00663835i
\(291\) −4.67265 21.7145i −0.273916 1.27293i
\(292\) −16.1697 16.1697i −0.946262 0.946262i
\(293\) −3.28779 3.28779i −0.192075 0.192075i 0.604517 0.796592i \(-0.293366\pi\)
−0.796592 + 0.604517i \(0.793366\pi\)
\(294\) −0.0948259 0.440670i −0.00553036 0.0257004i
\(295\) 2.42047 + 3.79163i 0.140925 + 0.220757i
\(296\) 1.55936i 0.0906362i
\(297\) 29.5754 + 4.45588i 1.71614 + 0.258557i
\(298\) 0.0300690 0.0300690i 0.00174185 0.00174185i
\(299\) 6.47956 0.374722
\(300\) 9.23376 + 14.6345i 0.533111 + 0.844924i
\(301\) 1.94399 0.112050
\(302\) −0.601490 + 0.601490i −0.0346119 + 0.0346119i
\(303\) 13.4840 20.8782i 0.774634 1.19942i
\(304\) 3.98863i 0.228763i
\(305\) 6.29005 + 9.85325i 0.360167 + 0.564196i
\(306\) 0.711843 0.321232i 0.0406934 0.0183636i
\(307\) −7.27587 7.27587i −0.415256 0.415256i 0.468309 0.883565i \(-0.344863\pi\)
−0.883565 + 0.468309i \(0.844863\pi\)
\(308\) 8.22764 + 8.22764i 0.468813 + 0.468813i
\(309\) −7.12983 + 1.53424i −0.405602 + 0.0872798i
\(310\) 0.461202 + 0.101798i 0.0261945 + 0.00578173i
\(311\) 6.65091i 0.377139i −0.982060 0.188569i \(-0.939615\pi\)
0.982060 0.188569i \(-0.0603850\pi\)
\(312\) −0.591284 0.381874i −0.0334749 0.0216194i
\(313\) −13.7782 + 13.7782i −0.778791 + 0.778791i −0.979625 0.200834i \(-0.935635\pi\)
0.200834 + 0.979625i \(0.435635\pi\)
\(314\) 0.366039 0.0206568
\(315\) −6.64223 + 1.39262i −0.374247 + 0.0784650i
\(316\) 27.2468 1.53275
\(317\) −20.9085 + 20.9085i −1.17434 + 1.17434i −0.193171 + 0.981165i \(0.561877\pi\)
−0.981165 + 0.193171i \(0.938123\pi\)
\(318\) −0.0551305 0.0356054i −0.00309156 0.00199665i
\(319\) 31.0057i 1.73599i
\(320\) −14.9924 + 9.57077i −0.838102 + 0.535022i
\(321\) 29.3347 6.31241i 1.63730 0.352325i
\(322\) −0.0864709 0.0864709i −0.00481883 0.00481883i
\(323\) 4.22727 + 4.22727i 0.235212 + 0.235212i
\(324\) −13.4843 11.8979i −0.749126 0.660996i
\(325\) −4.01210 10.9599i −0.222551 0.607948i
\(326\) 0.391253i 0.0216695i
\(327\) 5.42178 8.39494i 0.299825 0.464241i
\(328\) 0.227082 0.227082i 0.0125385 0.0125385i
\(329\) −8.49269 −0.468217
\(330\) 0.690040 0.682782i 0.0379854 0.0375859i
\(331\) −11.2312 −0.617322 −0.308661 0.951172i \(-0.599881\pi\)
−0.308661 + 0.951172i \(0.599881\pi\)
\(332\) 3.04697 3.04697i 0.167224 0.167224i
\(333\) −9.50332 + 25.1340i −0.520779 + 1.37734i
\(334\) 0.419770i 0.0229688i
\(335\) −5.87394 + 26.6123i −0.320928 + 1.45398i
\(336\) −1.47034 6.83288i −0.0802136 0.372764i
\(337\) 21.0475 + 21.0475i 1.14653 + 1.14653i 0.987230 + 0.159301i \(0.0509239\pi\)
0.159301 + 0.987230i \(0.449076\pi\)
\(338\) −0.232511 0.232511i −0.0126469 0.0126469i
\(339\) −2.22444 10.3373i −0.120815 0.561445i
\(340\) −5.75701 + 26.0825i −0.312218 + 1.41452i
\(341\) 27.9204i 1.51197i
\(342\) −0.0462014 + 0.122192i −0.00249828 + 0.00660737i
\(343\) −9.28306 + 9.28306i −0.501238 + 0.501238i
\(344\) 0.334530 0.0180367
\(345\) 7.64211 7.56174i 0.411437 0.407110i
\(346\) −0.0981792 −0.00527815
\(347\) 6.49171 6.49171i 0.348493 0.348493i −0.511055 0.859548i \(-0.670745\pi\)
0.859548 + 0.511055i \(0.170745\pi\)
\(348\) −10.1139 + 15.6602i −0.542164 + 0.839473i
\(349\) 32.1452i 1.72069i 0.509709 + 0.860347i \(0.329753\pi\)
−0.509709 + 0.860347i \(0.670247\pi\)
\(350\) −0.0927203 + 0.199805i −0.00495611 + 0.0106800i
