Properties

Label 285.2.k.c.77.10
Level $285$
Weight $2$
Character 285.77
Analytic conductor $2.276$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(77,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.10
Character \(\chi\) \(=\) 285.77
Dual form 285.2.k.c.248.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.913256 - 0.913256i) q^{2} +(1.44700 + 0.951938i) q^{3} +0.331928i q^{4} +(-2.10088 + 0.765698i) q^{5} +(2.19085 - 0.452119i) q^{6} +(0.194936 + 0.194936i) q^{7} +(2.12965 + 2.12965i) q^{8} +(1.18763 + 2.75491i) q^{9} +O(q^{10})\) \(q+(0.913256 - 0.913256i) q^{2} +(1.44700 + 0.951938i) q^{3} +0.331928i q^{4} +(-2.10088 + 0.765698i) q^{5} +(2.19085 - 0.452119i) q^{6} +(0.194936 + 0.194936i) q^{7} +(2.12965 + 2.12965i) q^{8} +(1.18763 + 2.75491i) q^{9} +(-1.21936 + 2.61792i) q^{10} -0.417205i q^{11} +(-0.315975 + 0.480300i) q^{12} +(4.34989 - 4.34989i) q^{13} +0.356054 q^{14} +(-3.76888 - 0.891944i) q^{15} +3.22597 q^{16} +(-1.75815 + 1.75815i) q^{17} +(3.60055 + 1.43133i) q^{18} -1.00000i q^{19} +(-0.254156 - 0.697341i) q^{20} +(0.0965058 + 0.467641i) q^{21} +(-0.381015 - 0.381015i) q^{22} +(-3.99902 - 3.99902i) q^{23} +(1.05431 + 5.10889i) q^{24} +(3.82741 - 3.21728i) q^{25} -7.94513i q^{26} +(-0.904010 + 5.11691i) q^{27} +(-0.0647048 + 0.0647048i) q^{28} -7.49511 q^{29} +(-4.25652 + 2.62738i) q^{30} -1.04976 q^{31} +(-1.31316 + 1.31316i) q^{32} +(0.397154 - 0.603697i) q^{33} +3.21129i q^{34} +(-0.558801 - 0.260276i) q^{35} +(-0.914432 + 0.394206i) q^{36} +(-3.18548 - 3.18548i) q^{37} +(-0.913256 - 0.913256i) q^{38} +(10.4351 - 2.15347i) q^{39} +(-6.10480 - 2.84347i) q^{40} -4.47210i q^{41} +(0.515210 + 0.338941i) q^{42} +(1.64235 - 1.64235i) q^{43} +0.138482 q^{44} +(-4.60450 - 4.87838i) q^{45} -7.30425 q^{46} +(6.22740 - 6.22740i) q^{47} +(4.66798 + 3.07092i) q^{48} -6.92400i q^{49} +(0.557202 - 6.43361i) q^{50} +(-4.21771 + 0.870397i) q^{51} +(1.44385 + 1.44385i) q^{52} +(7.09583 + 7.09583i) q^{53} +(3.84745 + 5.49864i) q^{54} +(0.319454 + 0.876499i) q^{55} +0.830291i q^{56} +(0.951938 - 1.44700i) q^{57} +(-6.84495 + 6.84495i) q^{58} +4.72232 q^{59} +(0.296061 - 1.25099i) q^{60} +0.494981 q^{61} +(-0.958703 + 0.958703i) q^{62} +(-0.305521 + 0.768544i) q^{63} +8.85044i q^{64} +(-5.80790 + 12.4693i) q^{65} +(-0.188627 - 0.914033i) q^{66} +(-0.00945292 - 0.00945292i) q^{67} +(-0.583580 - 0.583580i) q^{68} +(-1.97977 - 9.59340i) q^{69} +(-0.748027 + 0.272630i) q^{70} -6.32928i q^{71} +(-3.33777 + 8.39621i) q^{72} +(-10.3226 + 10.3226i) q^{73} -5.81832 q^{74} +(8.60093 - 1.01195i) q^{75} +0.331928 q^{76} +(0.0813285 - 0.0813285i) q^{77} +(7.56327 - 11.4966i) q^{78} +3.38084i q^{79} +(-6.77738 + 2.47012i) q^{80} +(-6.17909 + 6.54361i) q^{81} +(-4.08417 - 4.08417i) q^{82} +(4.89025 + 4.89025i) q^{83} +(-0.155223 + 0.0320329i) q^{84} +(2.34746 - 5.03989i) q^{85} -2.99977i q^{86} +(-10.8454 - 7.13488i) q^{87} +(0.888500 - 0.888500i) q^{88} -2.98808 q^{89} +(-8.66029 - 0.250130i) q^{90} +1.69590 q^{91} +(1.32738 - 1.32738i) q^{92} +(-1.51901 - 0.999311i) q^{93} -11.3744i q^{94} +(0.765698 + 2.10088i) q^{95} +(-3.15019 + 0.650096i) q^{96} +(6.77266 + 6.77266i) q^{97} +(-6.32338 - 6.32338i) q^{98} +(1.14936 - 0.495484i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 2 q^{3} - 12 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 2 q^{3} - 12 q^{6} - 8 q^{10} + 34 q^{12} + 8 q^{13} - 14 q^{15} - 20 q^{16} - 24 q^{18} - 4 q^{21} - 32 q^{22} + 8 q^{25} + 22 q^{27} - 28 q^{28} + 12 q^{30} + 72 q^{31} - 84 q^{36} - 12 q^{37} + 20 q^{40} + 48 q^{42} - 12 q^{43} - 52 q^{45} + 8 q^{46} + 46 q^{48} + 28 q^{51} - 76 q^{52} + 104 q^{55} + 2 q^{57} - 60 q^{58} - 22 q^{60} + 96 q^{61} + 56 q^{63} - 28 q^{66} - 72 q^{67} + 68 q^{70} + 20 q^{72} - 72 q^{73} + 2 q^{75} - 36 q^{76} + 76 q^{78} - 100 q^{81} - 116 q^{82} - 44 q^{85} + 4 q^{87} + 60 q^{88} - 36 q^{90} - 80 q^{91} + 52 q^{93} - 80 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.913256 0.913256i 0.645769 0.645769i −0.306198 0.951968i \(-0.599057\pi\)
0.951968 + 0.306198i \(0.0990571\pi\)
\(3\) 1.44700 + 0.951938i 0.835427 + 0.549602i
\(4\) 0.331928i 0.165964i
\(5\) −2.10088 + 0.765698i −0.939543 + 0.342431i
\(6\) 2.19085 0.452119i 0.894409 0.184577i
\(7\) 0.194936 + 0.194936i 0.0736790 + 0.0736790i 0.742986 0.669307i \(-0.233409\pi\)
−0.669307 + 0.742986i \(0.733409\pi\)
\(8\) 2.12965 + 2.12965i 0.752944 + 0.752944i
\(9\) 1.18763 + 2.75491i 0.395875 + 0.918304i
\(10\) −1.21936 + 2.61792i −0.385597 + 0.827859i
\(11\) 0.417205i 0.125792i −0.998020 0.0628961i \(-0.979966\pi\)
0.998020 0.0628961i \(-0.0200337\pi\)
\(12\) −0.315975 + 0.480300i −0.0912140 + 0.138651i
\(13\) 4.34989 4.34989i 1.20644 1.20644i 0.234271 0.972171i \(-0.424730\pi\)
0.972171 0.234271i \(-0.0752704\pi\)
\(14\) 0.356054 0.0951593
\(15\) −3.76888 0.891944i −0.973120 0.230299i
\(16\) 3.22597 0.806492
\(17\) −1.75815 + 1.75815i −0.426415 + 0.426415i −0.887405 0.460990i \(-0.847494\pi\)
0.460990 + 0.887405i \(0.347494\pi\)
\(18\) 3.60055 + 1.43133i 0.848657 + 0.337369i
\(19\) 1.00000i 0.229416i
\(20\) −0.254156 0.697341i −0.0568311 0.155930i
\(21\) 0.0965058 + 0.467641i 0.0210593 + 0.102048i
\(22\) −0.381015 0.381015i −0.0812327 0.0812327i
\(23\) −3.99902 3.99902i −0.833853 0.833853i 0.154189 0.988041i \(-0.450724\pi\)
−0.988041 + 0.154189i \(0.950724\pi\)
\(24\) 1.05431 + 5.10889i 0.215210 + 1.04285i
\(25\) 3.82741 3.21728i 0.765482 0.643457i
\(26\) 7.94513i 1.55817i
\(27\) −0.904010 + 5.11691i −0.173977 + 0.984750i
\(28\) −0.0647048 + 0.0647048i −0.0122281 + 0.0122281i
\(29\) −7.49511 −1.39181 −0.695904 0.718135i \(-0.744996\pi\)
−0.695904 + 0.718135i \(0.744996\pi\)
\(30\) −4.25652 + 2.62738i −0.777131 + 0.479691i
\(31\) −1.04976 −0.188543 −0.0942716 0.995547i \(-0.530052\pi\)
−0.0942716 + 0.995547i \(0.530052\pi\)
