Properties

Label 285.2.i.f.121.5
Level $285$
Weight $2$
Character 285.121
Analytic conductor $2.276$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} - 2x^{7} + 56x^{6} - 18x^{5} + 125x^{4} + x^{3} + 189x^{2} - 52x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.5
Root \(1.34580 - 2.33099i\) of defining polynomial
Character \(\chi\) \(=\) 285.121
Dual form 285.2.i.f.106.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34580 + 2.33099i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-2.62233 + 4.54201i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-1.34580 + 2.33099i) q^{6} -0.797044 q^{7} -8.73329 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.34580 - 2.33099i) q^{10} +2.59225 q^{11} -5.24466 q^{12} +(1.39852 - 2.42231i) q^{13} +(-1.07266 - 1.85790i) q^{14} +(0.500000 - 0.866025i) q^{15} +(-6.50857 - 11.2732i) q^{16} +(2.88624 + 4.99911i) q^{17} -2.69159 q^{18} +(2.45159 + 3.60412i) q^{19} +5.24466 q^{20} +(-0.398522 - 0.690261i) q^{21} +(3.48863 + 6.04249i) q^{22} +(1.55307 - 2.68999i) q^{23} +(-4.36665 - 7.56325i) q^{24} +(-0.500000 + 0.866025i) q^{25} +7.52850 q^{26} -1.00000 q^{27} +(2.09011 - 3.62018i) q^{28} +(2.39547 - 4.14907i) q^{29} +2.69159 q^{30} -9.48932 q^{31} +(8.78510 - 15.2162i) q^{32} +(1.29612 + 2.24495i) q^{33} +(-7.76857 + 13.4556i) q^{34} +(0.398522 + 0.690261i) q^{35} +(-2.62233 - 4.54201i) q^{36} +7.69227 q^{37} +(-5.10182 + 10.5650i) q^{38} +2.79704 q^{39} +(4.36665 + 7.56325i) q^{40} +(-3.69159 - 6.39402i) q^{41} +(1.07266 - 1.85790i) q^{42} +(1.39852 + 2.42231i) q^{43} +(-6.79773 + 11.7740i) q^{44} +1.00000 q^{45} +8.36045 q^{46} +(5.53865 - 9.59322i) q^{47} +(6.50857 - 11.2732i) q^{48} -6.36472 q^{49} -2.69159 q^{50} +(-2.88624 + 4.99911i) q^{51} +(7.33477 + 12.7042i) q^{52} +(4.43931 - 7.68910i) q^{53} +(-1.34580 - 2.33099i) q^{54} +(-1.29612 - 2.24495i) q^{55} +6.96082 q^{56} +(-1.89547 + 3.92520i) q^{57} +12.8952 q^{58} +(-0.540099 - 0.935479i) q^{59} +(2.62233 + 4.54201i) q^{60} +(-2.03612 + 3.52667i) q^{61} +(-12.7707 - 22.1195i) q^{62} +(0.398522 - 0.690261i) q^{63} +21.2575 q^{64} -2.79704 q^{65} +(-3.48863 + 6.04249i) q^{66} +(-6.88784 + 11.9301i) q^{67} -30.2747 q^{68} +3.10614 q^{69} +(-1.07266 + 1.85790i) q^{70} +(5.98771 + 10.3710i) q^{71} +(4.36665 - 7.56325i) q^{72} +(-4.25389 - 7.36795i) q^{73} +(10.3522 + 17.9306i) q^{74} -1.00000 q^{75} +(-22.7988 + 1.68395i) q^{76} -2.06614 q^{77} +(3.76425 + 6.51987i) q^{78} +(-3.24092 - 5.61344i) q^{79} +(-6.50857 + 11.2732i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(9.93625 - 17.2101i) q^{82} -2.79520 q^{83} +4.18023 q^{84} +(2.88624 - 4.99911i) q^{85} +(-3.76425 + 6.51987i) q^{86} +4.79093 q^{87} -22.6389 q^{88} +(6.67930 - 11.5689i) q^{89} +(1.34580 + 2.33099i) q^{90} +(-1.11468 + 1.93069i) q^{91} +(8.14532 + 14.1081i) q^{92} +(-4.74466 - 8.21799i) q^{93} +29.8155 q^{94} +(1.89547 - 3.92520i) q^{95} +17.5702 q^{96} +(-1.00000 - 1.73205i) q^{97} +(-8.56561 - 14.8361i) q^{98} +(-1.29612 + 2.24495i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + q^{2} + 5 q^{3} - 7 q^{4} - 5 q^{5} - q^{6} + 4 q^{7} - 12 q^{8} - 5 q^{9} + q^{10} + 10 q^{11} - 14 q^{12} + 8 q^{13} + 4 q^{14} + 5 q^{15} - 7 q^{16} - 10 q^{17} - 2 q^{18} + 5 q^{19} + 14 q^{20}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34580 + 2.33099i 0.951621 + 1.64826i 0.741918 + 0.670491i \(0.233916\pi\)