\(351\) 7.20311 + 9.75859i 0.384473 + 0.520875i
\(352\) 2.12411 + 2.12411i 0.113215 + 0.113215i
\(353\) −11.4461 11.4461i −0.609212 0.609212i 0.333528 0.942740i \(-0.391761\pi\)
−0.942740 + 0.333528i \(0.891761\pi\)
\(354\) −0.148332 + 0.0319190i −0.00788378 + 0.00169648i
\(355\) 16.1315 10.2979i 0.856171 0.546557i
\(356\) 15.5859i 0.826050i
\(357\) −8.80002 5.68340i −0.465746 0.300797i
\(358\) −0.461508 + 0.461508i −0.0243915 + 0.0243915i
\(359\) 27.9920 1.47736 0.738681 0.674055i \(-0.235449\pi\)
0.738681 + 0.674055i \(0.235449\pi\)
\(360\) −1.14302 + 0.239648i −0.0602427 + 0.0126305i
\(361\) −1.00000 −0.0526316
\(362\) −0.00791203 + 0.00791203i −0.000415847 + 0.000415847i
\(363\) 32.2016 + 20.7970i 1.69014 + 1.09156i
\(364\) 4.71860i 0.247322i
\(365\) 24.9894 + 5.51574i 1.30800 + 0.288707i
\(366\) −0.385470 + 0.0829476i −0.0201488 + 0.00433574i
\(367\) 21.2644 + 21.2644i 1.10999 + 1.10999i 0.993151 + 0.116840i \(0.0372766\pi\)
0.116840 + 0.993151i \(0.462723\pi\)
\(368\) 7.82902 + 7.82902i 0.408116 + 0.408116i
\(369\) −5.04405 + 2.27622i −0.262583 + 0.118495i
\(370\) 0.469273 + 0.735108i 0.0243964 + 0.0382165i
\(371\) 0.880329i 0.0457044i
\(372\) 9.10752 14.1018i 0.472203 0.731147i
\(373\) −11.2544 + 11.2544i −0.582731 + 0.582731i −0.935653 0.352922i \(-0.885188\pi\)
0.352922 + 0.935653i \(0.385188\pi\)
\(374\) 1.49842 0.0774817
\(375\) −17.5224 8.24419i −0.904851 0.425728i
\(376\) −1.46146 −0.0753690
\(377\) 8.89100 8.89100i 0.457910 0.457910i
\(378\) 0.0341033 0.226357i 0.00175409 0.0116425i
\(379\) 32.4069i 1.66463i 0.554302 + 0.832316i \(0.312985\pi\)
−0.554302 + 0.832316i \(0.687015\pi\)
\(380\) −2.40409 3.76596i −0.123327 0.193190i
\(381\) −2.38665 11.0911i −0.122272 0.568215i
\(382\) −0.586781 0.586781i −0.0300223 0.0300223i
\(383\) −16.2815 16.2815i −0.831948 0.831948i 0.155836 0.987783i \(-0.450193\pi\)
−0.987783 + 0.155836i \(0.950193\pi\)
\(384\) −0.506526 2.35390i −0.0258485 0.120122i
\(385\) −12.7153 2.80657i −0.648033 0.143036i
\(386\) 1.00115i 0.0509570i
\(387\) −5.39199 2.03874i −0.274090 0.103635i
\(388\) −18.1185 + 18.1185i −0.919826 + 0.919826i
\(389\) 3.75811 0.190544 0.0952720 0.995451i \(-0.469628\pi\)
0.0952720 + 0.995451i \(0.469628\pi\)
\(390\) 0.393661 + 0.00208103i 0.0199338 + 0.000105377i
\(391\) 16.5949 0.839239
\(392\) −0.735734 + 0.735734i −0.0371602 + 0.0371602i
\(393\) −4.12969 + 6.39430i −0.208315 + 0.322550i
\(394\) 0.442475i 0.0222916i
\(395\) −25.7013 + 16.4070i −1.29317 + 0.825528i
\(396\) −14.1921 31.4495i −0.713181 1.58040i
\(397\) −3.94169 3.94169i −0.197828 0.197828i 0.601240 0.799068i \(-0.294673\pi\)
−0.799068 + 0.601240i \(0.794673\pi\)
\(398\) −0.263540 0.263540i −0.0132101 0.0132101i
\(399\) 1.71309 0.368633i 0.0857619 0.0184547i
\(400\) 8.39484 18.0902i 0.419742 0.904510i
\(401\) 30.5168i 1.52394i −0.647614 0.761969i \(-0.724233\pi\)
0.647614 0.761969i \(-0.275767\pi\)
\(402\) −0.772187 0.498708i −0.0385132 0.0248733i
\(403\) −8.00626 + 8.00626i −0.398820 + 0.398820i
\(404\) −28.6717 −1.42647
\(405\) 19.8839 + 3.10333i 0.988039 + 0.154206i
\(406\) −0.237304 −0.0117772
\(407\) −36.4557 + 36.4557i −1.80704 + 1.80704i
\(408\) −1.51435 0.978024i −0.0749713 0.0484194i
\(409\) 21.4607i 1.06117i −0.847633 0.530583i \(-0.821973\pi\)
0.847633 0.530583i \(-0.178027\pi\)