\(32\) −1.31316 + 1.31316i −0.232136 + 0.232136i
\(33\) 0.397154 0.603697i 0.0691356 0.105090i
\(34\) 3.21129i 0.550731i
\(35\) −0.558801 0.260276i −0.0944546 0.0439947i
\(36\) −0.914432 + 0.394206i −0.152405 + 0.0657010i
\(37\) −3.18548 3.18548i −0.523690 0.523690i 0.394994 0.918684i \(-0.370747\pi\)
−0.918684 + 0.394994i \(0.870747\pi\)
\(38\) −0.913256 0.913256i −0.148150 0.148150i
\(39\) 10.4351 2.15347i 1.67096 0.344831i
\(40\) −6.10480 2.84347i −0.965254 0.449592i
\(41\) 4.47210i 0.698425i −0.937044 0.349212i \(-0.886449\pi\)
0.937044 0.349212i \(-0.113551\pi\)
\(42\) 0.515210 + 0.338941i 0.0794986 + 0.0522998i
\(43\) 1.64235 1.64235i 0.250456 0.250456i −0.570702 0.821158i \(-0.693329\pi\)
0.821158 + 0.570702i \(0.193329\pi\)
\(44\) 0.138482 0.0208769
\(45\) −4.60450 4.87838i −0.686398 0.727226i
\(46\) −7.30425 −1.07695
\(47\) 6.22740 6.22740i 0.908360 0.908360i −0.0877802 0.996140i \(-0.527977\pi\)
0.996140 + 0.0877802i \(0.0279773\pi\)
\(48\) 4.66798 + 3.07092i 0.673765 + 0.443250i
\(49\) 6.92400i 0.989143i
\(50\) 0.557202 6.43361i 0.0788003 0.909850i
\(51\) −4.21771 + 0.870397i −0.590597 + 0.121880i
\(52\) 1.44385 + 1.44385i 0.200226 + 0.200226i
\(53\) 7.09583 + 7.09583i 0.974687 + 0.974687i 0.999687 0.0250005i \(-0.00795874\pi\)
−0.0250005 + 0.999687i \(0.507959\pi\)
\(54\) 3.84745 + 5.49864i 0.523572 + 0.748270i
\(55\) 0.319454 + 0.876499i 0.0430751 + 0.118187i
\(56\) 0.830291i 0.110952i
\(57\) 0.951938 1.44700i 0.126087 0.191660i
\(58\) −6.84495 + 6.84495i −0.898786 + 0.898786i
\(59\) 4.72232 0.614793 0.307397 0.951581i \(-0.400542\pi\)
0.307397 + 0.951581i \(0.400542\pi\)
\(60\) 0.296061 1.25099i 0.0382213 0.161503i
\(61\) 0.494981 0.0633758 0.0316879 0.999498i \(-0.489912\pi\)
0.0316879 + 0.999498i \(0.489912\pi\)
\(62\) −0.958703 + 0.958703i −0.121755 + 0.121755i
\(63\) −0.305521 + 0.768544i −0.0384920 + 0.0968275i
\(64\) 8.85044i 1.10630i
\(65\) −5.80790 + 12.4693i −0.720382 + 1.54663i
\(66\) −0.188627 0.914033i −0.0232183 0.112510i
\(67\) −0.00945292 0.00945292i −0.00115486 0.00115486i 0.706529 0.707684i \(-0.250260\pi\)
−0.707684 + 0.706529i \(0.750260\pi\)
\(68\) −0.583580 0.583580i −0.0707694 0.0707694i
\(69\) −1.97977 9.59340i −0.238336 1.15491i
\(70\) −0.748027 + 0.272630i −0.0894063 + 0.0325855i
\(71\) 6.32928i 0.751147i −0.926793 0.375573i \(-0.877446\pi\)
0.926793 0.375573i \(-0.122554\pi\)
\(72\) −3.33777 + 8.39621i −0.393359 + 0.989503i
\(73\) −10.3226 + 10.3226i −1.20816 + 1.20816i −0.236543 + 0.971621i \(0.576014\pi\)
−0.971621 + 0.236543i \(0.923986\pi\)
\(74\) −5.81832 −0.676366
\(75\) 8.60093 1.01195i 0.993150 0.116850i
\(76\) 0.331928 0.0380747
\(77\) 0.0813285 0.0813285i 0.00926825 0.00926825i
\(78\) 7.56327 11.4966i 0.856372 1.30173i
\(79\) 3.38084i 0.380374i 0.981748 + 0.190187i \(0.0609095\pi\)
−0.981748 + 0.190187i \(0.939091\pi\)
\(80\) −6.77738 + 2.47012i −0.757734 + 0.276168i
\(81\) −6.17909 + 6.54361i −0.686565 + 0.727068i
\(82\) −4.08417 4.08417i −0.451021 0.451021i
\(83\) 4.89025 + 4.89025i 0.536774 + 0.536774i 0.922580 0.385806i \(-0.126076\pi\)
−0.385806 + 0.922580i \(0.626076\pi\)
\(84\) −0.155223 + 0.0320329i −0.0169362 + 0.00349508i
\(85\) 2.34746 5.03989i 0.254618 0.546653i
\(86\) 2.99977i 0.323474i
\(87\) −10.8454 7.13488i −1.16275 0.764940i
\(88\) 0.888500 0.888500i 0.0947144 0.0947144i
\(89\) −2.98808 −0.316736 −0.158368 0.987380i \(-0.550623\pi\)
−0.158368 + 0.987380i \(0.550623\pi\)
\(90\) −8.66029 0.250130i −0.912875 0.0263660i
\(91\) 1.69590 0.177779
\(92\) 1.32738 1.32738i 0.138389 0.138389i
\(93\) −1.51901 0.999311i −0.157514 0.103624i
\(94\) 11.3744i 1.17318i
\(95\) 0.765698 + 2.10088i 0.0785590 + 0.215546i
\(96\) −3.15019 + 0.650096i −0.321515 + 0.0663501i
\(97\) 6.77266 + 6.77266i 0.687660 + 0.687660i 0.961714 0.274054i \(-0.0883648\pi\)
−0.274054 + 0.961714i \(0.588365\pi\)
\(98\) −6.32338 6.32338i −0.638758 0.638758i
\(99\) 1.14936 0.495484i 0.115515 0.0497980i
\(100\) 1.06791 + 1.27042i 0.106791 + 0.127042i
\(101\) 15.4552i 1.53785i −0.639340 0.768925i \(-0.720792\pi\)
0.639340 0.768925i \(-0.279208\pi\)
\(102\) −3.05695 + 4.64674i −0.302683 + 0.460096i
\(103\) −13.9313 + 13.9313i −1.37269 + 1.37269i −0.516266 + 0.856428i \(0.672678\pi\)
−0.856428 + 0.516266i \(0.827322\pi\)
\(104\) 18.5275 1.81677
\(105\) −0.560819 0.908564i −0.0547303 0.0886667i
\(106\) 12.9606 1.25885
\(107\) −11.6724 + 11.6724i −1.12842 + 1.12842i −0.137980 + 0.990435i \(0.544061\pi\)
−0.990435 + 0.137980i \(0.955939\pi\)
\(108\) −1.69844 0.300066i −0.163433 0.0288739i
\(109\) 2.26521i 0.216968i 0.994098 + 0.108484i \(0.0345996\pi\)
−0.994098 + 0.108484i \(0.965400\pi\)
\(110\) 1.09221 + 0.508725i 0.104138 + 0.0485051i
\(111\) −1.57701 7.64178i −0.149684 0.725326i
\(112\) 0.628859 + 0.628859i 0.0594216 + 0.0594216i
\(113\) 9.13145 + 9.13145i 0.859014 + 0.859014i 0.991222 0.132208i \(-0.0422066\pi\)
−0.132208 + 0.991222i \(0.542207\pi\)
\(114\) −0.452119 2.19085i −0.0423448 0.205192i
\(115\) 11.4635 + 5.33942i 1.06898 + 0.497904i
\(116\) 2.48783i 0.230990i
\(117\) 17.1496 + 6.81752i 1.58548 + 0.630280i
\(118\) 4.31268 4.31268i 0.397015 0.397015i
\(119\) −0.685456 −0.0628357
\(120\) −6.12685 9.92590i −0.559302 0.906107i
\(121\) 10.8259 0.984176
\(122\) 0.452044 0.452044i 0.0409262 0.0409262i
\(123\) 4.25716 6.47114i 0.383856 0.583483i
\(124\) 0.348446i 0.0312913i
\(125\) −5.57747 + 9.68978i −0.498864 + 0.866680i
\(126\) 0.422859 + 0.980897i 0.0376712 + 0.0873852i
\(127\) −9.50297 9.50297i −0.843253 0.843253i 0.146028 0.989280i \(-0.453351\pi\)
−0.989280 + 0.146028i \(0.953351\pi\)
\(128\) 5.45640 + 5.45640i 0.482282 + 0.482282i
\(129\) 3.93990 0.813066i 0.346889 0.0715865i
\(130\) 6.08357 + 16.6918i 0.533564 + 1.46397i
\(131\) 8.95094i 0.782048i −0.920381 0.391024i \(-0.872121\pi\)
0.920381 0.391024i \(-0.127879\pi\)
\(132\) 0.200384 + 0.131826i 0.0174412 + 0.0114740i
