Properties

Label 285.2.k.c.77.5
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.5
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.c.248.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.913256 + 0.913256i) q^{2} +(-0.951938 - 1.44700i) q^{3} +0.331928i q^{4} +(2.10088 - 0.765698i) q^{5} +(2.19085 + 0.452119i) q^{6} +(0.194936 + 0.194936i) q^{7} +(-2.12965 - 2.12965i) q^{8} +(-1.18763 + 2.75491i) q^{9} +O(q^{10})\) \(q+(-0.913256 + 0.913256i) q^{2} +(-0.951938 - 1.44700i) q^{3} +0.331928i q^{4} +(2.10088 - 0.765698i) q^{5} +(2.19085 + 0.452119i) q^{6} +(0.194936 + 0.194936i) q^{7} +(-2.12965 - 2.12965i) q^{8} +(-1.18763 + 2.75491i) q^{9} +(-1.21936 + 2.61792i) q^{10} +0.417205i q^{11} +(0.480300 - 0.315975i) q^{12} +(4.34989 - 4.34989i) q^{13} -0.356054 q^{14} +(-3.10788 - 2.31108i) q^{15} +3.22597 q^{16} +(1.75815 - 1.75815i) q^{17} +(-1.43133 - 3.60055i) q^{18} -1.00000i q^{19} +(0.254156 + 0.697341i) q^{20} +(0.0965058 - 0.467641i) q^{21} +(-0.381015 - 0.381015i) q^{22} +(3.99902 + 3.99902i) q^{23} +(-1.05431 + 5.10889i) q^{24} +(3.82741 - 3.21728i) q^{25} +7.94513i q^{26} +(5.11691 - 0.904010i) q^{27} +(-0.0647048 + 0.0647048i) q^{28} +7.49511 q^{29} +(4.94890 - 0.727678i) q^{30} -1.04976 q^{31} +(1.31316 - 1.31316i) q^{32} +(0.603697 - 0.397154i) q^{33} +3.21129i q^{34} +(0.558801 + 0.260276i) q^{35} +(-0.914432 - 0.394206i) q^{36} +(-3.18548 - 3.18548i) q^{37} +(0.913256 + 0.913256i) q^{38} +(-10.4351 - 2.15347i) q^{39} +(-6.10480 - 2.84347i) q^{40} +4.47210i q^{41} +(0.338941 + 0.515210i) q^{42} +(1.64235 - 1.64235i) q^{43} -0.138482 q^{44} +(-0.385631 + 6.69711i) q^{45} -7.30425 q^{46} +(-6.22740 + 6.22740i) q^{47} +(-3.07092 - 4.66798i) q^{48} -6.92400i q^{49} +(-0.557202 + 6.43361i) q^{50} +(-4.21771 - 0.870397i) q^{51} +(1.44385 + 1.44385i) q^{52} +(-7.09583 - 7.09583i) q^{53} +(-3.84745 + 5.49864i) q^{54} +(0.319454 + 0.876499i) q^{55} -0.830291i q^{56} +(-1.44700 + 0.951938i) q^{57} +(-6.84495 + 6.84495i) q^{58} -4.72232 q^{59} +(0.767112 - 1.03159i) q^{60} +0.494981 q^{61} +(0.958703 - 0.958703i) q^{62} +(-0.768544 + 0.305521i) q^{63} +8.85044i q^{64} +(5.80790 - 12.4693i) q^{65} +(-0.188627 + 0.914033i) q^{66} +(-0.00945292 - 0.00945292i) q^{67} +(0.583580 + 0.583580i) q^{68} +(1.97977 - 9.59340i) q^{69} +(-0.748027 + 0.272630i) q^{70} +6.32928i q^{71} +(8.39621 - 3.33777i) q^{72} +(-10.3226 + 10.3226i) q^{73} +5.81832 q^{74} +(-8.29888 - 2.47561i) q^{75} +0.331928 q^{76} +(-0.0813285 + 0.0813285i) q^{77} +(11.4966 - 7.56327i) q^{78} +3.38084i q^{79} +(6.77738 - 2.47012i) q^{80} +(-6.17909 - 6.54361i) q^{81} +(-4.08417 - 4.08417i) q^{82} +(-4.89025 - 4.89025i) q^{83} +(0.155223 + 0.0320329i) q^{84} +(2.34746 - 5.03989i) q^{85} +2.99977i q^{86} +(-7.13488 - 10.8454i) q^{87} +(0.888500 - 0.888500i) q^{88} +2.98808 q^{89} +(-5.76400 - 6.46835i) q^{90} +1.69590 q^{91} +(-1.32738 + 1.32738i) q^{92} +(0.999311 + 1.51901i) q^{93} -11.3744i q^{94} +(-0.765698 - 2.10088i) q^{95} +(-3.15019 - 0.650096i) q^{96} +(6.77266 + 6.77266i) q^{97} +(6.32338 + 6.32338i) q^{98} +(-1.14936 - 0.495484i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 2 q^{3} - 12 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 2 q^{3} - 12 q^{6} - 8 q^{10} + 34 q^{12} + 8 q^{13} - 14 q^{15} - 20 q^{16} - 24 q^{18} - 4 q^{21} - 32 q^{22} + 8 q^{25} + 22 q^{27} - 28 q^{28} + 12 q^{30} + 72 q^{31} - 84 q^{36} - 12 q^{37} + 20 q^{40} + 48 q^{42} - 12 q^{43} - 52 q^{45} + 8 q^{46} + 46 q^{48} + 28 q^{51} - 76 q^{52} + 104 q^{55} + 2 q^{57} - 60 q^{58} - 22 q^{60} + 96 q^{61} + 56 q^{63} - 28 q^{66} - 72 q^{67} + 68 q^{70} + 20 q^{72} - 72 q^{73} + 2 q^{75} - 36 q^{76} + 76 q^{78} - 100 q^{81} - 116 q^{82} - 44 q^{85} + 4 q^{87} + 60 q^{88} - 36 q^{90} - 80 q^{91} + 52 q^{93} - 80 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.913256 + 0.913256i −0.645769 + 0.645769i −0.951968 0.306198i \(-0.900943\pi\)
0.306198 + 0.951968i \(0.400943\pi\)
\(3\) −0.951938 1.44700i −0.549602 0.835427i
\(4\) 0.331928i 0.165964i
\(5\) 2.10088 0.765698i 0.939543 0.342431i
\(6\) 2.19085 + 0.452119i 0.894409 + 0.184577i
\(7\) 0.194936 + 0.194936i 0.0736790 + 0.0736790i 0.742986 0.669307i \(-0.233409\pi\)
−0.669307 + 0.742986i \(0.733409\pi\)
\(8\) −2.12965 2.12965i −0.752944 0.752944i
\(9\) −1.18763 + 2.75491i −0.395875 + 0.918304i
\(10\) −1.21936 + 2.61792i −0.385597 + 0.827859i
\(11\) 0.417205i 0.125792i 0.998020 + 0.0628961i \(0.0200337\pi\)
−0.998020 + 0.0628961i \(0.979966\pi\)
\(12\) 0.480300 0.315975i 0.138651 0.0912140i
\(13\) 4.34989 4.34989i 1.20644 1.20644i 0.234271 0.972171i \(-0.424730\pi\)
0.972171 0.234271i \(-0.0752704\pi\)
\(14\) −0.356054 −0.0951593
\(15\) −3.10788 2.31108i −0.802450 0.596719i
\(16\) 3.22597 0.806492
\(17\) 1.75815 1.75815i 0.426415 0.426415i −0.460990 0.887405i \(-0.652506\pi\)
0.887405 + 0.460990i \(0.152506\pi\)
\(18\) −1.43133 3.60055i −0.337369 0.848657i
\(19\) 1.00000i 0.229416i
\(20\) 0.254156 + 0.697341i 0.0568311 + 0.155930i
\(21\) 0.0965058 0.467641i 0.0210593 0.102048i
\(22\) −0.381015 0.381015i −0.0812327 0.0812327i
\(23\) 3.99902 + 3.99902i 0.833853 + 0.833853i 0.988041 0.154189i \(-0.0492764\pi\)
−0.154189 + 0.988041i \(0.549276\pi\)
\(24\) −1.05431 + 5.10889i −0.215210 + 1.04285i
\(25\) 3.82741 3.21728i 0.765482 0.643457i
\(26\) 7.94513i 1.55817i
\(27\) 5.11691 0.904010i 0.984750 0.173977i
\(28\) −0.0647048 + 0.0647048i −0.0122281 + 0.0122281i
\(29\) 7.49511 1.39181 0.695904 0.718135i \(-0.255004\pi\)
0.695904 + 0.718135i \(0.255004\pi\)
\(30\) 4.94890 0.727678i 0.903541 0.132855i
\(31\) −1.04976 −0.188543 −0.0942716 0.995547i \(-0.530052\pi\)
−0.0942716 + 0.995547i \(0.530052\pi\)
\(32\) 1.31316 1.31316i 0.232136 0.232136i
\(33\) 0.603697 0.397154i 0.105090 0.0691356i
\(34\) 3.21129i 0.550731i
\(35\) 0.558801 + 0.260276i 0.0944546 + 0.0439947i