\(410\) −0.0387122 + 0.175388i −0.00191186 + 0.00866179i
\(411\) −14.9117 + 3.20878i −0.735538 + 0.158277i
\(412\) 5.94910 + 5.94910i 0.293091 + 0.293091i
\(413\) 1.43914 + 1.43914i 0.0708153 + 0.0708153i
\(414\) 0.149156 + 0.330528i 0.00733064 + 0.0162446i
\(415\) −1.03937 + 4.70891i −0.0510205 + 0.231151i
\(416\) 1.21819i 0.0597267i
\(417\) −3.79463 + 5.87550i −0.185824 + 0.287725i
\(418\) −0.177233 + 0.177233i −0.00866875 + 0.00866875i
\(419\) −19.7884 −0.966728 −0.483364 0.875420i \(-0.660585\pi\)
−0.483364 + 0.875420i \(0.660585\pi\)
\(420\) 5.50668 + 5.56521i 0.268699 + 0.271554i
\(421\) −24.7194 −1.20475 −0.602374 0.798214i \(-0.705778\pi\)
−0.602374 + 0.798214i \(0.705778\pi\)
\(422\) −0.385508 + 0.385508i −0.0187662 + 0.0187662i
\(423\) 23.5560 + 8.90665i 1.14533 + 0.433056i
\(424\) 0.151491i 0.00735705i
\(425\) −10.2755 28.0697i −0.498433 1.36158i
\(426\) 0.135800 + 0.631081i 0.00657952 + 0.0305760i
\(427\) 3.73987 + 3.73987i 0.180985 + 0.180985i
\(428\) −24.4767 24.4767i −1.18313 1.18313i
\(429\) 4.89569 + 22.7510i 0.236366 + 1.09843i
\(430\) −0.157703 + 0.100673i −0.00760509 + 0.00485489i
\(431\) 21.6637i 1.04350i −0.853097 0.521752i \(-0.825278\pi\)
0.853097 0.521752i \(-0.174722\pi\)
\(432\) −3.08769 + 20.4942i −0.148557 + 0.986029i
\(433\) 1.70629 1.70629i 0.0819989 0.0819989i −0.664918 0.746917i \(-0.731533\pi\)
0.746917 + 0.664918i \(0.231533\pi\)
\(434\) 0.213690 0.0102575
\(435\) 0.110284 20.8621i 0.00528774 1.00026i
\(436\) −11.5286 −0.552120
\(437\) −1.96284 + 1.96284i −0.0938952 + 0.0938952i
\(438\) −0.468296 + 0.725097i −0.0223760 + 0.0346465i
\(439\) 27.8614i 1.32975i 0.746954 + 0.664875i \(0.231515\pi\)
−0.746954 + 0.664875i \(0.768485\pi\)
\(440\) −2.18811 0.482967i −0.104314 0.0230245i
\(441\) 16.3425 7.37482i 0.778213 0.351182i
\(442\) 0.429678 + 0.429678i 0.0204377 + 0.0204377i
\(443\) 18.0096 + 18.0096i 0.855661 + 0.855661i 0.990823 0.135162i \(-0.0431556\pi\)
−0.135162 + 0.990823i \(0.543156\pi\)
\(444\) 30.3045 6.52109i 1.43819 0.309477i
\(445\) −9.38525 14.7018i −0.444903 0.696933i
\(446\) 0.484908i 0.0229611i
\(447\) 1.42088 + 0.917658i 0.0672052 + 0.0434037i
\(448\) −5.69048 + 5.69048i −0.268850 + 0.268850i
\(449\) 18.2496 0.861253 0.430627 0.902530i \(-0.358293\pi\)
0.430627 + 0.902530i \(0.358293\pi\)
\(450\) 0.466720 0.456954i 0.0220014 0.0215410i
\(451\) −10.6177 −0.499968
\(452\) −8.62538 + 8.62538i −0.405704 + 0.405704i
\(453\) −28.4227 18.3565i −1.33542 0.862464i
\(454\) 0.351974i 0.0165189i
\(455\) −2.84137 4.45095i −0.133205 0.208664i
\(456\) 0.294796 0.0634360i 0.0138051 0.00297066i
\(457\) 4.86447 + 4.86447i 0.227550 + 0.227550i 0.811669 0.584118i \(-0.198560\pi\)
−0.584118 + 0.811669i \(0.698560\pi\)
\(458\) 0.230998 + 0.230998i 0.0107938 + 0.0107938i
\(459\) 18.4480 + 24.9929i 0.861078 + 1.16657i
\(460\) −12.1108 2.67313i −0.564668 0.124635i
\(461\) 1.24666i 0.0580627i −0.999579 0.0290313i \(-0.990758\pi\)
0.999579 0.0290313i \(-0.00924226\pi\)
\(462\) 0.238283 0.368950i 0.0110859 0.0171651i
\(463\) 3.85448 3.85448i 0.179133 0.179133i −0.611845 0.790978i \(-0.709572\pi\)
0.790978 + 0.611845i \(0.209572\pi\)
\(464\) 21.4854 0.997433
\(465\) −0.0993102 + 18.7862i −0.00460540 + 0.871188i
\(466\) −0.355261 −0.0164572
\(467\) 0.787433 0.787433i 0.0364380 0.0364380i −0.688653 0.725091i \(-0.741798\pi\)