\(133\) 0.194936 0.194936i 0.0169031 0.0169031i
\(134\) −0.0172659 −0.00149154
\(135\) −2.01879 11.4422i −0.173750 0.984790i
\(136\) −7.48849 −0.642133
\(137\) −4.48909 + 4.48909i −0.383528 + 0.383528i −0.872372 0.488843i \(-0.837419\pi\)
0.488843 + 0.872372i \(0.337419\pi\)
\(138\) −10.5693 6.95320i −0.899715 0.591895i
\(139\) 5.89970i 0.500406i −0.968193 0.250203i \(-0.919503\pi\)
0.968193 0.250203i \(-0.0804973\pi\)
\(140\) 0.0863928 0.185481i 0.00730152 0.0156760i
\(141\) 14.9392 3.08296i 1.25810 0.259632i
\(142\) −5.78025 5.78025i −0.485068 0.485068i
\(143\) −1.81480 1.81480i −0.151761 0.151761i
\(144\) 3.83125 + 8.88726i 0.319270 + 0.740605i
\(145\) 15.7463 5.73899i 1.30766 0.476598i
\(146\) 18.8543i 1.56039i
\(147\) 6.59122 10.0190i 0.543635 0.826356i
\(148\) 1.05735 1.05735i 0.0869136 0.0869136i
\(149\) 3.23167 0.264748 0.132374 0.991200i \(-0.457740\pi\)
0.132374 + 0.991200i \(0.457740\pi\)
\(150\) 6.93067 8.77902i 0.565887 0.716804i
\(151\) 0.707315 0.0575605 0.0287803 0.999586i \(-0.490838\pi\)
0.0287803 + 0.999586i \(0.490838\pi\)
\(152\) 2.12965 2.12965i 0.172737 0.172737i
\(153\) −6.93159 2.75553i −0.560386 0.222771i
\(154\) 0.148547i 0.0119703i
\(155\) 2.20543 0.803803i 0.177144 0.0645630i
\(156\) 0.714796 + 3.46371i 0.0572295 + 0.277318i
\(157\) 13.1031 + 13.1031i 1.04574 + 1.04574i 0.998902 + 0.0468425i \(0.0149159\pi\)
0.0468425 + 0.998902i \(0.485084\pi\)
\(158\) 3.08757 + 3.08757i 0.245634 + 0.245634i
\(159\) 3.51288 + 17.0225i 0.278590 + 1.34997i
\(160\) 1.75331 3.76427i 0.138611 0.297592i
\(161\) 1.55911i 0.122875i
\(162\) 0.332906 + 11.6191i 0.0261555 + 0.912881i
\(163\) −7.10451 + 7.10451i −0.556468 + 0.556468i −0.928300 0.371832i \(-0.878730\pi\)
0.371832 + 0.928300i \(0.378730\pi\)
\(164\) 1.48441 0.115913
\(165\) −0.372124 + 1.57240i −0.0289698 + 0.122411i
\(166\) 8.93209 0.693265
\(167\) 12.4109 12.4109i 0.960387 0.960387i −0.0388577 0.999245i \(-0.512372\pi\)
0.999245 + 0.0388577i \(0.0123719\pi\)
\(168\) −0.790386 + 1.20143i −0.0609796 + 0.0926925i
\(169\) 24.8431i 1.91101i
\(170\) −2.45888 6.74654i −0.188587 0.517436i
\(171\) 2.75491 1.18763i 0.210673 0.0908201i
\(172\) 0.545141 + 0.545141i 0.0415666 + 0.0415666i
\(173\) −3.26334 3.26334i −0.248107 0.248107i 0.572086 0.820193i \(-0.306134\pi\)
−0.820193 + 0.572086i \(0.806134\pi\)
\(174\) −16.4206 + 3.38868i −1.24484 + 0.256895i
\(175\) 1.37327 + 0.118936i 0.103809 + 0.00899072i
\(176\) 1.34589i 0.101450i
\(177\) 6.83320 + 4.49535i 0.513615 + 0.337892i
\(178\) −2.72888 + 2.72888i −0.204538 + 0.204538i
\(179\) −21.4626 −1.60419 −0.802094 0.597198i \(-0.796281\pi\)
−0.802094 + 0.597198i \(0.796281\pi\)
\(180\) 1.61927 1.52836i 0.120693 0.113917i
\(181\) −7.54278 −0.560651 −0.280325 0.959905i \(-0.590442\pi\)
−0.280325 + 0.959905i \(0.590442\pi\)
\(182\) 1.54879 1.54879i 0.114804 0.114804i
\(183\) 0.716238 + 0.471191i 0.0529458 + 0.0348315i
\(184\) 17.0330i 1.25569i
\(185\) 9.13145 + 4.25321i 0.671357 + 0.312702i
\(186\) −2.29987 + 0.474618i −0.168635 + 0.0348007i
\(187\) 0.733511 + 0.733511i 0.0536397 + 0.0536397i
\(188\) 2.06705 + 2.06705i 0.150755 + 0.150755i
\(189\) −1.17370 + 0.821247i −0.0853739 + 0.0597370i
\(190\) 2.61792 + 1.21936i 0.189924 + 0.0884620i
\(191\) 11.4868i 0.831153i 0.909558 + 0.415577i \(0.136420\pi\)
−0.909558 + 0.415577i \(0.863580\pi\)
\(192\) −8.42507 + 12.8066i −0.608027 + 0.924236i
\(193\) −17.2622 + 17.2622i −1.24256 + 1.24256i −0.283623 + 0.958936i \(0.591536\pi\)
−0.958936 + 0.283623i \(0.908464\pi\)
\(194\) 12.3703 0.888139
\(195\) −20.2741 + 12.5143i −1.45186 + 0.896171i
\(196\) 2.29827 0.164162
\(197\) −2.13140 + 2.13140i −0.151856 + 0.151856i −0.778946 0.627091i \(-0.784246\pi\)
0.627091 + 0.778946i \(0.284246\pi\)
\(198\) 0.597160 1.50217i 0.0424383 0.106754i
\(199\) 16.1408i 1.14419i −0.820186 0.572097i \(-0.806130\pi\)
0.820186 0.572097i \(-0.193870\pi\)
\(200\) 15.0027 + 1.29936i 1.06085 + 0.0918783i
\(201\) −0.00467979 0.0226770i −0.000330087 0.00159951i
\(202\) −14.1145 14.1145i −0.993096 0.993096i
\(203\) −1.46107 1.46107i −0.102547 0.102547i
\(204\) −0.288909 1.39997i −0.0202277 0.0980177i
\(205\) 3.42428 + 9.39536i 0.239162 + 0.656200i
\(206\) 25.4457i 1.77289i
\(207\) 6.26760 15.7663i 0.435629 1.09583i
\(208\) 14.0326 14.0326i 0.972987 0.972987i
\(209\) −0.417205 −0.0288587
\(210\) −1.34192 0.317580i −0.0926014 0.0219151i
\(211\) −22.8089 −1.57023 −0.785115 0.619349i \(-0.787396\pi\)
−0.785115 + 0.619349i \(0.787396\pi\)
\(212\) −2.35530 + 2.35530i −0.161763 + 0.161763i
\(213\) 6.02508 9.15847i 0.412832 0.627528i
\(214\) 21.3198i 1.45739i
\(215\) −2.19284 + 4.70793i −0.149550 + 0.321078i
\(216\) −12.8224 + 8.97199i −0.872456 + 0.610466i
\(217\) −0.204637 0.204637i −0.0138917 0.0138917i
\(218\) 2.06872 + 2.06872i 0.140111 + 0.140111i
\(219\) −24.7632 + 5.11032i −1.67334 + 0.345323i
\(220\) −0.290934 + 0.106035i −0.0196148 + 0.00714891i
\(221\) 15.2956i 1.02889i
\(222\) −8.41912 5.53869i −0.565054 0.371732i
\(223\) 16.5890 16.5890i 1.11088 1.11088i 0.117853 0.993031i \(-0.462399\pi\)
0.993031 0.117853i \(-0.0376010\pi\)
\(224\) −0.511965 −0.0342071
\(225\) 13.4089 + 6.72325i 0.893925 + 0.448217i
\(226\) 16.6787 1.10945
\(227\) 2.06631 2.06631i 0.137146 0.137146i −0.635201 0.772347i \(-0.719083\pi\)
0.772347 + 0.635201i \(0.219083\pi\)
\(228\) 0.480300 + 0.315975i 0.0318086 + 0.0209259i
\(229\) 4.86849i 0.321719i 0.986977 + 0.160859i \(0.0514266\pi\)
−0.986977 + 0.160859i \(0.948573\pi\)
\(230\) 15.3454 5.59285i 1.01184 0.368782i
\(231\) 0.195102 0.0402627i 0.0128368 0.00264909i
\(232\) −15.9619 15.9619i −1.04795 1.04795i
\(233\) 7.45126 + 7.45126i 0.488148 + 0.488148i 0.907722 0.419573i \(-0.137820\pi\)
−0.419573 + 0.907722i \(0.637820\pi\)
\(234\) 21.8881 9.43584i 1.43087 0.616840i
\(235\) −8.31472 + 17.8513i −0.542393 + 1.16449i