\(36\) −0.914432 0.394206i −0.152405 0.0657010i
\(37\) −3.18548 3.18548i −0.523690 0.523690i 0.394994 0.918684i \(-0.370747\pi\)
−0.918684 + 0.394994i \(0.870747\pi\)
\(38\) 0.913256 + 0.913256i 0.148150 + 0.148150i
\(39\) −10.4351 2.15347i −1.67096 0.344831i
\(40\) −6.10480 2.84347i −0.965254 0.449592i
\(41\) 4.47210i 0.698425i 0.937044 + 0.349212i \(0.113551\pi\)
−0.937044 + 0.349212i \(0.886449\pi\)
\(42\) 0.338941 + 0.515210i 0.0522998 + 0.0794986i
\(43\) 1.64235 1.64235i 0.250456 0.250456i −0.570702 0.821158i \(-0.693329\pi\)
0.821158 + 0.570702i \(0.193329\pi\)
\(44\) −0.138482 −0.0208769
\(45\) −0.385631 + 6.69711i −0.0574864 + 0.998346i
\(46\) −7.30425 −1.07695
\(47\) −6.22740 + 6.22740i −0.908360 + 0.908360i −0.996140 0.0877802i \(-0.972023\pi\)
0.0877802 + 0.996140i \(0.472023\pi\)
\(48\) −3.07092 4.66798i −0.443250 0.673765i
\(49\) 6.92400i 0.989143i
\(50\) −0.557202 + 6.43361i −0.0788003 + 0.909850i
\(51\) −4.21771 0.870397i −0.590597 0.121880i
\(52\) 1.44385 + 1.44385i 0.200226 + 0.200226i
\(53\) −7.09583 7.09583i −0.974687 0.974687i 0.0250005 0.999687i \(-0.492041\pi\)
−0.999687 + 0.0250005i \(0.992041\pi\)
\(54\) −3.84745 + 5.49864i −0.523572 + 0.748270i
\(55\) 0.319454 + 0.876499i 0.0430751 + 0.118187i
\(56\) 0.830291i 0.110952i
\(57\) −1.44700 + 0.951938i −0.191660 + 0.126087i
\(58\) −6.84495 + 6.84495i −0.898786 + 0.898786i
\(59\) −4.72232 −0.614793 −0.307397 0.951581i \(-0.599458\pi\)
−0.307397 + 0.951581i \(0.599458\pi\)
\(60\) 0.767112 1.03159i 0.0990337 0.133178i
\(61\) 0.494981 0.0633758 0.0316879 0.999498i \(-0.489912\pi\)
0.0316879 + 0.999498i \(0.489912\pi\)
\(62\) 0.958703 0.958703i 0.121755 0.121755i
\(63\) −0.768544 + 0.305521i −0.0968275 + 0.0384920i
\(64\) 8.85044i 1.10630i
\(65\) 5.80790 12.4693i 0.720382 1.54663i
\(66\) −0.188627 + 0.914033i −0.0232183 + 0.112510i
\(67\) −0.00945292 0.00945292i −0.00115486 0.00115486i 0.706529 0.707684i \(-0.250260\pi\)
−0.707684 + 0.706529i \(0.750260\pi\)
\(68\) 0.583580 + 0.583580i 0.0707694 + 0.0707694i
\(69\) 1.97977 9.59340i 0.238336 1.15491i
\(70\) −0.748027 + 0.272630i −0.0894063 + 0.0325855i
\(71\) 6.32928i 0.751147i 0.926793 + 0.375573i \(0.122554\pi\)
−0.926793 + 0.375573i \(0.877446\pi\)
\(72\) 8.39621 3.33777i 0.989503 0.393359i
\(73\) −10.3226 + 10.3226i −1.20816 + 1.20816i −0.236543 + 0.971621i \(0.576014\pi\)
−0.971621 + 0.236543i \(0.923986\pi\)
\(74\) 5.81832 0.676366
\(75\) −8.29888 2.47561i −0.958272 0.285859i
\(76\) 0.331928 0.0380747
\(77\) −0.0813285 + 0.0813285i −0.00926825 + 0.00926825i
\(78\) 11.4966 7.56327i 1.30173 0.856372i
\(79\) 3.38084i 0.380374i 0.981748 + 0.190187i \(0.0609095\pi\)
−0.981748 + 0.190187i \(0.939091\pi\)
\(80\) 6.77738 2.47012i 0.757734 0.276168i
\(81\) −6.17909 6.54361i −0.686565 0.727068i
\(82\) −4.08417 4.08417i −0.451021 0.451021i
\(83\) −4.89025 4.89025i −0.536774 0.536774i 0.385806 0.922580i \(-0.373924\pi\)
−0.922580 + 0.385806i \(0.873924\pi\)
\(84\) 0.155223 + 0.0320329i 0.0169362 + 0.00349508i
\(85\) 2.34746 5.03989i 0.254618 0.546653i
\(86\) 2.99977i 0.323474i
\(87\) −7.13488 10.8454i −0.764940 1.16275i
\(88\) 0.888500 0.888500i 0.0947144 0.0947144i
\(89\) 2.98808 0.316736 0.158368 0.987380i \(-0.449377\pi\)
0.158368 + 0.987380i \(0.449377\pi\)
\(90\) −5.76400 6.46835i −0.607579 0.681824i
\(91\) 1.69590 0.177779
\(92\) −1.32738 + 1.32738i −0.138389 + 0.138389i
\(93\) 0.999311 + 1.51901i 0.103624 + 0.157514i
\(94\) 11.3744i 1.17318i
\(95\) −0.765698 2.10088i −0.0785590 0.215546i
\(96\) −3.15019 0.650096i −0.321515 0.0663501i
\(97\) 6.77266 + 6.77266i 0.687660 + 0.687660i 0.961714 0.274054i \(-0.0883648\pi\)
−0.274054 + 0.961714i \(0.588365\pi\)
\(98\) 6.32338 + 6.32338i 0.638758 + 0.638758i
\(99\) −1.14936 0.495484i −0.115515 0.0497980i
\(100\) 1.06791 + 1.27042i 0.106791 + 0.127042i
\(101\) 15.4552i 1.53785i 0.639340 + 0.768925i \(0.279208\pi\)
−0.639340 + 0.768925i \(0.720792\pi\)
\(102\) 4.64674 3.05695i 0.460096 0.302683i
\(103\) −13.9313 + 13.9313i −1.37269 + 1.37269i −0.516266 + 0.856428i \(0.672678\pi\)
−0.856428 + 0.516266i \(0.827322\pi\)
\(104\) −18.5275 −1.81677
\(105\) −0.155324 1.05635i −0.0151581 0.103089i
\(106\) 12.9606 1.25885
\(107\) 11.6724 11.6724i 1.12842 1.12842i 0.137980 0.990435i \(-0.455939\pi\)
0.990435 0.137980i \(-0.0440611\pi\)
\(108\) 0.300066 + 1.69844i 0.0288739 + 0.163433i
\(109\) 2.26521i 0.216968i 0.994098 + 0.108484i \(0.0345996\pi\)
−0.994098 + 0.108484i \(0.965400\pi\)
\(110\) −1.09221 0.508725i −0.104138 0.0485051i
\(111\) −1.57701 + 7.64178i −0.149684 + 0.725326i
\(112\) 0.628859 + 0.628859i 0.0594216 + 0.0594216i
\(113\) −9.13145 9.13145i −0.859014 0.859014i 0.132208 0.991222i \(-0.457793\pi\)
−0.991222 + 0.132208i \(0.957793\pi\)
\(114\) 0.452119 2.19085i 0.0423448 0.205192i
\(115\) 11.4635 + 5.33942i 1.06898 + 0.497904i
\(116\) 2.48783i 0.230990i
\(117\) 6.81752 + 17.1496i 0.630280 + 1.58548i
\(118\) 4.31268 4.31268i 0.397015 0.397015i
\(119\) 0.685456 0.0628357
\(120\) 1.69689 + 11.5405i 0.154904 + 1.05350i
\(121\) 10.8259 0.984176
\(122\) −0.452044 + 0.452044i −0.0409262 + 0.0409262i
\(123\) 6.47114 4.25716i 0.583483 0.383856i
\(124\) 0.348446i 0.0312913i
\(125\) 5.57747 9.68978i 0.498864 0.866680i
\(126\) 0.422859 0.980897i 0.0376712 0.0873852i
\(127\) −9.50297 9.50297i −0.843253 0.843253i 0.146028 0.989280i \(-0.453351\pi\)
−0.989280 + 0.146028i \(0.953351\pi\)
\(128\) −5.45640 5.45640i −0.482282 0.482282i
\(129\) −3.93990 0.813066i −0.346889 0.0715865i
\(130\) 6.08357 + 16.6918i 0.533564 + 1.46397i
\(131\) 8.95094i 0.782048i 0.920381 + 0.391024i \(0.127879\pi\)
−0.920381 + 0.391024i \(0.872121\pi\)
\(132\) 0.131826 + 0.200384i 0.0114740 + 0.0174412i
\(133\) 0.194936 0.194936i 0.0169031 0.0169031i
\(134\) 0.0172659 0.00149154
\(135\) 10.0578 5.81723i 0.865640 0.500667i