0.725091 + 0.688653i \(0.241798\pi\)
\(468\) 4.94860 13.0879i 0.228749 0.604987i
\(469\) 12.3304i 0.569363i
\(470\) 0.688954 0.439810i 0.0317791 0.0202869i
\(471\) 3.06292 + 14.2338i 0.141132 + 0.655861i
\(472\) 0.247653 + 0.247653i 0.0113992 + 0.0113992i
\(473\) −7.82082 7.82082i −0.359602 0.359602i
\(474\) −0.216361 1.00546i −0.00993781 0.0461825i
\(475\) 4.53545 + 2.10469i 0.208101 + 0.0965700i
\(476\) 12.0849i 0.553910i
\(477\) 0.923239 2.44175i 0.0422722 0.111800i
\(478\) −0.174226 + 0.174226i −0.00796893 + 0.00796893i
\(479\) −31.8183 −1.45382 −0.726909 0.686734i \(-0.759044\pi\)
−0.726909 + 0.686734i \(0.759044\pi\)
\(480\) 1.42165 + 1.43676i 0.0648889 + 0.0655786i
\(481\) −20.9076 −0.953302
\(482\) −0.417944 + 0.417944i −0.0190368 + 0.0190368i
\(483\) 2.63895 4.08608i 0.120076 0.185923i
\(484\) 44.2218i 2.01008i
\(485\) 6.18048 28.0010i 0.280641 1.27146i
\(486\) −0.331982 + 0.592075i −0.0150590 + 0.0268571i
\(487\) −1.51114 1.51114i −0.0684761 0.0684761i 0.672039 0.740515i \(-0.265419\pi\)
−0.740515 + 0.672039i \(0.765419\pi\)
\(488\) 0.643573 + 0.643573i 0.0291332 + 0.0291332i
\(489\) 15.2143 3.27391i 0.688016 0.148051i
\(490\) 0.125425 0.568247i 0.00566614 0.0256708i
\(491\) 7.72391i 0.348575i 0.984695 + 0.174288i \(0.0557622\pi\)
−0.984695 + 0.174288i \(0.944238\pi\)
\(492\) 5.36271 + 3.46345i 0.241770 + 0.156144i
\(493\) 22.7709 22.7709i 1.02555 1.02555i
\(494\) −0.101644 −0.00457319
\(495\) 32.3248 + 21.1196i 1.45289 + 0.949257i
\(496\) −19.3474 −0.868723
\(497\) 6.12282 6.12282i 0.274646 0.274646i
\(498\) −0.136635 0.0882440i −0.00612274 0.00395431i
\(499\) 4.52199i 0.202432i 0.994864 + 0.101216i \(0.0322734\pi\)
−0.994864 + 0.101216i \(0.967727\pi\)
\(500\) 2.97741 + 22.1402i 0.133154 + 0.990139i
\(501\) −16.3232 + 3.51253i −0.729268 + 0.156928i
\(502\) 0.245941 + 0.245941i 0.0109769 + 0.0109769i
\(503\) −6.02978 6.02978i −0.268855 0.268855i 0.559784 0.828639i \(-0.310884\pi\)
−0.828639 + 0.559784i \(0.810884\pi\)
\(504\) −0.481629 + 0.217343i −0.0214535 + 0.00968124i
\(505\) 27.0453 17.2650i 1.20350 0.768283i
\(506\) 0.695759i 0.0309302i
\(507\) 7.09587 10.9871i 0.315138 0.487952i
\(508\) −9.25436 + 9.25436i −0.410596 + 0.410596i
\(509\) −39.7460 −1.76171 −0.880856 0.473385i \(-0.843032\pi\)
−0.880856 + 0.473385i \(0.843032\pi\)
\(510\) 1.00821 + 0.00532975i 0.0446443 + 0.000236005i
\(511\) 11.5784 0.512199
\(512\) −2.45394 + 2.45394i −0.108450 + 0.108450i
\(513\) −5.13816 0.774125i −0.226855 0.0341784i
\(514\) 0.0489305i 0.00215823i
\(515\) −9.19398 2.02932i −0.405135 0.0894227i
\(516\) 1.39897 + 6.50121i 0.0615861 + 0.286200i
\(517\) 34.1668 + 34.1668i 1.50265 + 1.50265i
\(518\) 0.279015 + 0.279015i 0.0122592 + 0.0122592i
\(519\) −0.821539 3.81781i −0.0360615 0.167583i
\(520\) −0.488955 0.765940i −0.0214421 0.0335887i
\(521\) 20.4179i 0.894524i 0.894403 + 0.447262i \(0.147601\pi\)
−0.894403 + 0.447262i \(0.852399\pi\)
\(522\) 0.658204 + 0.248871i 0.0288088 + 0.0108928i
\(523\) 10.2255 10.2255i 0.447131 0.447131i −0.447269 0.894400i \(-0.647603\pi\)
0.894400 + 0.447269i \(0.147603\pi\)
\(524\) 8.78116 0.383607
\(525\) −8.54549 1.93362i −0.372956 0.0843901i
\(526\) −1.09993 −0.0479591
\(527\) −20.5050 + 20.5050i −0.893210 + 0.893210i
\(528\) −21.5740 + 33.4045i −0.938886 + 1.45375i