\(236\) 1.56747i 0.102033i
\(237\) −3.21835 + 4.89208i −0.209054 + 0.317775i
\(238\) −0.625997 + 0.625997i −0.0405774 + 0.0405774i
\(239\) −10.1941 −0.659400 −0.329700 0.944086i \(-0.606948\pi\)
−0.329700 + 0.944086i \(0.606948\pi\)
\(240\) −12.1583 2.87738i −0.784814 0.185734i
\(241\) 25.4259 1.63782 0.818912 0.573919i \(-0.194578\pi\)
0.818912 + 0.573919i \(0.194578\pi\)
\(242\) 9.88685 9.88685i 0.635551 0.635551i
\(243\) −15.1703 + 3.58651i −0.973173 + 0.230075i
\(244\) 0.164298i 0.0105181i
\(245\) 5.30170 + 14.5465i 0.338713 + 0.929342i
\(246\) −2.02192 9.79768i −0.128913 0.624677i
\(247\) −4.34989 4.34989i −0.276777 0.276777i
\(248\) −2.23563 2.23563i −0.141962 0.141962i
\(249\) 2.42098 + 11.7314i 0.153423 + 0.743448i
\(250\) 3.75559 + 13.9429i 0.237524 + 0.881827i
\(251\) 21.0212i 1.32684i 0.748246 + 0.663422i \(0.230896\pi\)
−0.748246 + 0.663422i \(0.769104\pi\)
\(252\) −0.255101 0.101411i −0.0160699 0.00638829i
\(253\) −1.66841 + 1.66841i −0.104892 + 0.104892i
\(254\) −17.3573 −1.08909
\(255\) 8.19444 5.05809i 0.513156 0.316750i
\(256\) −7.73470 −0.483419
\(257\) 16.9283 16.9283i 1.05596 1.05596i 0.0576215 0.998339i \(-0.481648\pi\)
0.998339 0.0576215i \(-0.0183516\pi\)
\(258\) 2.85560 4.34067i 0.177782 0.270238i
\(259\) 1.24193i 0.0771700i
\(260\) −4.13891 1.92780i −0.256684 0.119557i
\(261\) −8.90139 20.6484i −0.550982 1.27810i
\(262\) −8.17450 8.17450i −0.505022 0.505022i
\(263\) −19.4248 19.4248i −1.19778 1.19778i −0.974829 0.222952i \(-0.928431\pi\)
−0.222952 0.974829i \(-0.571569\pi\)
\(264\) 2.13146 0.439863i 0.131182 0.0270717i
\(265\) −20.3408 9.47423i −1.24952 0.581998i
\(266\) 0.356054i 0.0218310i
\(267\) −4.32375 2.84447i −0.264609 0.174078i
\(268\) 0.00313768 0.00313768i 0.000191665 0.000191665i
\(269\) 13.1551 0.802082 0.401041 0.916060i \(-0.368648\pi\)
0.401041 + 0.916060i \(0.368648\pi\)
\(270\) −12.2933 8.60600i −0.748149 0.523745i
\(271\) 0.362450 0.0220172 0.0110086 0.999939i \(-0.496496\pi\)
0.0110086 + 0.999939i \(0.496496\pi\)
\(272\) −5.67175 + 5.67175i −0.343900 + 0.343900i
\(273\) 2.45398 + 1.61440i 0.148521 + 0.0977077i
\(274\) 8.19937i 0.495342i
\(275\) −1.34227 1.59682i −0.0809418 0.0962917i
\(276\) 3.18431 0.657139i 0.191673 0.0395551i
\(277\) −3.17125 3.17125i −0.190542 0.190542i 0.605388 0.795930i \(-0.293018\pi\)
−0.795930 + 0.605388i \(0.793018\pi\)
\(278\) −5.38793 5.38793i −0.323147 0.323147i
\(279\) −1.24673 2.89201i −0.0746396 0.173140i
\(280\) −0.635753 1.74434i −0.0379935 0.104244i
\(281\) 13.7777i 0.821906i −0.911656 0.410953i \(-0.865196\pi\)
0.911656 0.410953i \(-0.134804\pi\)
\(282\) 10.8277 16.4588i 0.644783 0.980107i
\(283\) −16.0057 + 16.0057i −0.951440 + 0.951440i −0.998874 0.0474340i \(-0.984896\pi\)
0.0474340 + 0.998874i \(0.484896\pi\)
\(284\) 2.10086 0.124663
\(285\) −0.891944 + 3.76888i −0.0528342 + 0.223249i
\(286\) −3.31475 −0.196005
\(287\) 0.871775 0.871775i 0.0514593 0.0514593i
\(288\) −5.17718 2.05809i −0.305068 0.121274i
\(289\) 10.8178i 0.636341i
\(290\) 9.13927 19.6216i 0.536676 1.15222i
\(291\) 3.35289 + 16.2472i 0.196550 + 0.952428i
\(292\) −3.42634 3.42634i −0.200511 0.200511i
\(293\) −2.28332 2.28332i −0.133393 0.133393i 0.637258 0.770651i \(-0.280069\pi\)
−0.770651 + 0.637258i \(0.780069\pi\)
\(294\) −3.13047 15.1694i −0.182573 0.884698i
\(295\) −9.92103 + 3.61587i −0.577625 + 0.210524i
\(296\) 13.5679i 0.788619i
\(297\) 2.13480 + 0.377158i 0.123874 + 0.0218849i
\(298\) 2.95134 2.95134i 0.170966 0.170966i
\(299\) −34.7906 −2.01199
\(300\) 0.335896 + 2.85489i 0.0193930 + 0.164827i
\(301\) 0.640307 0.0369067
\(302\) 0.645960 0.645960i 0.0371708 0.0371708i
\(303\) 14.7124 22.3637i 0.845205 1.28476i
\(304\) 3.22597i 0.185022i
\(305\) −1.03990 + 0.379006i −0.0595443 + 0.0217018i
\(306\) −8.84682 + 3.81381i −0.505739 + 0.218021i
\(307\) 11.2429 + 11.2429i 0.641667 + 0.641667i 0.950965 0.309298i \(-0.100094\pi\)
−0.309298 + 0.950965i \(0.600094\pi\)
\(308\) 0.0269952 + 0.0269952i 0.00153819 + 0.00153819i
\(309\) −33.4204 + 6.89688i −1.90122 + 0.392350i
\(310\) 1.28004 2.74820i 0.0727017 0.156087i
\(311\) 6.71241i 0.380626i 0.981723 + 0.190313i \(0.0609502\pi\)
−0.981723 + 0.190313i \(0.939050\pi\)
\(312\) 26.8093 + 17.6370i 1.51778 + 0.998499i
\(313\) 2.56127 2.56127i 0.144772 0.144772i −0.631006 0.775778i \(-0.717358\pi\)
0.775778 + 0.631006i \(0.217358\pi\)
\(314\) 23.9330 1.35062
\(315\) 0.0533907 1.84856i 0.00300823 0.104154i
\(316\) −1.12219 −0.0631284
\(317\) 0.404085 0.404085i 0.0226957 0.0226957i −0.695668 0.718364i \(-0.744891\pi\)
0.718364 + 0.695668i \(0.244891\pi\)
\(318\) 18.7540 + 12.3377i 1.05167 + 0.691864i
\(319\) 3.12700i 0.175078i
\(320\) −6.77677 18.5937i −0.378833 1.03942i
\(321\) −28.0014 + 5.77858i −1.56289 + 0.322529i
\(322\) −1.42386 1.42386i −0.0793489 0.0793489i
\(323\) 1.75815 + 1.75815i 0.0978263 + 0.0978263i
\(324\) −2.17201 2.05101i −0.120667 0.113945i
\(325\) 2.65399 30.6437i 0.147217 1.69980i
\(326\) 12.9765i 0.718700i
\(327\) −2.15634 + 3.27777i −0.119246 + 0.181261i
\(328\) 9.52399 9.52399i 0.525874 0.525874i
\(329\) 2.42789 0.133854
\(330\) 1.09616 + 1.77584i 0.0603414 + 0.0977570i
\(331\) −28.2064 −1.55036 −0.775182 0.631738i \(-0.782342\pi\)
−0.775182 + 0.631738i \(0.782342\pi\)
\(332\) −1.62321 + 1.62321i −0.0890851 + 0.0890851i
\(333\) 4.99256 12.5589i 0.273591 0.688223i
\(334\) 22.6687i 1.24038i
\(335\) 0.0270975 + 0.0126214i 0.00148050 + 0.000689580i
\(336\) 0.311325 + 1.50859i 0.0169842 + 0.0823006i
\(337\) 3.65308 + 3.65308i 0.198996 + 0.198996i 0.799569 0.600574i \(-0.205061\pi\)
−0.600574 + 0.799569i \(0.705061\pi\)
\(338\) −22.6881 22.6881i −1.23407 1.23407i
\(339\) 4.52064 + 21.9058i 0.245527 + 1.18976i
\(340\) 1.67288 + 0.779186i 0.0907246 + 0.0422573i
\(341\) 0.437967i 0.0237173i
\(342\) 1.43133 3.60055i 0.0773976 0.194695i
\(343\) 2.71429 2.71429i 0.146558 0.146558i