\(136\) −7.48849 −0.642133
\(137\) 4.48909 4.48909i 0.383528 0.383528i −0.488843 0.872372i \(-0.662581\pi\)
0.872372 + 0.488843i \(0.162581\pi\)
\(138\) 6.95320 + 10.5693i 0.591895 + 0.899715i
\(139\) 5.89970i 0.500406i −0.968193 0.250203i \(-0.919503\pi\)
0.968193 0.250203i \(-0.0804973\pi\)
\(140\) −0.0863928 + 0.185481i −0.00730152 + 0.0156760i
\(141\) 14.9392 + 3.08296i 1.25810 + 0.259632i
\(142\) −5.78025 5.78025i −0.485068 0.485068i
\(143\) 1.81480 + 1.81480i 0.151761 + 0.151761i
\(144\) −3.83125 + 8.88726i −0.319270 + 0.740605i
\(145\) 15.7463 5.73899i 1.30766 0.476598i
\(146\) 18.8543i 1.56039i
\(147\) −10.0190 + 6.59122i −0.826356 + 0.543635i
\(148\) 1.05735 1.05735i 0.0869136 0.0869136i
\(149\) −3.23167 −0.264748 −0.132374 0.991200i \(-0.542260\pi\)
−0.132374 + 0.991200i \(0.542260\pi\)
\(150\) 9.83986 5.31813i 0.803422 0.434223i
\(151\) 0.707315 0.0575605 0.0287803 0.999586i \(-0.490838\pi\)
0.0287803 + 0.999586i \(0.490838\pi\)
\(152\) −2.12965 + 2.12965i −0.172737 + 0.172737i
\(153\) 2.75553 + 6.93159i 0.222771 + 0.560386i
\(154\) 0.148547i 0.0119703i
\(155\) −2.20543 + 0.803803i −0.177144 + 0.0645630i
\(156\) 0.714796 3.46371i 0.0572295 0.277318i
\(157\) 13.1031 + 13.1031i 1.04574 + 1.04574i 0.998902 + 0.0468425i \(0.0149159\pi\)
0.0468425 + 0.998902i \(0.485084\pi\)
\(158\) −3.08757 3.08757i −0.245634 0.245634i
\(159\) −3.51288 + 17.0225i −0.278590 + 1.34997i
\(160\) 1.75331 3.76427i 0.138611 0.297592i
\(161\) 1.55911i 0.122875i
\(162\) 11.6191 + 0.332906i 0.912881 + 0.0261555i
\(163\) −7.10451 + 7.10451i −0.556468 + 0.556468i −0.928300 0.371832i \(-0.878730\pi\)
0.371832 + 0.928300i \(0.378730\pi\)
\(164\) −1.48441 −0.115913
\(165\) 0.964196 1.29662i 0.0750625 0.100942i
\(166\) 8.93209 0.693265
\(167\) −12.4109 + 12.4109i −0.960387 + 0.960387i −0.999245 0.0388577i \(-0.987628\pi\)
0.0388577 + 0.999245i \(0.487628\pi\)
\(168\) −1.20143 + 0.790386i −0.0926925 + 0.0609796i
\(169\) 24.8431i 1.91101i
\(170\) 2.45888 + 6.74654i 0.188587 + 0.517436i
\(171\) 2.75491 + 1.18763i 0.210673 + 0.0908201i
\(172\) 0.545141 + 0.545141i 0.0415666 + 0.0415666i
\(173\) 3.26334 + 3.26334i 0.248107 + 0.248107i 0.820193 0.572086i \(-0.193866\pi\)
−0.572086 + 0.820193i \(0.693866\pi\)
\(174\) 16.4206 + 3.38868i 1.24484 + 0.256895i
\(175\) 1.37327 + 0.118936i 0.103809 + 0.00899072i
\(176\) 1.34589i 0.101450i
\(177\) 4.49535 + 6.83320i 0.337892 + 0.513615i
\(178\) −2.72888 + 2.72888i −0.204538 + 0.204538i
\(179\) 21.4626 1.60419 0.802094 0.597198i \(-0.203719\pi\)
0.802094 + 0.597198i \(0.203719\pi\)
\(180\) −2.22296 0.128001i −0.165689 0.00954066i
\(181\) −7.54278 −0.560651 −0.280325 0.959905i \(-0.590442\pi\)
−0.280325 + 0.959905i \(0.590442\pi\)
\(182\) −1.54879 + 1.54879i −0.114804 + 0.114804i
\(183\) −0.471191 0.716238i −0.0348315 0.0529458i
\(184\) 17.0330i 1.25569i
\(185\) −9.13145 4.25321i −0.671357 0.312702i
\(186\) −2.29987 0.474618i −0.168635 0.0348007i
\(187\) 0.733511 + 0.733511i 0.0536397 + 0.0536397i
\(188\) −2.06705 2.06705i −0.150755 0.150755i
\(189\) 1.17370 + 0.821247i 0.0853739 + 0.0597370i
\(190\) 2.61792 + 1.21936i 0.189924 + 0.0884620i
\(191\) 11.4868i 0.831153i −0.909558 0.415577i \(-0.863580\pi\)
0.909558 0.415577i \(-0.136420\pi\)
\(192\) 12.8066 8.42507i 0.924236 0.608027i
\(193\) −17.2622 + 17.2622i −1.24256 + 1.24256i −0.283623 + 0.958936i \(0.591536\pi\)
−0.958936 + 0.283623i \(0.908464\pi\)
\(194\) −12.3703 −0.888139
\(195\) −23.5719 + 3.46597i −1.68802 + 0.248204i
\(196\) 2.29827 0.164162
\(197\) 2.13140 2.13140i 0.151856 0.151856i −0.627091 0.778946i \(-0.715754\pi\)
0.778946 + 0.627091i \(0.215754\pi\)
\(198\) 1.50217 0.597160i 0.106754 0.0424383i
\(199\) 16.1408i 1.14419i −0.820186 0.572097i \(-0.806130\pi\)
0.820186 0.572097i \(-0.193870\pi\)
\(200\) −15.0027 1.29936i −1.06085 0.0918783i
\(201\) −0.00467979 + 0.0226770i −0.000330087 + 0.00159951i
\(202\) −14.1145 14.1145i −0.993096 0.993096i
\(203\) 1.46107 + 1.46107i 0.102547 + 0.102547i
\(204\) 0.288909 1.39997i 0.0202277 0.0980177i
\(205\) 3.42428 + 9.39536i 0.239162 + 0.656200i
\(206\) 25.4457i 1.77289i
\(207\) −15.7663 + 6.26760i −1.09583 + 0.435629i
\(208\) 14.0326 14.0326i 0.972987 0.972987i
\(209\) 0.417205 0.0288587
\(210\) 1.10657 + 0.822869i 0.0763607 + 0.0567834i
\(211\) −22.8089 −1.57023 −0.785115 0.619349i \(-0.787396\pi\)
−0.785115 + 0.619349i \(0.787396\pi\)
\(212\) 2.35530 2.35530i 0.161763 0.161763i
\(213\) 9.15847 6.02508i 0.627528 0.412832i
\(214\) 21.3198i 1.45739i
\(215\) 2.19284 4.70793i 0.149550 0.321078i
\(216\) −12.8224 8.97199i −0.872456 0.610466i
\(217\) −0.204637 0.204637i −0.0138917 0.0138917i
\(218\) −2.06872 2.06872i −0.140111 0.140111i
\(219\) 24.7632 + 5.11032i 1.67334 + 0.345323i
\(220\) −0.290934 + 0.106035i −0.0196148 + 0.00714891i
\(221\) 15.2956i 1.02889i
\(222\) −5.53869 8.41912i −0.371732 0.565054i
\(223\) 16.5890 16.5890i 1.11088 1.11088i 0.117853 0.993031i \(-0.462399\pi\)
0.993031 0.117853i \(-0.0376010\pi\)
\(224\) 0.511965 0.0342071
\(225\) 4.31780 + 14.3651i 0.287854 + 0.957674i
\(226\) 16.6787 1.10945
\(227\) −2.06631 + 2.06631i −0.137146 + 0.137146i −0.772347 0.635201i \(-0.780917\pi\)
0.635201 + 0.772347i \(0.280917\pi\)
\(228\) −0.315975 0.480300i −0.0209259 0.0318086i
\(229\) 4.86849i 0.321719i 0.986977 + 0.160859i \(0.0514266\pi\)
−0.986977 + 0.160859i \(0.948573\pi\)
\(230\) −15.3454 + 5.59285i −1.01184 + 0.368782i
\(231\) 0.195102 + 0.0402627i 0.0128368 + 0.00264909i
\(232\) −15.9619 15.9619i −1.04795 1.04795i
\(233\) −7.45126 7.45126i −0.488148 0.488148i 0.419573 0.907722i \(-0.362180\pi\)
−0.907722 + 0.419573i \(0.862180\pi\)
\(234\) −21.8881 9.43584i −1.43087 0.616840i
\(235\) −8.31472 + 17.8513i −0.542393 + 1.16449i
\(236\) 1.56747i 0.102033i
\(237\) 4.89208 3.21835i 0.317775 0.209054i