\(529\) 15.2946i 0.664981i
\(530\) −0.0455895 0.0714152i −0.00198028 0.00310208i
\(531\) −2.48242 5.50099i −0.107728 0.238722i
\(532\) −1.42939 1.42939i −0.0619721 0.0619721i
\(533\) −3.04466 3.04466i −0.131879 0.131879i
\(534\) 0.575151 0.123764i 0.0248892 0.00535580i
\(535\) 37.8273 + 8.34937i 1.63542 + 0.360975i
\(536\) 2.12186i 0.0916505i
\(537\) −21.8081 14.0845i −0.941087 0.607791i
\(538\) −0.485909 + 0.485909i −0.0209490 + 0.0209490i
\(539\) 34.4008 1.48175
\(540\) −9.43727 21.2112i −0.406116 0.912784i
\(541\) 14.2122 0.611031 0.305516 0.952187i \(-0.401171\pi\)
0.305516 + 0.952187i \(0.401171\pi\)
\(542\) 0.706962 0.706962i 0.0303666 0.0303666i
\(543\) −0.373874 0.241463i −0.0160445 0.0103622i
\(544\) 3.11992i 0.133766i
\(545\) 10.8747 6.94210i 0.465820 0.297367i
\(546\) 0.174126 0.0374694i 0.00745191 0.00160354i
\(547\) −14.9064 14.9064i −0.637353 0.637353i 0.312549 0.949902i \(-0.398817\pi\)
−0.949902 + 0.312549i \(0.898817\pi\)
\(548\) 12.4422 + 12.4422i 0.531505 + 0.531505i
\(549\) −6.45102 14.2953i −0.275323 0.610110i
\(550\) 1.17685 0.430809i 0.0501811 0.0183698i
\(551\) 5.38666i 0.229479i
\(552\) 0.454123 0.703151i 0.0193287 0.0299281i
\(553\) −9.75511 + 9.75511i −0.414830 + 0.414830i
\(554\) 0.935525 0.0397466
\(555\) −24.6588 + 24.3994i −1.04671 + 1.03570i
\(556\) 8.06870 0.342189
\(557\) −0.000743796 0 0.000743796i −3.15156e−5 0 3.15156e-5i −0.707123 0.707091i \(-0.750007\pi\)
0.707091 + 0.707123i \(0.250007\pi\)
\(558\) −0.592707 0.224106i −0.0250913 0.00948717i
\(559\) 4.48529i 0.189708i
\(560\) 1.94480 8.81106i 0.0821830 0.372335i
\(561\) 12.5384 + 58.2679i 0.529373 + 2.46007i
\(562\) 0.966365 + 0.966365i 0.0407637 + 0.0407637i
\(563\) −1.87325 1.87325i −0.0789482 0.0789482i 0.666530 0.745478i \(-0.267779\pi\)
−0.745478 + 0.666530i \(0.767779\pi\)
\(564\) −6.11166 28.4018i −0.257347 1.19593i
\(565\) 2.94224 13.3300i 0.123781 0.560798i
\(566\) 0.137859i 0.00579465i
\(567\) 9.08752 0.567950i 0.381640 0.0238517i
\(568\) 1.05364 1.05364i 0.0442098 0.0442098i
\(569\) −7.94033 −0.332876 −0.166438 0.986052i \(-0.553227\pi\)
−0.166438 + 0.986052i \(0.553227\pi\)
\(570\) −0.119881 + 0.118620i −0.00502127 + 0.00496846i
\(571\) −23.2512 −0.973031 −0.486515 0.873672i \(-0.661732\pi\)
−0.486515 + 0.873672i \(0.661732\pi\)
\(572\) 18.9833 18.9833i 0.793733 0.793733i
\(573\) 17.9076 27.7277i 0.748101 1.15834i
\(574\) 0.0812630i 0.00339185i
\(575\) 13.0335 4.77117i 0.543535 0.198971i
\(576\) 21.7514 9.81569i 0.906308 0.408987i
\(577\) 10.9937 + 10.9937i 0.457674 + 0.457674i 0.897891 0.440217i \(-0.145099\pi\)
−0.440217 + 0.897891i \(0.645099\pi\)
\(578\) 0.577011 + 0.577011i 0.0240005 + 0.0240005i
\(579\) 38.9307 8.37733i 1.61790 0.348150i
\(580\) −20.2859 + 12.9500i −0.842327 + 0.537719i
\(581\) 2.18180i 0.0905161i
\(582\) 0.812483 + 0.524733i 0.0336785 + 0.0217509i
\(583\) 3.54164 3.54164i 0.146680 0.146680i
\(584\) 1.99247 0.0824488
\(585\) 3.21313 + 15.3254i 0.132847 + 0.633626i
\(586\) 0.202467 0.00836385
\(587\) −4.80581 + 4.80581i −0.198357 + 0.198357i −0.799295 0.600938i \(-0.794794\pi\)
0.600938 + 0.799295i \(0.294794\pi\)
\(588\) −17.3749 11.2214i −0.716529 0.462762i
\(589\) 4.85064i 0.199867i
\(590\) −0.191276 0.0422190i −0.00787470 0.00173813i
\(591\) 17.2062 3.70252i 0.707767 0.152301i