\(344\) 6.99525 0.377158
\(345\) 11.5049 + 18.6387i 0.619403 + 1.00347i
\(346\) −5.96053 −0.320440
\(347\) −0.482709 + 0.482709i −0.0259132 + 0.0259132i −0.719945 0.694031i \(-0.755833\pi\)
0.694031 + 0.719945i \(0.255833\pi\)
\(348\) 2.36826 3.59990i 0.126952 0.192975i
\(349\) 27.0011i 1.44533i 0.691196 + 0.722667i \(0.257084\pi\)
−0.691196 + 0.722667i \(0.742916\pi\)
\(350\) 1.36276 1.14553i 0.0728428 0.0612309i
\(351\) 18.3257 + 26.1903i 0.978151 + 1.39794i
\(352\) 0.547857 + 0.547857i 0.0292009 + 0.0292009i
\(353\) 10.1394 + 10.1394i 0.539668 + 0.539668i 0.923431 0.383764i \(-0.125372\pi\)
−0.383764 + 0.923431i \(0.625372\pi\)
\(354\) 10.3459 2.13505i 0.549877 0.113477i
\(355\) 4.84632 + 13.2971i 0.257216 + 0.705735i
\(356\) 0.991825i 0.0525666i
\(357\) −0.991856 0.652512i −0.0524946 0.0345346i
\(358\) −19.6008 + 19.6008i −1.03594 + 1.03594i
\(359\) −3.10088 −0.163658 −0.0818292 0.996646i \(-0.526076\pi\)
−0.0818292 + 0.996646i \(0.526076\pi\)
\(360\) 0.583284 20.1952i 0.0307418 1.06438i
\(361\) −1.00000 −0.0526316
\(362\) −6.88849 + 6.88849i −0.362051 + 0.362051i
\(363\) 15.6652 + 10.3056i 0.822207 + 0.540905i
\(364\) 0.562917i 0.0295049i
\(365\) 13.7825 29.5904i 0.721410 1.54883i
\(366\) 1.08443 0.223790i 0.0566839 0.0116977i
\(367\) −4.23828 4.23828i −0.221236 0.221236i 0.587783 0.809019i \(-0.300001\pi\)
−0.809019 + 0.587783i \(0.800001\pi\)
\(368\) −12.9007 12.9007i −0.672496 0.672496i
\(369\) 12.3202 5.31118i 0.641366 0.276489i
\(370\) 12.2236 4.45508i 0.635475 0.231609i
\(371\) 2.76647i 0.143628i
\(372\) 0.331699 0.504201i 0.0171978 0.0261416i
\(373\) 11.4087 11.4087i 0.590719 0.590719i −0.347107 0.937826i \(-0.612836\pi\)
0.937826 + 0.347107i \(0.112836\pi\)
\(374\) 1.33977 0.0692777
\(375\) −17.2947 + 8.71171i −0.893094 + 0.449871i
\(376\) 26.5243 1.36789
\(377\) −32.6029 + 32.6029i −1.67914 + 1.67914i
\(378\) −0.321876 + 1.82189i −0.0165555 + 0.0937081i
\(379\) 7.13895i 0.366703i −0.983047 0.183352i \(-0.941305\pi\)
0.983047 0.183352i \(-0.0586947\pi\)
\(380\) −0.697341 + 0.254156i −0.0357728 + 0.0130380i
\(381\) −4.70457 22.7971i −0.241022 1.16793i
\(382\) 10.4904 + 10.4904i 0.536733 + 0.536733i
\(383\) 12.0663 + 12.0663i 0.616559 + 0.616559i 0.944647 0.328088i \(-0.106404\pi\)
−0.328088 + 0.944647i \(0.606404\pi\)
\(384\) 2.70126 + 13.0896i 0.137848 + 0.667974i
\(385\) −0.108589 + 0.233135i −0.00553418 + 0.0118816i
\(386\) 31.5296i 1.60481i
\(387\) 6.47503 + 2.57403i 0.329144 + 0.130845i
\(388\) −2.24803 + 2.24803i −0.114127 + 0.114127i
\(389\) −14.2311 −0.721548 −0.360774 0.932653i \(-0.617487\pi\)
−0.360774 + 0.932653i \(0.617487\pi\)
\(390\) −7.08661 + 29.9442i −0.358844 + 1.51628i
\(391\) 14.0618 0.711135
\(392\) 14.7457 14.7457i 0.744769 0.744769i
\(393\) 8.52075 12.9520i 0.429815 0.653343i
\(394\) 3.89302i 0.196127i
\(395\) −2.58870 7.10275i −0.130252 0.357378i
\(396\) 0.164465 + 0.381506i 0.00826467 + 0.0191714i
\(397\) 22.7398 + 22.7398i 1.14128 + 1.14128i 0.988216 + 0.153063i \(0.0489136\pi\)
0.153063 + 0.988216i \(0.451086\pi\)
\(398\) −14.7407 14.7407i −0.738885 0.738885i
\(399\) 0.467641 0.0965058i 0.0234113 0.00483133i
\(400\) 12.3471 10.3789i 0.617356 0.518943i
\(401\) 10.7016i 0.534411i 0.963640 + 0.267205i \(0.0861002\pi\)
−0.963640 + 0.267205i \(0.913900\pi\)
\(402\) −0.0249837 0.0164360i −0.00124608 0.000819755i
\(403\) −4.56636 + 4.56636i −0.227467 + 0.227467i
\(404\) 5.13000 0.255227
\(405\) 7.97110 18.4787i 0.396087 0.918213i
\(406\) −2.66866 −0.132443
\(407\) −1.32900 + 1.32900i −0.0658761 + 0.0658761i
\(408\) −10.8359 7.12858i −0.536455 0.352918i
\(409\) 0.143731i 0.00710702i −0.999994 0.00355351i \(-0.998869\pi\)
0.999994 0.00355351i \(-0.00113112\pi\)
\(410\) 11.7076 + 5.45312i 0.578197 + 0.269310i
\(411\) −10.7690 + 2.22238i −0.531198 + 0.109622i
\(412\) −4.62419 4.62419i −0.227818 0.227818i
\(413\) 0.920551 + 0.920551i 0.0452974 + 0.0452974i
\(414\) −8.67472 20.1226i −0.426339 0.988971i
\(415\) −14.0183 6.52938i −0.688131 0.320515i
\(416\) 11.4242i 0.560117i
\(417\) 5.61615 8.53687i 0.275024 0.418052i
\(418\) −0.381015 + 0.381015i −0.0186361 + 0.0186361i
\(419\) −10.3471 −0.505488 −0.252744 0.967533i \(-0.581333\pi\)
−0.252744 + 0.967533i \(0.581333\pi\)
\(420\) 0.301577 0.186151i 0.0147155 0.00908326i
\(421\) −14.1302 −0.688666 −0.344333 0.938848i \(-0.611895\pi\)
−0.344333 + 0.938848i \(0.611895\pi\)
\(422\) −20.8304 + 20.8304i −1.01401 + 1.01401i
\(423\) 24.5518 + 9.76012i 1.19375 + 0.474553i
\(424\) 30.2232i 1.46777i
\(425\) −1.07270 + 12.3857i −0.0520335 + 0.600793i
\(426\) −2.86159 13.8665i −0.138644 0.671833i
\(427\) 0.0964898 + 0.0964898i 0.00466947 + 0.00466947i
\(428\) −3.87440 3.87440i −0.187276 0.187276i
\(429\) −0.898439 4.35359i −0.0433771 0.210193i
\(430\) 2.29692 + 6.30216i 0.110767 + 0.303917i
\(431\) 26.7146i 1.28680i −0.765532 0.643398i \(-0.777524\pi\)
0.765532 0.643398i \(-0.222476\pi\)
\(432\) −2.91631 + 16.5070i −0.140311 + 0.794193i
\(433\) 2.68250 2.68250i 0.128913 0.128913i −0.639706 0.768619i \(-0.720944\pi\)
0.768619 + 0.639706i \(0.220944\pi\)
\(434\) −0.373772 −0.0179416
\(435\) 28.2482 + 6.68522i 1.35440 + 0.320532i
\(436\) −0.751886 −0.0360088
\(437\) −3.99902 + 3.99902i −0.191299 + 0.191299i
\(438\) −17.9481 + 27.2822i −0.857594 + 1.30359i
\(439\) 27.9944i 1.33610i −0.744117 0.668049i \(-0.767130\pi\)
0.744117 0.668049i \(-0.232870\pi\)
\(440\) −1.18631 + 2.54696i −0.0565551 + 0.121421i
\(441\) 19.0750 8.22312i 0.908334 0.391577i
\(442\) 13.9688 + 13.9688i 0.664426 + 0.664426i
\(443\) −3.19463 3.19463i −0.151781 0.151781i 0.627132 0.778913i \(-0.284229\pi\)
−0.778913 + 0.627132i \(0.784229\pi\)
\(444\) 2.53652 0.523455i 0.120378 0.0248421i
\(445\) 6.27760 2.28797i 0.297587 0.108460i
\(446\) 30.3001i 1.43475i
\(447\) 4.67623 + 3.07635i 0.221178 + 0.145506i
\(448\) −1.72527 + 1.72527i −0.0815115 + 0.0815115i