\(238\) −0.625997 + 0.625997i −0.0405774 + 0.0405774i
\(239\) 10.1941 0.659400 0.329700 0.944086i \(-0.393052\pi\)
0.329700 + 0.944086i \(0.393052\pi\)
\(240\) −10.0259 7.45548i −0.647170 0.481249i
\(241\) 25.4259 1.63782 0.818912 0.573919i \(-0.194578\pi\)
0.818912 + 0.573919i \(0.194578\pi\)
\(242\) −9.88685 + 9.88685i −0.635551 + 0.635551i
\(243\) −3.58651 + 15.1703i −0.230075 + 0.973173i
\(244\) 0.164298i 0.0105181i
\(245\) −5.30170 14.5465i −0.338713 0.929342i
\(246\) −2.02192 + 9.79768i −0.128913 + 0.624677i
\(247\) −4.34989 4.34989i −0.276777 0.276777i
\(248\) 2.23563 + 2.23563i 0.141962 + 0.141962i
\(249\) −2.42098 + 11.7314i −0.153423 + 0.743448i
\(250\) 3.75559 + 13.9429i 0.237524 + 0.881827i
\(251\) 21.0212i 1.32684i −0.748246 0.663422i \(-0.769104\pi\)
0.748246 0.663422i \(-0.230896\pi\)
\(252\) −0.101411 0.255101i −0.00638829 0.0160699i
\(253\) −1.66841 + 1.66841i −0.104892 + 0.104892i
\(254\) 17.3573 1.08909
\(255\) −9.52736 + 1.40089i −0.596627 + 0.0877271i
\(256\) −7.73470 −0.483419
\(257\) −16.9283 + 16.9283i −1.05596 + 1.05596i −0.0576215 + 0.998339i \(0.518352\pi\)
−0.998339 + 0.0576215i \(0.981648\pi\)
\(258\) 4.34067 2.85560i 0.270238 0.177782i
\(259\) 1.24193i 0.0771700i
\(260\) 4.13891 + 1.92780i 0.256684 + 0.119557i
\(261\) −8.90139 + 20.6484i −0.550982 + 1.27810i
\(262\) −8.17450 8.17450i −0.505022 0.505022i
\(263\) 19.4248 + 19.4248i 1.19778 + 1.19778i 0.974829 + 0.222952i \(0.0715694\pi\)
0.222952 + 0.974829i \(0.428431\pi\)
\(264\) −2.13146 0.439863i −0.131182 0.0270717i
\(265\) −20.3408 9.47423i −1.24952 0.581998i
\(266\) 0.356054i 0.0218310i
\(267\) −2.84447 4.32375i −0.174078 0.264609i
\(268\) 0.00313768 0.00313768i 0.000191665 0.000191665i
\(269\) −13.1551 −0.802082 −0.401041 0.916060i \(-0.631352\pi\)
−0.401041 + 0.916060i \(0.631352\pi\)
\(270\) −3.87275 + 14.4980i −0.235688 + 0.882319i
\(271\) 0.362450 0.0220172 0.0110086 0.999939i \(-0.496496\pi\)
0.0110086 + 0.999939i \(0.496496\pi\)
\(272\) 5.67175 5.67175i 0.343900 0.343900i
\(273\) −1.61440 2.45398i −0.0977077 0.148521i
\(274\) 8.19937i 0.495342i
\(275\) 1.34227 + 1.59682i 0.0809418 + 0.0962917i
\(276\) 3.18431 + 0.657139i 0.191673 + 0.0395551i
\(277\) −3.17125 3.17125i −0.190542 0.190542i 0.605388 0.795930i \(-0.293018\pi\)
−0.795930 + 0.605388i \(0.793018\pi\)
\(278\) 5.38793 + 5.38793i 0.323147 + 0.323147i
\(279\) 1.24673 2.89201i 0.0746396 0.173140i
\(280\) −0.635753 1.74434i −0.0379935 0.104244i
\(281\) 13.7777i 0.821906i 0.911656 + 0.410953i \(0.134804\pi\)
−0.911656 + 0.410953i \(0.865196\pi\)
\(282\) −16.4588 + 10.8277i −0.980107 + 0.644783i
\(283\) −16.0057 + 16.0057i −0.951440 + 0.951440i −0.998874 0.0474340i \(-0.984896\pi\)
0.0474340 + 0.998874i \(0.484896\pi\)
\(284\) −2.10086 −0.124663
\(285\) −2.31108 + 3.10788i −0.136897 + 0.184095i
\(286\) −3.31475 −0.196005
\(287\) −0.871775 + 0.871775i −0.0514593 + 0.0514593i
\(288\) 2.05809 + 5.17718i 0.121274 + 0.305068i
\(289\) 10.8178i 0.636341i
\(290\) −9.13927 + 19.6216i −0.536676 + 1.15222i
\(291\) 3.35289 16.2472i 0.196550 0.952428i
\(292\) −3.42634 3.42634i −0.200511 0.200511i
\(293\) 2.28332 + 2.28332i 0.133393 + 0.133393i 0.770651 0.637258i \(-0.219931\pi\)
−0.637258 + 0.770651i \(0.719931\pi\)
\(294\) 3.13047 15.1694i 0.182573 0.884698i
\(295\) −9.92103 + 3.61587i −0.577625 + 0.210524i
\(296\) 13.5679i 0.788619i
\(297\) 0.377158 + 2.13480i 0.0218849 + 0.123874i
\(298\) 2.95134 2.95134i 0.170966 0.170966i
\(299\) 34.7906 2.01199
\(300\) 0.821724 2.75463i 0.0474423 0.159038i
\(301\) 0.640307 0.0369067
\(302\) −0.645960 + 0.645960i −0.0371708 + 0.0371708i
\(303\) 22.3637 14.7124i 1.28476 0.845205i
\(304\) 3.22597i 0.185022i
\(305\) 1.03990 0.379006i 0.0595443 0.0217018i
\(306\) −8.84682 3.81381i −0.505739 0.218021i
\(307\) 11.2429 + 11.2429i 0.641667 + 0.641667i 0.950965 0.309298i \(-0.100094\pi\)
−0.309298 + 0.950965i \(0.600094\pi\)
\(308\) −0.0269952 0.0269952i −0.00153819 0.00153819i
\(309\) 33.4204 + 6.89688i 1.90122 + 0.392350i
\(310\) 1.28004 2.74820i 0.0727017 0.156087i
\(311\) 6.71241i 0.380626i −0.981723 0.190313i \(-0.939050\pi\)
0.981723 0.190313i \(-0.0609502\pi\)
\(312\) 17.6370 + 26.8093i 0.998499 + 1.51778i
\(313\) 2.56127 2.56127i 0.144772 0.144772i −0.631006 0.775778i \(-0.717358\pi\)
0.775778 + 0.631006i \(0.217358\pi\)
\(314\) −23.9330 −1.35062
\(315\) −1.38068 + 1.23034i −0.0777927 + 0.0693217i
\(316\) −1.12219 −0.0631284
\(317\) −0.404085 + 0.404085i −0.0226957 + 0.0226957i −0.718364 0.695668i \(-0.755109\pi\)
0.695668 + 0.718364i \(0.255109\pi\)
\(318\) −12.3377 18.7540i −0.691864 1.05167i
\(319\) 3.12700i 0.175078i
\(320\) 6.77677 + 18.5937i 0.378833 + 1.03942i
\(321\) −28.0014 5.77858i −1.56289 0.322529i
\(322\) −1.42386 1.42386i −0.0793489 0.0793489i
\(323\) −1.75815 1.75815i −0.0978263 0.0978263i
\(324\) 2.17201 2.05101i 0.120667 0.113945i
\(325\) 2.65399 30.6437i 0.147217 1.69980i
\(326\) 12.9765i 0.718700i
\(327\) 3.27777 2.15634i 0.181261 0.119246i
\(328\) 9.52399 9.52399i 0.525874 0.525874i
\(329\) −2.42789 −0.133854
\(330\) 0.303591 + 2.06471i 0.0167122 + 0.113658i
\(331\) −28.2064 −1.55036 −0.775182 0.631738i \(-0.782342\pi\)
−0.775182 + 0.631738i \(0.782342\pi\)
\(332\) 1.62321 1.62321i 0.0890851 0.0890851i
\(333\) 12.5589 4.99256i 0.688223 0.273591i
\(334\) 22.6687i 1.24038i
\(335\) −0.0270975 0.0126214i −0.00148050 0.000689580i
\(336\) 0.311325 1.50859i 0.0169842 0.0823006i
\(337\) 3.65308 + 3.65308i 0.198996 + 0.198996i 0.799569 0.600574i \(-0.205061\pi\)
−0.600574 + 0.799569i \(0.705061\pi\)
\(338\) 22.6881 + 22.6881i 1.23407 + 1.23407i
\(339\) −4.52064 + 21.9058i −0.245527 + 1.18976i
\(340\) 1.67288 + 0.779186i 0.0907246 + 0.0422573i
\(341\) 0.437967i 0.0237173i
\(342\) −3.60055 + 1.43133i −0.194695 + 0.0773976i
\(343\) 2.71429 2.71429i 0.146558 0.146558i
\(344\) −6.99525 −0.377158