\(592\) −25.2619 25.2619i −1.03826 1.03826i
\(593\) 4.70496 + 4.70496i 0.193209 + 0.193209i 0.797081 0.603872i \(-0.206376\pi\)
−0.603872 + 0.797081i \(0.706376\pi\)
\(594\) −1.04785 + 0.773452i −0.0429939 + 0.0317351i
\(595\) −7.27707 11.3994i −0.298331 0.467330i
\(596\) 1.95126i 0.0799268i
\(597\) 8.04283 12.4533i 0.329171 0.509680i
\(598\) −0.199511 + 0.199511i −0.00815861 + 0.00815861i
\(599\) 0.515729 0.0210721 0.0105361 0.999944i \(-0.496646\pi\)
0.0105361 + 0.999944i \(0.496646\pi\)
\(600\) −1.47055 0.332746i −0.0600348 0.0135843i
\(601\) 2.07904 0.0848059 0.0424030 0.999101i \(-0.486499\pi\)
0.0424030 + 0.999101i \(0.486499\pi\)
\(602\) −0.0598571 + 0.0598571i −0.00243959 + 0.00243959i
\(603\) 12.9314 34.2004i 0.526606 1.39275i
\(604\) 39.0324i 1.58820i
\(605\) 26.6287 + 41.7134i 1.08261 + 1.69589i
\(606\) 0.227676 + 1.05804i 0.00924869 + 0.0429800i
\(607\) −9.43902 9.43902i −0.383118 0.383118i 0.489106 0.872224i \(-0.337323\pi\)
−0.872224 + 0.489106i \(0.837323\pi\)
\(608\) −0.369023 0.369023i −0.0149659 0.0149659i
\(609\) −1.98570 9.22784i −0.0804646 0.373931i
\(610\) −0.497066 0.109714i −0.0201256 0.00444219i
\(611\) 19.5949i 0.792723i
\(612\) 12.6739 33.5196i 0.512314 1.35495i
\(613\) 18.9990 18.9990i 0.767360 0.767360i −0.210281 0.977641i \(-0.567438\pi\)
0.977641 + 0.210281i \(0.0674378\pi\)
\(614\) 0.448061 0.0180823
\(615\) −7.14409 0.0377661i −0.288077 0.00152288i
\(616\) −1.01382 −0.0408482
\(617\) −1.43061 + 1.43061i −0.0575942 + 0.0575942i −0.735317 0.677723i \(-0.762967\pi\)
0.677723 + 0.735317i \(0.262967\pi\)
\(618\) 0.172293 0.266774i 0.00693065 0.0107312i
\(619\) 15.4921i 0.622679i −0.950299 0.311340i \(-0.899222\pi\)
0.950299 0.311340i \(-0.100778\pi\)
\(620\) 18.2673 11.6614i 0.733632 0.468331i
\(621\) −11.6049 + 8.56589i −0.465687 + 0.343737i
\(622\) 0.204787 + 0.204787i 0.00821122 + 0.00821122i
\(623\) −5.58017 5.58017i −0.223565 0.223565i
\(624\) −15.7653 + 3.39246i −0.631116 + 0.135807i
\(625\) −16.1405 19.0914i −0.645621 0.763658i
\(626\) 0.848486i 0.0339123i
\(627\) −8.37495 5.40887i −0.334463 0.216009i
\(628\) 11.8766 11.8766i 0.473930 0.473930i
\(629\) −53.5466 −2.13504
\(630\) 0.161640 0.247400i 0.00643990 0.00985664i
\(631\) −4.39637 −0.175017 −0.0875084 0.996164i \(-0.527890\pi\)
−0.0875084 + 0.996164i \(0.527890\pi\)
\(632\) −1.67870 + 1.67870i −0.0667752 + 0.0667752i
\(633\) −18.2167 11.7651i −0.724050 0.467620i
\(634\) 1.28758i 0.0511363i
\(635\) 3.15680 14.3021i 0.125274 0.567560i
\(636\) −2.94405 + 0.633518i −0.116739 + 0.0251206i
\(637\) 9.86453 + 9.86453i 0.390847 + 0.390847i
\(638\) 0.954693 + 0.954693i 0.0377967 + 0.0377967i
\(639\) −23.4040 + 10.5615i −0.925847 + 0.417805i
\(640\) 0.669977 3.03537i 0.0264832 0.119984i
\(641\) 18.8163i 0.743198i 0.928393 + 0.371599i \(0.121190\pi\)
−0.928393 + 0.371599i \(0.878810\pi\)
\(642\) −0.708876 + 1.09761i −0.0279771 + 0.0433190i
\(643\) −23.5681 + 23.5681i −0.929434 + 0.929434i −0.997669 0.0682352i \(-0.978263\pi\)
0.0682352 + 0.997669i \(0.478263\pi\)
\(644\) −5.61133 −0.221118
\(645\) −5.23440 5.29004i −0.206104 0.208295i
\(646\) −0.260323 −0.0102423
\(647\) 10.3173 10.3173i 0.405617 0.405617i −0.474590 0.880207i \(-0.657404\pi\)
0.880207 + 0.474590i \(0.157404\pi\)
\(648\) 1.56382 0.0977353i 0.0614326 0.00383941i