\(449\) 28.6456 1.35187 0.675936 0.736961i \(-0.263740\pi\)
0.675936 + 0.736961i \(0.263740\pi\)
\(450\) 18.3858 6.10568i 0.866714 0.287825i
\(451\) −1.86578 −0.0878564
\(452\) −3.03098 + 3.03098i −0.142565 + 0.142565i
\(453\) 1.02349 + 0.673321i 0.0480876 + 0.0316354i
\(454\) 3.77414i 0.177129i
\(455\) −3.56289 + 1.29855i −0.167031 + 0.0608770i
\(456\) 5.10889 1.05431i 0.239246 0.0493725i
\(457\) 17.7763 + 17.7763i 0.831541 + 0.831541i 0.987728 0.156187i \(-0.0499202\pi\)
−0.156187 + 0.987728i \(0.549920\pi\)
\(458\) 4.44618 + 4.44618i 0.207756 + 0.207756i
\(459\) −7.40693 10.5857i −0.345726 0.494098i
\(460\) −1.77230 + 3.80505i −0.0826340 + 0.177412i
\(461\) 13.6947i 0.637826i −0.947784 0.318913i \(-0.896682\pi\)
0.947784 0.318913i \(-0.103318\pi\)
\(462\) 0.141408 0.214948i 0.00657890 0.0100003i
\(463\) 23.3588 23.3588i 1.08558 1.08558i 0.0895970 0.995978i \(-0.471442\pi\)
0.995978 0.0895970i \(-0.0285579\pi\)
\(464\) −24.1790 −1.12248
\(465\) 3.95643 + 0.936330i 0.183475 + 0.0434213i
\(466\) 13.6098 0.630463
\(467\) 28.3932 28.3932i 1.31388 1.31388i 0.395353 0.918529i \(-0.370622\pi\)
0.918529 0.395353i \(-0.129378\pi\)
\(468\) −2.26292 + 5.69243i −0.104604 + 0.263133i
\(469\) 0.00368544i 0.000170178i
\(470\) 8.70938 + 23.8963i 0.401734 + 1.10225i
\(471\) 6.48688 + 31.4337i 0.298900 + 1.44839i
\(472\) 10.0569 + 10.0569i 0.462905 + 0.462905i
\(473\) −0.685197 0.685197i −0.0315054 0.0315054i
\(474\) 1.52854 + 7.40690i 0.0702083 + 0.340210i
\(475\) −3.21728 3.82741i −0.147619 0.175614i
\(476\) 0.227522i 0.0104284i
\(477\) −11.1212 + 27.9756i −0.509204 + 1.28091i
\(478\) −9.30980 + 9.30980i −0.425820 + 0.425820i
\(479\) 20.6452 0.943302 0.471651 0.881785i \(-0.343658\pi\)
0.471651 + 0.881785i \(0.343658\pi\)
\(480\) 6.12039 3.77787i 0.279357 0.172435i
\(481\) −27.7130 −1.26360
\(482\) 23.2203 23.2203i 1.05766 1.05766i
\(483\) 1.48417 2.25603i 0.0675323 0.102653i
\(484\) 3.59343i 0.163338i
\(485\) −19.4144 9.04275i −0.881562 0.410610i
\(486\) −10.5789 + 17.1297i −0.479870 + 0.777020i
\(487\) 8.79982 + 8.79982i 0.398758 + 0.398758i 0.877795 0.479037i \(-0.159014\pi\)
−0.479037 + 0.877795i \(0.659014\pi\)
\(488\) 1.05413 + 1.05413i 0.0477184 + 0.0477184i
\(489\) −17.0433 + 3.51718i −0.770724 + 0.159052i
\(490\) 18.1265 + 8.44288i 0.818871 + 0.381410i
\(491\) 5.04686i 0.227761i 0.993494 + 0.113881i \(0.0363282\pi\)
−0.993494 + 0.113881i \(0.963672\pi\)
\(492\) 2.14795 + 1.41307i 0.0968370 + 0.0637061i
\(493\) 13.1776 13.1776i 0.593487 0.593487i
\(494\) −7.94513 −0.357468
\(495\) −2.03529 + 1.92102i −0.0914794 + 0.0863434i
\(496\) −3.38651 −0.152059
\(497\) 1.23381 1.23381i 0.0553438 0.0553438i
\(498\) 12.9248 + 8.50280i 0.579172 + 0.381020i
\(499\) 22.6443i 1.01370i 0.862034 + 0.506850i \(0.169190\pi\)
−0.862034 + 0.506850i \(0.830810\pi\)
\(500\) −3.21631 1.85132i −0.143838 0.0827934i
\(501\) 29.7731 6.14420i 1.33016 0.274502i
\(502\) 19.1977 + 19.1977i 0.856835 + 0.856835i
\(503\) 3.99010 + 3.99010i 0.177910 + 0.177910i 0.790444 0.612534i \(-0.209850\pi\)
−0.612534 + 0.790444i \(0.709850\pi\)
\(504\) −2.28738 + 0.986076i −0.101888 + 0.0439233i
\(505\) 11.8340 + 32.4695i 0.526607 + 1.44488i
\(506\) 3.04737i 0.135472i
\(507\) 23.6491 35.9480i 1.05029 1.59651i
\(508\) 3.15430 3.15430i 0.139949 0.139949i
\(509\) 25.6212 1.13564 0.567821 0.823152i \(-0.307787\pi\)
0.567821 + 0.823152i \(0.307787\pi\)
\(510\) 2.86429 12.1030i 0.126833 0.535928i
\(511\) −4.02448 −0.178033
\(512\) −17.9766 + 17.9766i −0.794459 + 0.794459i
\(513\) 5.11691 + 0.904010i 0.225917 + 0.0399130i
\(514\) 30.9198i 1.36381i
\(515\) 18.6009 39.9353i 0.819653 1.75976i
\(516\) 0.269879 + 1.30776i 0.0118808 + 0.0575710i
\(517\) −2.59810 2.59810i −0.114265 0.114265i
\(518\) −1.13420 1.13420i −0.0498340 0.0498340i
\(519\) −1.61556 7.82855i −0.0709151 0.343635i
\(520\) −38.9240 + 14.1864i −1.70693 + 0.622117i
\(521\) 35.2576i 1.54466i −0.635220 0.772332i \(-0.719090\pi\)
0.635220 0.772332i \(-0.280910\pi\)
\(522\) −26.9865 10.7280i −1.18117 0.469552i
\(523\) −25.1243 + 25.1243i −1.09861 + 1.09861i −0.104036 + 0.994574i \(0.533176\pi\)
−0.994574 + 0.104036i \(0.966824\pi\)
\(524\) 2.97107 0.129792
\(525\) 1.87390 + 1.47937i 0.0817837 + 0.0645649i
\(526\) −35.4795 −1.54698
\(527\) 1.84565 1.84565i 0.0803976 0.0803976i
\(528\) 1.28121 1.94751i 0.0557573 0.0847544i
\(529\) 8.98427i 0.390621i
\(530\) −27.2287 + 9.92392i −1.18274 + 0.431068i
\(531\) 5.60835 + 13.0096i 0.243382 + 0.564567i
\(532\) 0.0647048 + 0.0647048i 0.00280531 + 0.00280531i
\(533\) −19.4531 19.4531i −0.842609 0.842609i
\(534\) −6.54642 + 1.35097i −0.283291 + 0.0584621i
\(535\) 15.5848 33.4599i 0.673791 1.44660i
\(536\) 0.0402627i 0.00173909i
\(537\) −31.0564 20.4311i −1.34018 0.881665i
\(538\) 12.0140 12.0140i 0.517960 0.517960i
\(539\) −2.88873 −0.124426
\(540\) 3.79799 0.670092i 0.163439 0.0288362i
\(541\) 2.58564 0.111165 0.0555827 0.998454i \(-0.482298\pi\)
0.0555827 + 0.998454i \(0.482298\pi\)
\(542\) 0.331009 0.331009i 0.0142181 0.0142181i
\(543\) −10.9144 7.18026i −0.468382 0.308135i
\(544\) 4.61747i 0.197972i
\(545\) −1.73447 4.75894i −0.0742965 0.203851i
\(546\) 3.71546 0.766751i 0.159007 0.0328139i
\(547\) −31.5454 31.5454i −1.34879 1.34879i −0.886983 0.461802i \(-0.847203\pi\)
−0.461802 0.886983i \(-0.652797\pi\)
\(548\) −1.49005 1.49005i −0.0636518 0.0636518i
\(549\) 0.587852 + 1.36363i 0.0250889 + 0.0581983i
\(550\) −2.68414 0.232468i −0.114452 0.00991246i
\(551\) 7.49511i 0.319302i
\(552\) 16.2144 24.6468i 0.690129 1.04904i
\(553\) −0.659049 + 0.659049i −0.0280256 + 0.0280256i
\(554\) −5.79233 −0.246093
\(555\) 9.16442 + 14.8470i 0.389008 + 0.630219i
\(556\) 1.95827 0.0830493
\(557\) −17.4507 + 17.4507i −0.739412 + 0.739412i −0.972464 0.233052i \(-0.925129\pi\)
0.233052 + 0.972464i \(0.425129\pi\)
\(558\) −3.77972 1.50256i −0.160009 0.0636085i