\(345\) −3.18640 21.6705i −0.171550 1.16670i
\(346\) −5.96053 −0.320440
\(347\) 0.482709 0.482709i 0.0259132 0.0259132i −0.694031 0.719945i \(-0.744167\pi\)
0.719945 + 0.694031i \(0.244167\pi\)
\(348\) 3.59990 2.36826i 0.192975 0.126952i
\(349\) 27.0011i 1.44533i 0.691196 + 0.722667i \(0.257084\pi\)
−0.691196 + 0.722667i \(0.742916\pi\)
\(350\) −1.36276 + 1.14553i −0.0728428 + 0.0612309i
\(351\) 18.3257 26.1903i 0.978151 1.39794i
\(352\) 0.547857 + 0.547857i 0.0292009 + 0.0292009i
\(353\) −10.1394 10.1394i −0.539668 0.539668i 0.383764 0.923431i \(-0.374628\pi\)
−0.923431 + 0.383764i \(0.874628\pi\)
\(354\) −10.3459 2.13505i −0.549877 0.113477i
\(355\) 4.84632 + 13.2971i 0.257216 + 0.705735i
\(356\) 0.991825i 0.0525666i
\(357\) −0.652512 0.991856i −0.0345346 0.0524946i
\(358\) −19.6008 + 19.6008i −1.03594 + 1.03594i
\(359\) 3.10088 0.163658 0.0818292 0.996646i \(-0.473924\pi\)
0.0818292 + 0.996646i \(0.473924\pi\)
\(360\) 15.0837 13.4412i 0.794983 0.708415i
\(361\) −1.00000 −0.0526316
\(362\) 6.88849 6.88849i 0.362051 0.362051i
\(363\) −10.3056 15.6652i −0.540905 0.822207i
\(364\) 0.562917i 0.0295049i
\(365\) −13.7825 + 29.5904i −0.721410 + 1.54883i
\(366\) 1.08443 + 0.223790i 0.0566839 + 0.0116977i
\(367\) −4.23828 4.23828i −0.221236 0.221236i 0.587783 0.809019i \(-0.300001\pi\)
−0.809019 + 0.587783i \(0.800001\pi\)
\(368\) 12.9007 + 12.9007i 0.672496 + 0.672496i
\(369\) −12.3202 5.31118i −0.641366 0.276489i
\(370\) 12.2236 4.45508i 0.635475 0.231609i
\(371\) 2.76647i 0.143628i
\(372\) −0.504201 + 0.331699i −0.0261416 + 0.0171978i
\(373\) 11.4087 11.4087i 0.590719 0.590719i −0.347107 0.937826i \(-0.612836\pi\)
0.937826 + 0.347107i \(0.112836\pi\)
\(374\) −1.33977 −0.0692777
\(375\) −19.3305 + 1.15346i −0.998224 + 0.0595647i
\(376\) 26.5243 1.36789
\(377\) 32.6029 32.6029i 1.67914 1.67914i
\(378\) −1.82189 + 0.321876i −0.0937081 + 0.0165555i
\(379\) 7.13895i 0.366703i −0.983047 0.183352i \(-0.941305\pi\)
0.983047 0.183352i \(-0.0586947\pi\)
\(380\) 0.697341 0.254156i 0.0357728 0.0130380i
\(381\) −4.70457 + 22.7971i −0.241022 + 1.16793i
\(382\) 10.4904 + 10.4904i 0.536733 + 0.536733i
\(383\) −12.0663 12.0663i −0.616559 0.616559i 0.328088 0.944647i \(-0.393596\pi\)
−0.944647 + 0.328088i \(0.893596\pi\)
\(384\) −2.70126 + 13.0896i −0.137848 + 0.667974i
\(385\) −0.108589 + 0.233135i −0.00553418 + 0.0118816i
\(386\) 31.5296i 1.60481i
\(387\) 2.57403 + 6.47503i 0.130845 + 0.329144i
\(388\) −2.24803 + 2.24803i −0.114127 + 0.114127i
\(389\) 14.2311 0.721548 0.360774 0.932653i \(-0.382513\pi\)
0.360774 + 0.932653i \(0.382513\pi\)
\(390\) 18.3618 24.6925i 0.929788 1.25035i
\(391\) 14.0618 0.711135
\(392\) −14.7457 + 14.7457i −0.744769 + 0.744769i
\(393\) 12.9520 8.52075i 0.653343 0.429815i
\(394\) 3.89302i 0.196127i
\(395\) 2.58870 + 7.10275i 0.130252 + 0.357378i
\(396\) 0.164465 0.381506i 0.00826467 0.0191714i
\(397\) 22.7398 + 22.7398i 1.14128 + 1.14128i 0.988216 + 0.153063i \(0.0489136\pi\)
0.153063 + 0.988216i \(0.451086\pi\)
\(398\) 14.7407 + 14.7407i 0.738885 + 0.738885i
\(399\) −0.467641 0.0965058i −0.0234113 0.00483133i
\(400\) 12.3471 10.3789i 0.617356 0.518943i
\(401\) 10.7016i 0.534411i −0.963640 0.267205i \(-0.913900\pi\)
0.963640 0.267205i \(-0.0861002\pi\)
\(402\) −0.0164360 0.0249837i −0.000819755 0.00124608i
\(403\) −4.56636 + 4.56636i −0.227467 + 0.227467i
\(404\) −5.13000 −0.255227
\(405\) −17.9920 9.01604i −0.894028 0.448011i
\(406\) −2.66866 −0.132443
\(407\) 1.32900 1.32900i 0.0658761 0.0658761i
\(408\) 7.12858 + 10.8359i 0.352918 + 0.536455i
\(409\) 0.143731i 0.00710702i −0.999994 0.00355351i \(-0.998869\pi\)
0.999994 0.00355351i \(-0.00113112\pi\)
\(410\) −11.7076 5.45312i −0.578197 0.269310i
\(411\) −10.7690 2.22238i −0.531198 0.109622i
\(412\) −4.62419 4.62419i −0.227818 0.227818i
\(413\) −0.920551 0.920551i −0.0452974 0.0452974i
\(414\) 8.67472 20.1226i 0.426339 0.988971i
\(415\) −14.0183 6.52938i −0.688131 0.320515i
\(416\) 11.4242i 0.560117i
\(417\) −8.53687 + 5.61615i −0.418052 + 0.275024i
\(418\) −0.381015 + 0.381015i −0.0186361 + 0.0186361i
\(419\) 10.3471 0.505488 0.252744 0.967533i \(-0.418667\pi\)
0.252744 + 0.967533i \(0.418667\pi\)
\(420\) 0.350633 0.0515565i 0.0171091 0.00251570i
\(421\) −14.1302 −0.688666 −0.344333 0.938848i \(-0.611895\pi\)
−0.344333 + 0.938848i \(0.611895\pi\)
\(422\) 20.8304 20.8304i 1.01401 1.01401i
\(423\) −9.76012 24.5518i −0.474553 1.19375i
\(424\) 30.2232i 1.46777i
\(425\) 1.07270 12.3857i 0.0520335 0.600793i
\(426\) −2.86159 + 13.8665i −0.138644 + 0.671833i
\(427\) 0.0964898 + 0.0964898i 0.00466947 + 0.00466947i
\(428\) 3.87440 + 3.87440i 0.187276 + 0.187276i
\(429\) 0.898439 4.35359i 0.0433771 0.210193i
\(430\) 2.29692 + 6.30216i 0.110767 + 0.303917i
\(431\) 26.7146i 1.28680i 0.765532 + 0.643398i \(0.222476\pi\)
−0.765532 + 0.643398i \(0.777524\pi\)
\(432\) 16.5070 2.91631i 0.794193 0.140311i
\(433\) 2.68250 2.68250i 0.128913 0.128913i −0.639706 0.768619i \(-0.720944\pi\)
0.768619 + 0.639706i \(0.220944\pi\)
\(434\) 0.373772 0.0179416
\(435\) −23.2939 17.3218i −1.11686 0.830517i
\(436\) −0.751886 −0.0360088
\(437\) 3.99902 3.99902i 0.191299 0.191299i
\(438\) −27.2822 + 17.9481i −1.30359 + 0.857594i
\(439\) 27.9944i 1.33610i −0.744117 0.668049i \(-0.767130\pi\)
0.744117 0.668049i \(-0.232870\pi\)
\(440\) 1.18631 2.54696i 0.0565551 0.121421i
\(441\) 19.0750 + 8.22312i 0.908334 + 0.391577i
\(442\) 13.9688 + 13.9688i 0.664426 + 0.664426i
\(443\) 3.19463 + 3.19463i 0.151781 + 0.151781i 0.778913 0.627132i \(-0.215771\pi\)
−0.627132 + 0.778913i \(0.715771\pi\)
\(444\) −2.53652 0.523455i −0.120378 0.0248421i
\(445\) 6.27760 2.28797i 0.297587 0.108460i
\(446\) 30.3001i 1.43475i
\(447\) 3.07635 + 4.67623i 0.145506 + 0.221178i
\(448\) −1.72527 + 1.72527i −0.0815115 + 0.0815115i
\(449\) −28.6456 −1.35187 −0.675936 0.736961i \(-0.736260\pi\)