\(649\) 11.5795i 0.454536i
\(650\) 0.461002 + 0.213930i 0.0180820 + 0.00839103i
\(651\) 1.78810 + 8.30959i 0.0700813 + 0.325678i
\(652\) −12.6948 12.6948i −0.497165 0.497165i
\(653\) −9.04616 9.04616i −0.354003 0.354003i 0.507593 0.861597i \(-0.330535\pi\)
−0.861597 + 0.507593i \(0.830535\pi\)
\(654\) 0.0915462 + 0.425429i 0.00357974 + 0.0166356i
\(655\) −8.28308 + 5.28769i −0.323647 + 0.206607i
\(656\) 7.35751i 0.287262i
\(657\) −32.1148 12.1428i −1.25292 0.473735i
\(658\) 0.261497 0.261497i 0.0101942 0.0101942i
\(659\) 24.1074 0.939090 0.469545 0.882909i \(-0.344418\pi\)
0.469545 + 0.882909i \(0.344418\pi\)
\(660\) 0.235470 44.5431i 0.00916567 1.73384i
\(661\) 29.3000 1.13964 0.569818 0.821771i \(-0.307014\pi\)
0.569818 + 0.821771i \(0.307014\pi\)
\(662\) 0.345818 0.345818i 0.0134406 0.0134406i
\(663\) −13.1131 + 20.3040i −0.509270 + 0.788540i
\(664\) 0.375453i 0.0145704i
\(665\) 2.20905 + 0.487588i 0.0856631 + 0.0189078i
\(666\) −0.481283 1.06651i −0.0186493 0.0413265i
\(667\) 10.5731 + 10.5731i 0.409393 + 0.409393i
\(668\) 13.6200 + 13.6200i 0.526974 + 0.526974i
\(669\) −18.8562 + 4.05759i −0.729023 + 0.156875i
\(670\) −0.638551 1.00028i −0.0246694 0.0386441i
\(671\) 30.0916i 1.16167i
\(672\) 0.768205 + 0.496137i 0.0296341 + 0.0191389i
\(673\) 29.7489 29.7489i 1.14674 1.14674i 0.159546 0.987190i \(-0.448997\pi\)
0.987190 0.159546i \(-0.0510031\pi\)
\(674\) −1.29614 −0.0499255
\(675\) 21.6746 + 14.3253i 0.834254 + 0.551380i
\(676\) −15.0883 −0.580319
\(677\) 26.2496 26.2496i 1.00885 1.00885i 0.00889433 0.999960i \(-0.497169\pi\)
0.999960 0.00889433i \(-0.00283119\pi\)
\(678\) 0.386786 + 0.249802i 0.0148544 + 0.00959358i
\(679\) 12.9738i 0.497890i
\(680\) −1.25227 1.96166i −0.0480224 0.0752262i
\(681\) 13.6869 2.94523i 0.524483 0.112861i
\(682\) −0.859693 0.859693i −0.0329193 0.0329193i
\(683\) 16.0253 + 16.0253i 0.613190 + 0.613190i 0.943776 0.330586i \(-0.107246\pi\)
−0.330586 + 0.943776i \(0.607246\pi\)
\(684\) 2.46561 + 5.46375i 0.0942750 + 0.208912i
\(685\) −19.2287 4.24422i −0.734691 0.162163i
\(686\) 0.571666i 0.0218263i
\(687\) −7.04967 + 10.9155i −0.268962 + 0.416453i
\(688\) 5.41942 5.41942i 0.206613 0.206613i
\(689\) 2.03115 0.0773807
\(690\) −0.00247475 + 0.468139i −9.42120e−5 + 0.0178218i
\(691\) 37.0013 1.40759 0.703797 0.710401i \(-0.251486\pi\)
0.703797 + 0.710401i \(0.251486\pi\)
\(692\) −3.18556 + 3.18556i −0.121097 + 0.121097i
\(693\) 16.3409 + 6.17861i 0.620741 + 0.234706i
\(694\) 0.399771i 0.0151751i
\(695\) −7.61103 + 4.85868i −0.288703 + 0.184300i
\(696\) −0.341708 1.58797i −0.0129524 0.0601917i
\(697\) −7.79772 7.79772i −0.295360 0.295360i
\(698\) −0.989778 0.989778i −0.0374637 0.0374637i
\(699\) −2.97273 13.8147i −0.112439 0.522521i
\(700\) 3.47450 + 9.49138i 0.131324 + 0.358741i
\(701\) 45.9499i 1.73550i 0.496997 + 0.867752i \(0.334436\pi\)
−0.496997 + 0.867752i \(0.665564\pi\)
\(702\) −0.522265 0.0786854i −0.0197116 0.00296979i
\(703\) 6.33347 6.33347i 0.238871 0.238871i
\(704\) 45.7865 1.72564
\(705\) 22.8675 + 23.1106i 0.861240 + 0.870394i
\(706\) 0.704868 0.0265280
\(707\) 10.2652 10.2652i 0.386064 0.386064i
\(708\) −3.77720 + 5.84851i −0.141956 + 0.219800i
\(709\) 28.1949i 1.05888i 0.848347 + 0.529440i \(0.177598\pi\)
−0.848347 + 0.529440i \(0.822402\pi\)