\(559\) 14.2881i 0.604321i
\(560\) −1.80267 0.839642i −0.0761769 0.0354814i
\(561\) 0.363134 + 1.75965i 0.0153315 + 0.0742925i
\(562\) −12.5825 12.5825i −0.530762 0.530762i
\(563\) −22.3454 22.3454i −0.941746 0.941746i 0.0566485 0.998394i \(-0.481959\pi\)
−0.998394 + 0.0566485i \(0.981959\pi\)
\(564\) 1.02332 + 4.95872i 0.0430895 + 0.208800i
\(565\) −26.1760 12.1922i −1.10123 0.512928i
\(566\) 29.2346i 1.22882i
\(567\) −2.48012 + 0.0710594i −0.104155 + 0.00298422i
\(568\) 13.4791 13.4791i 0.565571 0.565571i
\(569\) 1.03677 0.0434638 0.0217319 0.999764i \(-0.493082\pi\)
0.0217319 + 0.999764i \(0.493082\pi\)
\(570\) 2.62738 + 4.25652i 0.110049 + 0.178286i
\(571\) 29.7082 1.24325 0.621624 0.783315i \(-0.286473\pi\)
0.621624 + 0.783315i \(0.286473\pi\)
\(572\) 0.602381 0.602381i 0.0251868 0.0251868i
\(573\) −10.9347 + 16.6214i −0.456804 + 0.694368i
\(574\) 1.59231i 0.0664616i
\(575\) −28.1719 2.43991i −1.17485 0.101751i
\(576\) −24.3822 + 10.5110i −1.01592 + 0.437959i
\(577\) −13.3839 13.3839i −0.557181 0.557181i 0.371323 0.928504i \(-0.378904\pi\)
−0.928504 + 0.371323i \(0.878904\pi\)
\(578\) 9.87941 + 9.87941i 0.410929 + 0.410929i
\(579\) −41.4109 + 8.54587i −1.72098 + 0.355154i
\(580\) 1.90493 + 5.22665i 0.0790979 + 0.217025i
\(581\) 1.90657i 0.0790980i
\(582\) 17.8999 + 11.7758i 0.741975 + 0.488123i
\(583\) 2.96042 2.96042i 0.122608 0.122608i
\(584\) −43.9668 −1.81936
\(585\) −41.2495 1.19138i −1.70546 0.0492576i
\(586\) −4.17052 −0.172282
\(587\) −8.71492 + 8.71492i −0.359703 + 0.359703i −0.863703 0.504000i \(-0.831861\pi\)
0.504000 + 0.863703i \(0.331861\pi\)
\(588\) 3.32559 + 2.18781i 0.137145 + 0.0902237i
\(589\) 1.04976i 0.0432548i
\(590\) −5.75822 + 12.3627i −0.237062 + 0.508962i
\(591\) −5.11309 + 1.05517i −0.210324 + 0.0434041i
\(592\) −10.2763 10.2763i −0.422352 0.422352i
\(593\) 13.4084 + 13.4084i 0.550619 + 0.550619i 0.926619 0.376001i \(-0.122701\pi\)
−0.376001 + 0.926619i \(0.622701\pi\)
\(594\) 2.29406 1.60518i 0.0941265 0.0658613i
\(595\) 1.44006 0.524853i 0.0590368 0.0215169i
\(596\) 1.07268i 0.0439387i
\(597\) 15.3651 23.3558i 0.628851 0.955890i
\(598\) −31.7727 + 31.7727i −1.29928 + 1.29928i
\(599\) 22.8186 0.932344 0.466172 0.884694i \(-0.345633\pi\)
0.466172 + 0.884694i \(0.345633\pi\)
\(600\) 20.4720 + 16.1618i 0.835768 + 0.659804i
\(601\) 19.7324 0.804901 0.402451 0.915442i \(-0.368158\pi\)
0.402451 + 0.915442i \(0.368158\pi\)
\(602\) 0.584764 0.584764i 0.0238332 0.0238332i
\(603\) 0.0148154 0.0372685i 0.000603331 0.00151769i
\(604\) 0.234777i 0.00955296i
\(605\) −22.7440 + 8.28941i −0.924676 + 0.337012i
\(606\) −6.98759 33.8599i −0.283851 1.37547i
\(607\) −16.3469 16.3469i −0.663498 0.663498i 0.292705 0.956203i \(-0.405445\pi\)
−0.956203 + 0.292705i \(0.905445\pi\)
\(608\) 1.31316 + 1.31316i 0.0532556 + 0.0532556i
\(609\) −0.723322 3.50502i −0.0293105 0.142031i
\(610\) −0.603562 + 1.29582i −0.0244375 + 0.0524663i
\(611\) 54.1770i 2.19177i
\(612\) 0.914637 2.30079i 0.0369720 0.0930038i
\(613\) −11.4378 + 11.4378i −0.461969 + 0.461969i −0.899300 0.437331i \(-0.855924\pi\)
0.437331 + 0.899300i \(0.355924\pi\)
\(614\) 20.5353 0.828738
\(615\) −3.98886 + 16.8548i −0.160846 + 0.679651i
\(616\) 0.346402 0.0139569
\(617\) 14.2493 14.2493i 0.573654 0.573654i −0.359493 0.933148i \(-0.617050\pi\)
0.933148 + 0.359493i \(0.117050\pi\)
\(618\) −24.2228 + 36.8200i −0.974383 + 1.48112i
\(619\) 10.5207i 0.422862i −0.977393 0.211431i \(-0.932188\pi\)
0.977393 0.211431i \(-0.0678123\pi\)
\(620\) 0.266804 + 0.732043i 0.0107151 + 0.0293996i
\(621\) 24.0778 16.8475i 0.966207 0.676065i
\(622\) 6.13014 + 6.13014i 0.245796 + 0.245796i
\(623\) −0.582485 0.582485i −0.0233368 0.0233368i
\(624\) 33.6634 6.94703i 1.34761 0.278104i
\(625\) 4.29816 24.6277i 0.171926 0.985110i
\(626\) 4.67819i 0.186978i
\(627\) −0.603697 0.397154i −0.0241093 0.0158608i
\(628\) −4.34930 + 4.34930i −0.173556 + 0.173556i
\(629\) 11.2011 0.446619
\(630\) −1.63945 1.73697i −0.0653171 0.0692024i
\(631\) −15.9233 −0.633896 −0.316948 0.948443i \(-0.602658\pi\)
−0.316948 + 0.948443i \(0.602658\pi\)
\(632\) −7.20000 + 7.20000i −0.286400 + 0.286400i
\(633\) −33.0045 21.7127i −1.31181 0.863002i
\(634\) 0.738065i 0.0293123i
\(635\) 27.2410 + 12.6882i 1.08103 + 0.503516i
\(636\) −5.65023 + 1.16602i −0.224046 + 0.0462358i
\(637\) −30.1186 30.1186i −1.19334 1.19334i
\(638\) 2.85575 + 2.85575i 0.113060 + 0.113060i
\(639\) 17.4366 7.51682i 0.689781 0.297361i
\(640\) −15.6412 7.28529i −0.618273 0.287976i
\(641\) 12.4363i 0.491204i 0.969371 + 0.245602i \(0.0789857\pi\)
−0.969371 + 0.245602i \(0.921014\pi\)
\(642\) −20.2951 + 30.8498i −0.800986 + 1.21754i
\(643\) 33.7739 33.7739i 1.33191 1.33191i 0.428258 0.903657i \(-0.359128\pi\)
0.903657 0.428258i \(-0.140872\pi\)
\(644\) 0.517511 0.0203928
\(645\) −7.65470 + 4.72493i −0.301403 + 0.186044i
\(646\) 3.21129 0.126346
\(647\) −21.4646 + 21.4646i −0.843862 + 0.843862i −0.989359 0.145497i \(-0.953522\pi\)
0.145497 + 0.989359i \(0.453522\pi\)
\(648\) −27.0949 + 0.776312i −1.06439 + 0.0304964i
\(649\) 1.97018i 0.0773362i
\(650\) −25.5617 30.4093i −1.00261 1.19275i
\(651\) −0.101308 0.490912i −0.00397059 0.0192404i
\(652\) −2.35818 2.35818i −0.0923536 0.0923536i
\(653\) 34.4307 + 34.4307i 1.34738 + 1.34738i 0.888498 + 0.458880i \(0.151749\pi\)
0.458880 + 0.888498i \(0.348251\pi\)
\(654\) 1.02415 + 4.96273i 0.0400473 + 0.194058i
\(655\) 6.85372 + 18.8049i 0.267797 + 0.734767i
\(656\) 14.4269i 0.563274i
\(657\) −40.6971 16.1784i −1.58774 0.631180i
\(658\) 2.21729 2.21729i 0.0864389 0.0864389i
\(659\) 10.6847 0.416217 0.208108 0.978106i \(-0.433269\pi\)
0.208108 + 0.978106i \(0.433269\pi\)
\(660\) −0.521922 0.123518i −0.0203158 0.00480794i
\(661\) −30.3181 −1.17924 −0.589619 0.807682i \(-0.700722\pi\)
−0.589619 + 0.807682i \(0.700722\pi\)
\(662\) −25.7597 + 25.7597i −1.00118 + 1.00118i