−0.675936 + 0.736961i \(0.736260\pi\)
\(450\) −17.0623 9.17577i −0.804324 0.432550i
\(451\) −1.86578 −0.0878564
\(452\) 3.03098 3.03098i 0.142565 0.142565i
\(453\) −0.673321 1.02349i −0.0316354 0.0480876i
\(454\) 3.77414i 0.177129i
\(455\) 3.56289 1.29855i 0.167031 0.0608770i
\(456\) 5.10889 + 1.05431i 0.239246 + 0.0493725i
\(457\) 17.7763 + 17.7763i 0.831541 + 0.831541i 0.987728 0.156187i \(-0.0499202\pi\)
−0.156187 + 0.987728i \(0.549920\pi\)
\(458\) −4.44618 4.44618i −0.207756 0.207756i
\(459\) 7.40693 10.5857i 0.345726 0.494098i
\(460\) −1.77230 + 3.80505i −0.0826340 + 0.177412i
\(461\) 13.6947i 0.637826i 0.947784 + 0.318913i \(0.103318\pi\)
−0.947784 + 0.318913i \(0.896682\pi\)
\(462\) −0.214948 + 0.141408i −0.0100003 + 0.00657890i
\(463\) 23.3588 23.3588i 1.08558 1.08558i 0.0895970 0.995978i \(-0.471442\pi\)
0.995978 0.0895970i \(-0.0285579\pi\)
\(464\) 24.1790 1.12248
\(465\) 3.26254 + 2.42609i 0.151297 + 0.112507i
\(466\) 13.6098 0.630463
\(467\) −28.3932 + 28.3932i −1.31388 + 1.31388i −0.395353 + 0.918529i \(0.629378\pi\)
−0.918529 + 0.395353i \(0.870622\pi\)
\(468\) −5.69243 + 2.26292i −0.263133 + 0.104604i
\(469\) 0.00368544i 0.000170178i
\(470\) −8.70938 23.8963i −0.401734 1.10225i
\(471\) 6.48688 31.4337i 0.298900 1.44839i
\(472\) 10.0569 + 10.0569i 0.462905 + 0.462905i
\(473\) 0.685197 + 0.685197i 0.0315054 + 0.0315054i
\(474\) −1.52854 + 7.40690i −0.0702083 + 0.340210i
\(475\) −3.21728 3.82741i −0.147619 0.175614i
\(476\) 0.227522i 0.0104284i
\(477\) 27.9756 11.1212i 1.28091 0.509204i
\(478\) −9.30980 + 9.30980i −0.425820 + 0.425820i
\(479\) −20.6452 −0.943302 −0.471651 0.881785i \(-0.656342\pi\)
−0.471651 + 0.881785i \(0.656342\pi\)
\(480\) −7.11595 + 1.04632i −0.324797 + 0.0477577i
\(481\) −27.7130 −1.26360
\(482\) −23.2203 + 23.2203i −1.05766 + 1.05766i
\(483\) 2.25603 1.48417i 0.102653 0.0675323i
\(484\) 3.59343i 0.163338i
\(485\) 19.4144 + 9.04275i 0.881562 + 0.410610i
\(486\) −10.5789 17.1297i −0.479870 0.777020i
\(487\) 8.79982 + 8.79982i 0.398758 + 0.398758i 0.877795 0.479037i \(-0.159014\pi\)
−0.479037 + 0.877795i \(0.659014\pi\)
\(488\) −1.05413 1.05413i −0.0477184 0.0477184i
\(489\) 17.0433 + 3.51718i 0.770724 + 0.159052i
\(490\) 18.1265 + 8.44288i 0.818871 + 0.381410i
\(491\) 5.04686i 0.227761i −0.993494 0.113881i \(-0.963672\pi\)
0.993494 0.113881i \(-0.0363282\pi\)
\(492\) 1.41307 + 2.14795i 0.0637061 + 0.0968370i
\(493\) 13.1776 13.1776i 0.593487 0.593487i
\(494\) 7.94513 0.357468
\(495\) −2.79407 0.160887i −0.125584 0.00723134i
\(496\) −3.38651 −0.152059
\(497\) −1.23381 + 1.23381i −0.0553438 + 0.0553438i
\(498\) −8.50280 12.9248i −0.381020 0.579172i
\(499\) 22.6443i 1.01370i 0.862034 + 0.506850i \(0.169190\pi\)
−0.862034 + 0.506850i \(0.830810\pi\)
\(500\) 3.21631 + 1.85132i 0.143838 + 0.0827934i
\(501\) 29.7731 + 6.14420i 1.33016 + 0.274502i
\(502\) 19.1977 + 19.1977i 0.856835 + 0.856835i
\(503\) −3.99010 3.99010i −0.177910 0.177910i 0.612534 0.790444i \(-0.290150\pi\)
−0.790444 + 0.612534i \(0.790150\pi\)
\(504\) 2.28738 + 0.986076i 0.101888 + 0.0439233i
\(505\) 11.8340 + 32.4695i 0.526607 + 1.44488i
\(506\) 3.04737i 0.135472i
\(507\) −35.9480 + 23.6491i −1.59651 + 1.05029i
\(508\) 3.15430 3.15430i 0.139949 0.139949i
\(509\) −25.6212 −1.13564 −0.567821 0.823152i \(-0.692213\pi\)
−0.567821 + 0.823152i \(0.692213\pi\)
\(510\) 7.42155 9.98029i 0.328632 0.441935i
\(511\) −4.02448 −0.178033
\(512\) 17.9766 17.9766i 0.794459 0.794459i
\(513\) −0.904010 5.11691i −0.0399130 0.225917i
\(514\) 30.9198i 1.36381i
\(515\) −18.6009 + 39.9353i −0.819653 + 1.75976i
\(516\) 0.269879 1.30776i 0.0118808 0.0575710i
\(517\) −2.59810 2.59810i −0.114265 0.114265i
\(518\) 1.13420 + 1.13420i 0.0498340 + 0.0498340i
\(519\) 1.61556 7.82855i 0.0709151 0.343635i
\(520\) −38.9240 + 14.1864i −1.70693 + 0.622117i
\(521\) 35.2576i 1.54466i 0.635220 + 0.772332i \(0.280910\pi\)
−0.635220 + 0.772332i \(0.719090\pi\)
\(522\) −10.7280 26.9865i −0.469552 1.18117i
\(523\) −25.1243 + 25.1243i −1.09861 + 1.09861i −0.104036 + 0.994574i \(0.533176\pi\)
−0.994574 + 0.104036i \(0.966824\pi\)
\(524\) −2.97107 −0.129792
\(525\) −1.13517 2.10034i −0.0495427 0.0916664i
\(526\) −35.4795 −1.54698
\(527\) −1.84565 + 1.84565i −0.0803976 + 0.0803976i
\(528\) 1.94751 1.28121i 0.0847544 0.0557573i
\(529\) 8.98427i 0.390621i
\(530\) 27.2287 9.92392i 1.18274 0.431068i
\(531\) 5.60835 13.0096i 0.243382 0.564567i
\(532\) 0.0647048 + 0.0647048i 0.00280531 + 0.00280531i
\(533\) 19.4531 + 19.4531i 0.842609 + 0.842609i
\(534\) 6.54642 + 1.35097i 0.283291 + 0.0584621i
\(535\) 15.5848 33.4599i 0.673791 1.44660i
\(536\) 0.0402627i 0.00173909i
\(537\) −20.4311 31.0564i −0.881665 1.34018i
\(538\) 12.0140 12.0140i 0.517960 0.517960i
\(539\) 2.88873 0.124426
\(540\) 1.93090 + 3.33847i 0.0830927 + 0.143665i
\(541\) 2.58564 0.111165 0.0555827 0.998454i \(-0.482298\pi\)
0.0555827 + 0.998454i \(0.482298\pi\)
\(542\) −0.331009 + 0.331009i −0.0142181 + 0.0142181i
\(543\) 7.18026 + 10.9144i 0.308135 + 0.468382i
\(544\) 4.61747i 0.197972i
\(545\) 1.73447 + 4.75894i 0.0742965 + 0.203851i
\(546\) 3.71546 + 0.766751i 0.159007 + 0.0328139i
\(547\) −31.5454 31.5454i −1.34879 1.34879i −0.886983 0.461802i \(-0.847203\pi\)
−0.461802 0.886983i \(-0.652797\pi\)
\(548\) 1.49005 + 1.49005i 0.0636518 + 0.0636518i
\(549\) −0.587852 + 1.36363i −0.0250889 + 0.0581983i
\(550\) −2.68414 0.232468i −0.114452 0.00991246i
\(551\) 7.49511i 0.319302i
\(552\) −24.6468 + 16.2144i −1.04904 + 0.690129i
\(553\) −0.659049 + 0.659049i −0.0280256 + 0.0280256i
\(554\) 5.79233 0.246093
\(555\) 2.53818 + 17.2620i 0.107740 + 0.732731i
\(556\) 1.95827 0.0830493
\(557\) 17.4507 17.4507i 0.739412 0.739412i −0.233052 0.972464i \(-0.574871\pi\)
0.972464 + 0.233052i \(0.0748713\pi\)
\(558\) 1.50256 + 3.77972i 0.0636085 + 0.160009i