\(710\) −0.179621 + 0.813784i −0.00674106 + 0.0305408i
\(711\) 37.2881 16.8269i 1.39841 0.631059i
\(712\) −0.960261 0.960261i −0.0359873 0.0359873i
\(713\) −9.52100 9.52100i −0.356564 0.356564i
\(714\) 0.445957 0.0959635i 0.0166895 0.00359134i
\(715\) −6.47549 + 29.3376i −0.242170 + 1.09716i
\(716\) 29.9486i 1.11923i
\(717\) −8.23288 5.31711i −0.307462 0.198571i
\(718\) −0.861898 + 0.861898i −0.0321658 + 0.0321658i
\(719\) −43.1986 −1.61103 −0.805517 0.592572i \(-0.798112\pi\)
−0.805517 + 0.592572i \(0.798112\pi\)
\(720\) −14.6348 + 22.3994i −0.545407 + 0.834777i
\(721\) −4.25988 −0.158646
\(722\) 0.0307908 0.0307908i 0.00114592 0.00114592i
\(723\) −19.7495 12.7550i −0.734492 0.474363i
\(724\) 0.513434i 0.0190816i
\(725\) 11.3373 24.4309i 0.421055 0.907340i
\(726\) −1.63187 + 0.351156i −0.0605645 + 0.0130326i
\(727\) 27.6667 + 27.6667i 1.02610 + 1.02610i 0.999650 + 0.0264500i \(0.00842028\pi\)
0.0264500 + 0.999650i \(0.491580\pi\)
\(728\) −0.290718 0.290718i −0.0107747 0.0107747i
\(729\) −25.8015 7.95516i −0.955610 0.294636i
\(730\) −0.939278 + 0.599610i −0.0347643 + 0.0221926i
\(731\) 11.4873i 0.424875i
\(732\) −9.81575 + 15.1984i −0.362800 + 0.561751i
\(733\) −18.6962 + 18.6962i −0.690559 + 0.690559i −0.962355 0.271796i \(-0.912382\pi\)
0.271796 + 0.962355i \(0.412382\pi\)
\(734\) −1.30950 −0.0483344
\(735\) 23.1465 + 0.122360i 0.853770 + 0.00451333i
\(736\) −1.44866 −0.0533985
\(737\) 49.6060 49.6060i 1.82726 1.82726i
\(738\) 0.0852241 0.225397i 0.00313714 0.00829699i
\(739\) 28.2723i 1.04001i −0.854162 0.520006i \(-0.825930\pi\)
0.854162 0.520006i \(-0.174070\pi\)
\(740\) 39.0778 + 8.62538i 1.43653 + 0.317075i
\(741\) −0.850533 3.95255i −0.0312451 0.145201i
\(742\) −0.0271061 0.0271061i −0.000995096 0.000995096i
\(743\) −4.18182 4.18182i −0.153416 0.153416i 0.626226 0.779642i \(-0.284599\pi\)
−0.779642 + 0.626226i \(0.784599\pi\)
\(744\) 0.307705 + 1.42995i 0.0112810 + 0.0524245i
\(745\) 1.17498 + 1.84058i 0.0430478 + 0.0674337i
\(746\) 0.693066i 0.0253749i
\(747\) 2.28814 6.05160i 0.0837188 0.221416i
\(748\) 48.6185 48.6185i 1.77767 1.77767i
\(749\) 17.5267 0.640411
\(750\) 0.793374 0.285683i 0.0289699 0.0104317i
\(751\) −16.3729 −0.597454 −0.298727 0.954339i \(-0.596562\pi\)
−0.298727 + 0.954339i \(0.596562\pi\)
\(752\) −23.6758 + 23.6758i −0.863367 + 0.863367i
\(753\) −7.50574 + 11.6217i −0.273524 + 0.423518i
\(754\) 0.547523i 0.0199396i
\(755\) −23.5038 36.8184i −0.855393 1.33996i
\(756\) −6.23794 8.45100i −0.226872 0.307360i
\(757\) 31.0298 + 31.0298i 1.12780 + 1.12780i 0.990535 + 0.137261i \(0.0438300\pi\)
0.137261 + 0.990535i \(0.456170\pi\)
\(758\) −0.997836 0.997836i −0.0362430 0.0362430i
\(759\) −27.0554 + 5.82193i −0.982047 + 0.211323i
\(760\) 0.380142 + 0.0839062i 0.0137892 + 0.00304360i
\(761\) 31.2086i 1.13131i 0.824641 + 0.565656i \(0.191377\pi\)
−0.824641 + 0.565656i \(0.808623\pi\)
\(762\) 0.414992 + 0.268018i 0.0150336 + 0.00970926i
\(763\) 4.12755 4.12755i 0.149427 0.149427i
\(764\) −38.0778 −1.37761
\(765\) 8.22920 + 39.2500i 0.297527 + 1.41909i
\(766\) 1.00264 0.0362270
\(767\) 3.32047 3.32047i 0.119895 0.119895i
\(768\) −23.0594 14.8927i −0.832084 0.537392i
\(769\) 23.9097i 0.862204i 0.902303 + 0.431102i \(0.141875\pi\)
−0.902303 + 0.431102i \(0.858125\pi\)
\(770\) 0.477932 0.305099i 0.0172235 0.0109950i