\(663\) −14.5604 + 22.1327i −0.565480 + 0.859562i
\(664\) 20.8290i 0.808322i
\(665\) −0.260276 + 0.558801i −0.0100931 + 0.0216694i
\(666\) −6.90999 16.0290i −0.267757 0.621110i
\(667\) 29.9731 + 29.9731i 1.16056 + 1.16056i
\(668\) 4.11953 + 4.11953i 0.159389 + 0.159389i
\(669\) 39.7961 8.21262i 1.53861 0.317518i
\(670\) 0.0362735 0.0132204i 0.00140137 0.000510750i
\(671\) 0.206509i 0.00797218i
\(672\) −0.740814 0.487359i −0.0285775 0.0188003i
\(673\) 0.579431 0.579431i 0.0223354 0.0223354i −0.695851 0.718186i \(-0.744973\pi\)
0.718186 + 0.695851i \(0.244973\pi\)
\(674\) 6.67239 0.257011
\(675\) 13.0025 + 22.4930i 0.500468 + 0.865755i
\(676\) 8.24611 0.317158
\(677\) 15.6393 15.6393i 0.601068 0.601068i −0.339528 0.940596i \(-0.610267\pi\)
0.940596 + 0.339528i \(0.110267\pi\)
\(678\) 24.1341 + 15.8771i 0.926864 + 0.609756i
\(679\) 2.64048i 0.101332i
\(680\) 15.7324 5.73393i 0.603312 0.219886i
\(681\) 4.95695 1.02295i 0.189951 0.0391996i
\(682\) 0.399976 + 0.399976i 0.0153159 + 0.0153159i
\(683\) 7.40718 + 7.40718i 0.283428 + 0.283428i 0.834474 0.551047i \(-0.185771\pi\)
−0.551047 + 0.834474i \(0.685771\pi\)
\(684\) 0.394206 + 0.914432i 0.0150728 + 0.0349642i
\(685\) 5.99375 12.8683i 0.229010 0.491673i
\(686\) 4.95769i 0.189286i
\(687\) −4.63450 + 7.04471i −0.176817 + 0.268773i
\(688\) 5.29817 5.29817i 0.201991 0.201991i
\(689\) 61.7322 2.35181
\(690\) 27.5288 + 6.51498i 1.04800 + 0.248021i
\(691\) 9.13836 0.347640 0.173820 0.984777i \(-0.444389\pi\)
0.173820 + 0.984777i \(0.444389\pi\)
\(692\) 1.08319 1.08319i 0.0411768 0.0411768i
\(693\) 0.320641 + 0.127465i 0.0121801 + 0.00484200i
\(694\) 0.881674i 0.0334679i
\(695\) 4.51739 + 12.3946i 0.171354 + 0.470153i
\(696\) −7.90216 38.2917i −0.299531 1.45144i
\(697\) 7.86264 + 7.86264i 0.297819 + 0.297819i
\(698\) 24.6589 + 24.6589i 0.933353 + 0.933353i
\(699\) 3.68884 + 17.8751i 0.139525 + 0.676100i
\(700\) −0.0394781 + 0.455825i −0.00149213 + 0.0172286i
\(701\) 15.1729i 0.573071i 0.958070 + 0.286536i \(0.0925037\pi\)
−0.958070 + 0.286536i \(0.907496\pi\)
\(702\) 40.6545 + 7.18248i 1.53440 + 0.271085i
\(703\) −3.18548 + 3.18548i −0.120143 + 0.120143i
\(704\) 3.69245 0.139164
\(705\) −29.0248 + 17.9158i −1.09314 + 0.674749i
\(706\) 18.5198 0.697002
\(707\) 3.01278 3.01278i 0.113307 0.113307i
\(708\) −1.49213 + 2.26813i −0.0560778 + 0.0852414i
\(709\) 12.4012i 0.465738i −0.972508 0.232869i \(-0.925189\pi\)
0.972508 0.232869i \(-0.0748113\pi\)
\(710\) 16.5695 + 7.71769i 0.621844 + 0.289640i
\(711\) −9.31392 + 4.01518i −0.349299 + 0.150581i
\(712\) −6.36355 6.36355i −0.238484 0.238484i
\(713\) 4.19802 + 4.19802i 0.157217 + 0.157217i
\(714\) −1.50173 + 0.309908i −0.0562008 + 0.0115980i
\(715\) 5.20226 + 2.42309i 0.194554 + 0.0906184i
\(716\) 7.12402i 0.266237i
\(717\) −14.7508 9.70413i −0.550880 0.362408i
\(718\) −2.83190 + 2.83190i −0.105686 + 0.105686i
\(719\) 10.0169 0.373566 0.186783 0.982401i \(-0.440194\pi\)
0.186783 + 0.982401i \(0.440194\pi\)
\(720\) −14.8540 15.7375i −0.553574 0.586502i
\(721\) −5.43144 −0.202278
\(722\) −0.913256 + 0.913256i −0.0339879 + 0.0339879i
\(723\) 36.7913 + 24.2039i 1.36828 + 0.900151i
\(724\) 2.50366i 0.0930477i
\(725\) −28.6869 + 24.1139i −1.06540 + 0.895568i
\(726\) 23.7180 4.89461i 0.880256 0.181656i
\(727\) −24.7743 24.7743i −0.918829 0.918829i 0.0781157 0.996944i \(-0.475110\pi\)
−0.996944 + 0.0781157i \(0.975110\pi\)
\(728\) 3.61168 + 3.61168i 0.133858 + 0.133858i
\(729\) −25.3655 9.25148i −0.939464 0.342647i
\(730\) −14.4367 39.6106i −0.534326 1.46605i
\(731\) 5.77501i 0.213596i
\(732\) −0.156401 + 0.237739i −0.00578076 + 0.00878709i
\(733\) −21.2760 + 21.2760i −0.785846 + 0.785846i −0.980810 0.194964i \(-0.937541\pi\)
0.194964 + 0.980810i \(0.437541\pi\)
\(734\) −7.74127 −0.285735
\(735\) −6.17582 + 26.0957i −0.227798 + 0.962555i
\(736\) 10.5027 0.387134
\(737\) −0.00394381 + 0.00394381i −0.000145272 + 0.000145272i
\(738\) 6.40107 16.1020i 0.235626 0.592723i
\(739\) 20.3538i 0.748725i 0.927282 + 0.374363i \(0.122138\pi\)
−0.927282 + 0.374363i \(0.877862\pi\)
\(740\) −1.41176 + 3.03098i −0.0518972 + 0.111421i
\(741\) −2.15347 10.4351i −0.0791097 0.383344i
\(742\) 2.52650 + 2.52650i 0.0927506 + 0.0927506i
\(743\) −16.9288 16.9288i −0.621056 0.621056i 0.324746 0.945801i \(-0.394721\pi\)
−0.945801 + 0.324746i \(0.894721\pi\)
\(744\) −1.10678 5.36313i −0.0405764 0.196622i
\(745\) −6.78935 + 2.47448i −0.248743 + 0.0906580i
\(746\) 20.8381i 0.762936i
\(747\) −7.66442 + 19.2800i −0.280426 + 0.705418i
\(748\) −0.243473 + 0.243473i −0.00890224 + 0.00890224i
\(749\) −4.55076 −0.166281
\(750\) −7.83844 + 23.7505i −0.286220 + 0.867245i
\(751\) 20.5590 0.750208 0.375104 0.926983i \(-0.377607\pi\)
0.375104 + 0.926983i \(0.377607\pi\)
\(752\) 20.0894 20.0894i 0.732585 0.732585i
\(753\) −20.0108 + 30.4176i −0.729236 + 1.10848i
\(754\) 59.5496i 2.16867i
\(755\) −1.48599 + 0.541590i −0.0540806 + 0.0197105i
\(756\) −0.272595 0.389582i −0.00991417 0.0141690i
\(757\) −29.3417 29.3417i −1.06644 1.06644i −0.997630 0.0688112i \(-0.978079\pi\)
−0.0688112 0.997630i \(-0.521921\pi\)
\(758\) −6.51969 6.51969i −0.236806 0.236806i
\(759\) −4.00242 + 0.825969i −0.145279 + 0.0299808i
\(760\) −2.84347 + 6.10480i −0.103143 + 0.221444i
\(761\) 6.91040i 0.250502i 0.992125 + 0.125251i \(0.0399736\pi\)
−0.992125 + 0.125251i \(0.960026\pi\)
\(762\) −25.1160 16.5231i −0.909858 0.598568i
\(763\) −0.441572 + 0.441572i −0.0159860 + 0.0159860i
\(764\) −3.81278 −0.137941
\(765\) 16.6724 + 0.481537i 0.602790 + 0.0174100i
\(766\) 22.0392 0.796310
\(767\) 20.5416 20.5416i 0.741713 0.741713i
\(768\) −11.1921 7.36296i −0.403861 0.265688i
\(769\) 43.5484i 1.57040i −0.619244 0.785198i \(-0.712561\pi\)
0.619244 0.785198i \(-0.287439\pi\)
\(770\) 0.113743 + 0.312081i 0.00409900 + 0.0112466i
\(771\) 40.6100 8.38059i 1.46253