\(559\) 14.2881i 0.604321i
\(560\) 1.80267 + 0.839642i 0.0761769 + 0.0354814i
\(561\) 0.363134 1.75965i 0.0153315 0.0742925i
\(562\) −12.5825 12.5825i −0.530762 0.530762i
\(563\) 22.3454 + 22.3454i 0.941746 + 0.941746i 0.998394 0.0566485i \(-0.0180414\pi\)
−0.0566485 + 0.998394i \(0.518041\pi\)
\(564\) −1.02332 + 4.95872i −0.0430895 + 0.208800i
\(565\) −26.1760 12.1922i −1.10123 0.512928i
\(566\) 29.2346i 1.22882i
\(567\) 0.0710594 2.48012i 0.00298422 0.104155i
\(568\) 13.4791 13.4791i 0.565571 0.565571i
\(569\) −1.03677 −0.0434638 −0.0217319 0.999764i \(-0.506918\pi\)
−0.0217319 + 0.999764i \(0.506918\pi\)
\(570\) −0.727678 4.94890i −0.0304791 0.207286i
\(571\) 29.7082 1.24325 0.621624 0.783315i \(-0.286473\pi\)
0.621624 + 0.783315i \(0.286473\pi\)
\(572\) −0.602381 + 0.602381i −0.0251868 + 0.0251868i
\(573\) −16.6214 + 10.9347i −0.694368 + 0.456804i
\(574\) 1.59231i 0.0664616i
\(575\) 28.1719 + 2.43991i 1.17485 + 0.101751i
\(576\) −24.3822 10.5110i −1.01592 0.437959i
\(577\) −13.3839 13.3839i −0.557181 0.557181i 0.371323 0.928504i \(-0.378904\pi\)
−0.928504 + 0.371323i \(0.878904\pi\)
\(578\) −9.87941 9.87941i −0.410929 0.410929i
\(579\) 41.4109 + 8.54587i 1.72098 + 0.355154i
\(580\) 1.90493 + 5.22665i 0.0790979 + 0.217025i
\(581\) 1.90657i 0.0790980i
\(582\) 11.7758 + 17.8999i 0.488123 + 0.741975i
\(583\) 2.96042 2.96042i 0.122608 0.122608i
\(584\) 43.9668 1.81936
\(585\) 27.4542 + 30.8091i 1.13509 + 1.27380i
\(586\) −4.17052 −0.172282
\(587\) 8.71492 8.71492i 0.359703 0.359703i −0.504000 0.863703i \(-0.668139\pi\)
0.863703 + 0.504000i \(0.168139\pi\)
\(588\) −2.18781 3.32559i −0.0902237 0.137145i
\(589\) 1.04976i 0.0432548i
\(590\) 5.75822 12.3627i 0.237062 0.508962i
\(591\) −5.11309 1.05517i −0.210324 0.0434041i
\(592\) −10.2763 10.2763i −0.422352 0.422352i
\(593\) −13.4084 13.4084i −0.550619 0.550619i 0.376001 0.926619i \(-0.377299\pi\)
−0.926619 + 0.376001i \(0.877299\pi\)
\(594\) −2.29406 1.60518i −0.0941265 0.0658613i
\(595\) 1.44006 0.524853i 0.0590368 0.0215169i
\(596\) 1.07268i 0.0439387i
\(597\) −23.3558 + 15.3651i −0.955890 + 0.628851i
\(598\) −31.7727 + 31.7727i −1.29928 + 1.29928i
\(599\) −22.8186 −0.932344 −0.466172 0.884694i \(-0.654367\pi\)
−0.466172 + 0.884694i \(0.654367\pi\)
\(600\) 12.4015 + 22.9459i 0.506289 + 0.936761i
\(601\) 19.7324 0.804901 0.402451 0.915442i \(-0.368158\pi\)
0.402451 + 0.915442i \(0.368158\pi\)
\(602\) −0.584764 + 0.584764i −0.0238332 + 0.0238332i
\(603\) 0.0372685 0.0148154i 0.00151769 0.000603331i
\(604\) 0.234777i 0.00955296i
\(605\) 22.7440 8.28941i 0.924676 0.337012i
\(606\) −6.98759 + 33.8599i −0.283851 + 1.37547i
\(607\) −16.3469 16.3469i −0.663498 0.663498i 0.292705 0.956203i \(-0.405445\pi\)
−0.956203 + 0.292705i \(0.905445\pi\)
\(608\) −1.31316 1.31316i −0.0532556 0.0532556i
\(609\) 0.723322 3.50502i 0.0293105 0.142031i
\(610\) −0.603562 + 1.29582i −0.0244375 + 0.0524663i
\(611\) 54.1770i 2.19177i
\(612\) −2.30079 + 0.914637i −0.0930038 + 0.0369720i
\(613\) −11.4378 + 11.4378i −0.461969 + 0.461969i −0.899300 0.437331i \(-0.855924\pi\)
0.437331 + 0.899300i \(0.355924\pi\)
\(614\) −20.5353 −0.828738
\(615\) 10.3354 13.8987i 0.416763 0.560451i
\(616\) 0.346402 0.0139569
\(617\) −14.2493 + 14.2493i −0.573654 + 0.573654i −0.933148 0.359493i \(-0.882950\pi\)
0.359493 + 0.933148i \(0.382950\pi\)
\(618\) −36.8200 + 24.2228i −1.48112 + 0.974383i
\(619\) 10.5207i 0.422862i −0.977393 0.211431i \(-0.932188\pi\)
0.977393 0.211431i \(-0.0678123\pi\)
\(620\) −0.266804 0.732043i −0.0107151 0.0293996i
\(621\) 24.0778 + 16.8475i 0.966207 + 0.676065i
\(622\) 6.13014 + 6.13014i 0.245796 + 0.245796i
\(623\) 0.582485 + 0.582485i 0.0233368 + 0.0233368i
\(624\) −33.6634 6.94703i −1.34761 0.278104i
\(625\) 4.29816 24.6277i 0.171926 0.985110i
\(626\) 4.67819i 0.186978i
\(627\) −0.397154 0.603697i −0.0158608 0.0241093i
\(628\) −4.34930 + 4.34930i −0.173556 + 0.173556i
\(629\) −11.2011 −0.446619
\(630\) 0.137305 2.38453i 0.00547037 0.0950020i
\(631\) −15.9233 −0.633896 −0.316948 0.948443i \(-0.602658\pi\)
−0.316948 + 0.948443i \(0.602658\pi\)
\(632\) 7.20000 7.20000i 0.286400 0.286400i
\(633\) 21.7127 + 33.0045i 0.863002 + 1.31181i
\(634\) 0.738065i 0.0293123i
\(635\) −27.2410 12.6882i −1.08103 0.503516i
\(636\) −5.65023 1.16602i −0.224046 0.0462358i
\(637\) −30.1186 30.1186i −1.19334 1.19334i
\(638\) −2.85575 2.85575i −0.113060 0.113060i
\(639\) −17.4366 7.51682i −0.689781 0.297361i
\(640\) −15.6412 7.28529i −0.618273 0.287976i
\(641\) 12.4363i 0.491204i −0.969371 0.245602i \(-0.921014\pi\)
0.969371 0.245602i \(-0.0789857\pi\)
\(642\) 30.8498 20.2951i 1.21754 0.800986i
\(643\) 33.7739 33.7739i 1.33191 1.33191i 0.428258 0.903657i \(-0.359128\pi\)
0.903657 0.428258i \(-0.140872\pi\)
\(644\) −0.517511 −0.0203928
\(645\) −8.89982 + 1.30862i −0.350430 + 0.0515267i
\(646\) 3.21129 0.126346
\(647\) 21.4646 21.4646i 0.843862 0.843862i −0.145497 0.989359i \(-0.546478\pi\)
0.989359 + 0.145497i \(0.0464781\pi\)
\(648\) −0.776312 + 27.0949i −0.0304964 + 1.06439i
\(649\) 1.97018i 0.0773362i
\(650\) 25.5617 + 30.4093i 1.00261 + 1.19275i
\(651\) −0.101308 + 0.490912i −0.00397059 + 0.0192404i
\(652\) −2.35818 2.35818i −0.0923536 0.0923536i
\(653\) −34.4307 34.4307i −1.34738 1.34738i −0.888498 0.458880i \(-0.848251\pi\)
−0.458880 0.888498i \(-0.651749\pi\)
\(654\) −1.02415 + 4.96273i −0.0400473 + 0.194058i
\(655\) 6.85372 + 18.8049i 0.267797 + 0.734767i
\(656\) 14.4269i 0.563274i
\(657\) −16.1784 40.6971i −0.631180 1.58774i
\(658\) 2.21729 2.21729i 0.0864389 0.0864389i
\(659\) −10.6847 −0.416217 −0.208108 0.978106i \(-0.566731\pi\)
−0.208108 + 0.978106i \(0.566731\pi\)
\(660\) 0.430385 + 0.320043i 0.0167527 + 0.0124577i
\(661\) −30.3181 −1.17924 −0.589619 0.807682i \(-0.700722\pi\)
−0.589619 + 0.807682i \(0.700722\pi\)
\(662\) 25.7597 25.7597i 1.00118 1.00118i
\(663\) −22.1327 + 14.5604i −0.859562 + 0.565480i
\(664\) 20.8290i 0.808322i
\(665\) 0.260276 0.558801i 0.0100931 0.0216694i
\(666\) −6.90999 + 16.0290i −0.267757 + 0.621110i
\(667\) 29.9731 + 29.9731i 1.16056 + 1.16056i
\(668\) −4.11953 4.11953i −0.159389 0.159389i
\(669\) −39.7961 8.21262i −1.53861 0.317518i
\(670\) 0.0362735 0.0132204i 0.00140137 0.000510750i
\(671\) 0.206509i 0.00797218i
\(672\) −0.487359 0.740814i −0.0188003 0.0285775i
\(673\) 0.579431 0.579431i 0.0223354 0.0223354i −0.695851 0.718186i \(-0.744973\pi\)
0.718186 + 0.695851i \(0.244973\pi\)
\(674\) −6.67239 −0.257011
\(675\) 16.6761 19.9226i 0.641862 0.766820i
\(676\) 8.24611 0.317158
\(677\) −15.6393 + 15.6393i −0.601068 + 0.601068i −0.940596 0.339528i \(-0.889733\pi\)
0.339528 + 0.940596i \(0.389733\pi\)
\(678\) −15.8771 24.1341i −0.609756 0.926864i
\(679\) 2.64048i 0.101332i
\(680\) −15.7324 + 5.73393i −0.603312 + 0.219886i
\(681\) 4.95695 + 1.02295i 0.189951 + 0.0391996i
\(682\) 0.399976 + 0.399976i 0.0153159 + 0.0153159i
\(683\) −7.40718 7.40718i −0.283428 0.283428i 0.551047 0.834474i \(-0.314229\pi\)
−0.834474 + 0.551047i \(0.814229\pi\)
\(684\) −0.394206 + 0.914432i −0.0150728 + 0.0349642i
\(685\) 5.99375 12.8683i 0.229010 0.491673i
\(686\) 4.95769i 0.189286i
\(687\) 7.04471 4.63450i 0.268773 0.176817i
\(688\) 5.29817 5.29817i 0.201991 0.201991i
\(689\) −61.7322 −2.35181
\(690\) 22.7007 + 16.8807i 0.864202 + 0.642638i
\(691\) 9.13836 0.347640 0.173820 0.984777i \(-0.444389\pi\)
0.173820 + 0.984777i \(0.444389\pi\)
\(692\) −1.08319 + 1.08319i −0.0411768 + 0.0411768i
\(693\) −0.127465 0.320641i −0.00484200 0.0121801i
\(694\) 0.881674i 0.0334679i
\(695\) −4.51739 12.3946i −0.171354 0.470153i
\(696\) −7.90216 + 38.2917i −0.299531 + 1.45144i
\(697\) 7.86264 + 7.86264i 0.297819 + 0.297819i
\(698\) −24.6589 24.6589i −0.933353 0.933353i
\(699\) −3.68884 + 17.8751i −0.139525 + 0.676100i
\(700\) −0.0394781 + 0.455825i −0.00149213 + 0.0172286i
\(701\) 15.1729i 0.573071i −0.958070 0.286536i \(-0.907496\pi\)
0.958070 0.286536i \(-0.0925037\pi\)
\(702\) 7.18248 + 40.6545i 0.271085 + 1.53440i
\(703\) −3.18548 + 3.18548i −0.120143 + 0.120143i
\(704\) −3.69245 −0.139164
\(705\) 33.7460 4.96197i 1.27095 0.186878i
\(706\) 18.5198 0.697002
\(707\) −3.01278 + 3.01278i −0.113307 + 0.113307i
\(708\) −2.26813 + 1.49213i −0.0852414 + 0.0560778i
\(709\) 12.4012i 0.465738i −0.972508 0.232869i \(-0.925189\pi\)
0.972508 0.232869i \(-0.0748113\pi\)
\(710\) −16.5695 7.71769i −0.621844 0.289640i
\(711\) −9.31392 4.01518i −0.349299 0.150581i
\(712\) −6.36355 6.36355i −0.238484 0.238484i
\(713\) −4.19802 4.19802i −0.157217 0.157217i
\(714\) 1.50173 + 0.309908i 0.0562008 + 0.0115980i
\(715\) 5.20226 + 2.42309i 0.194554 + 0.0906184i
\(716\) 7.12402i 0.266237i
\(717\) −9.70413 14.7508i −0.362408 0.550880i
\(718\) −2.83190 + 2.83190i −0.105686 + 0.105686i
\(719\) −10.0169 −0.373566 −0.186783 0.982401i \(-0.559806\pi\)
−0.186783 + 0.982401i \(0.559806\pi\)
\(720\) −1.24403 + 21.6047i −0.0463623 + 0.805159i
\(721\) −5.43144 −0.202278
\(722\) 0.913256 0.913256i 0.0339879 0.0339879i
\(723\) −24.2039 36.7913i −0.900151 1.36828i
\(724\) 2.50366i 0.0930477i
\(725\) 28.6869 24.1139i 1.06540 0.895568i
\(726\) 23.7180 + 4.89461i 0.880256 + 0.181656i
\(727\) −24.7743 24.7743i −0.918829 0.918829i 0.0781157 0.996944i \(-0.475110\pi\)
−0.996944 + 0.0781157i \(0.975110\pi\)
\(728\) −3.61168 3.61168i −0.133858 0.133858i
\(729\) 25.3655 9.25148i 0.939464 0.342647i
\(730\) −14.4367 39.6106i −0.534326 1.46605i
\(731\) 5.77501i 0.213596i
\(732\) 0.237739 0.156401i 0.00878709 0.00578076i
\(733\) −21.2760 + 21.2760i −0.785846 + 0.785846i −0.980810 0.194964i \(-0.937541\pi\)
0.194964 + 0.980810i \(0.437541\pi\)
\(734\) 7.74127 0.285735
\(735\) −16.0019 + 21.5189i −0.590240 + 0.793738i
\(736\) 10.5027 0.387134
\(737\) 0.00394381 0.00394381i 0.000145272 0.000145272i
\(738\) 16.1020 6.40107i 0.592723 0.235626i
\(739\) 20.3538i 0.748725i 0.927282 + 0.374363i \(0.122138\pi\)
−0.927282 + 0.374363i \(0.877862\pi\)
\(740\) 1.41176 3.03098i 0.0518972 0.111421i
\(741\) −2.15347 + 10.4351i −0.0791097 + 0.383344i
\(742\) 2.52650 + 2.52650i 0.0927506 + 0.0927506i
\(743\) 16.9288 + 16.9288i 0.621056 + 0.621056i 0.945801 0.324746i \(-0.105279\pi\)
−0.324746 + 0.945801i \(0.605279\pi\)
\(744\) 1.10678 5.36313i 0.0405764 0.196622i
\(745\) −6.78935 + 2.47448i −0.248743 + 0.0906580i
\(746\) 20.8381i 0.762936i
\(747\) 19.2800 7.66442i 0.705418 0.280426i
\(748\) −0.243473 + 0.243473i −0.00890224 + 0.00890224i
\(749\) 4.55076 0.166281
\(750\) 16.6003 18.7071i 0.606158 0.683088i
\(751\) 20.5590 0.750208 0.375104 0.926983i \(-0.377607\pi\)
0.375104 + 0.926983i \(0.377607\pi\)
\(752\) −20.0894 + 20.0894i −0.732585 + 0.732585i
\(753\) −30.4176 + 20.0108i −1.10848 + 0.729236i
\(754\) 59.5496i 2.16867i
\(755\) 1.48599 0.541590i 0.0540806 0.0197105i
\(756\) −0.272595 + 0.389582i −0.00991417 + 0.0141690i
\(757\) −29.3417 29.3417i −1.06644 1.06644i −0.997630 0.0688112i \(-0.978079\pi\)
−0.0688112 0.997630i \(-0.521921\pi\)
\(758\) 6.51969 + 6.51969i 0.236806 + 0.236806i
\(759\) 4.00242 + 0.825969i 0.145279 + 0.0299808i
\(760\) −2.84347 + 6.10480i −0.103143 + 0.221444i
\(761\) 6.91040i 0.250502i −0.992125 0.125251i \(-0.960026\pi\)
0.992125 0.125251i \(-0.0399736\pi\)
\(762\) −16.5231 25.1160i −0.598568 0.909858i
\(763\) −0.441572 + 0.441572i −0.0159860 + 0.0159860i
\(764\) 3.81278 0.137941
\(765\) 11.0966 + 12.4525i 0.401197 + 0.450223i
\(766\) 22.0392 0.796310
\(767\) −20.5416 + 20.5416i −0.741713 + 0.741713i
\(768\) 7.36296 + 11.1921i 0.265688 + 0.403861i
\(769\) 43.5484i 1.57040i −0.619244 0.785198i \(-0.712561\pi\)
0.619244 0.785198i \(-0.287439\pi\)
\(770\) −0.113743 0.312081i −0.00409900 0.0112466i
\(771\) 40.6100 + 8.38059i