0.209703 + 0.977765i \(0.432750\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −2.62233 + 4.54201i −1.31116 + 2.27100i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −1.34580 + 2.33099i −0.549419 + 0.951621i
\(7\) −0.797044 −0.301254 −0.150627 0.988591i \(-0.548129\pi\)
−0.150627 + 0.988591i \(0.548129\pi\)
\(8\) −8.73329 −3.08769
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 1.34580 2.33099i 0.425578 0.737122i
\(11\) 2.59225 0.781592 0.390796 0.920477i \(-0.372200\pi\)
0.390796 + 0.920477i \(0.372200\pi\)
\(12\) −5.24466 −1.51400
\(13\) 1.39852 2.42231i 0.387880 0.671828i −0.604284 0.796769i \(-0.706541\pi\)
0.992164 + 0.124941i \(0.0398741\pi\)
\(14\) −1.07266 1.85790i −0.286680 0.496544i
\(15\) 0.500000 0.866025i 0.129099 0.223607i
\(16\) −6.50857 11.2732i −1.62714 2.81829i
\(17\) 2.88624 + 4.99911i 0.700015 + 1.21246i 0.968461 + 0.249167i \(0.0801568\pi\)
−0.268445 + 0.963295i \(0.586510\pi\)
\(18\) −2.69159 −0.634414
\(19\) 2.45159 + 3.60412i 0.562434 + 0.826843i
\(20\) 5.24466 1.17274
\(21\) −0.398522 0.690261i −0.0869646 0.150627i
\(22\) 3.48863 + 6.04249i 0.743779 + 1.28826i
\(23\) 1.55307 2.68999i 0.323837 0.560903i −0.657439 0.753508i \(-0.728360\pi\)
0.981276 + 0.192605i \(0.0616936\pi\)
\(24\) −4.36665 7.56325i −0.891338 1.54384i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 7.52850 1.47646
\(27\) −1.00000 −0.192450
\(28\) 2.09011 3.62018i 0.394994 0.684150i
\(29\) 2.39547 4.14907i 0.444827 0.770463i −0.553213 0.833040i \(-0.686599\pi\)
0.998040 + 0.0625768i \(0.0199318\pi\)
\(30\) 2.69159 0.491415
\(31\) −9.48932 −1.70433 −0.852166 0.523272i \(-0.824711\pi\)
−0.852166 + 0.523272i \(0.824711\pi\)
\(32\) 8.78510 15.2162i 1.55300 2.68988i
\(33\) 1.29612 + 2.24495i 0.225626 + 0.390796i
\(34\) −7.76857 + 13.4556i −1.33230 + 2.30761i
\(35\) 0.398522 + 0.690261i 0.0673625 + 0.116675i
\(36\) −2.62233 4.54201i −0.437055 0.757001i
\(37\) 7.69227 1.26460 0.632301 0.774723i \(-0.282111\pi\)
0.632301 + 0.774723i \(0.282111\pi\)
\(38\) −5.10182 + 10.5650i −0.827624 + 1.71387i
\(39\) 2.79704 0.447886
\(40\) 4.36665 + 7.56325i 0.690428 + 1.19586i
\(41\) −3.69159 6.39402i −0.576530 0.998579i −0.995874 0.0907511i \(-0.971073\pi\)
0.419344 0.907827i \(-0.362260\pi\)
\(42\) 1.07266 1.85790i 0.165515 0.286680i
\(43\) 1.39852 + 2.42231i 0.213273 + 0.369399i 0.952737 0.303797i \(-0.0982544\pi\)
−0.739464 + 0.673196i \(0.764921\pi\)
\(44\) −6.79773 + 11.7740i −1.02480 + 1.77500i
\(45\) 1.00000 0.149071
\(46\) 8.36045 1.23268
\(47\) 5.53865 9.59322i 0.807895 1.39931i −0.106424 0.994321i \(-0.533940\pi\)
0.914319 0.404994i \(-0.132726\pi\)
\(48\) 6.50857 11.2732i 0.939431 1.62714i
\(49\) −6.36472 −0.909246
\(50\) −2.69159 −0.380648
\(51\) −2.88624 + 4.99911i −0.404154 + 0.700015i
\(52\) 7.33477 + 12.7042i 1.01715 + 1.76176i
\(53\) 4.43931 7.68910i 0.609785 1.05618i −0.381490 0.924373i \(-0.624589\pi\)
0.991275 0.131806i \(-0.0420777\pi\)
\(54\) −1.34580 2.33099i −0.183140 0.317207i
\(55\) −1.29612 2.24495i −0.174769 0.302709i
\(56\) 6.96082 0.930179
\(57\) −1.89547 + 3.92520i −0.251061 + 0.519906i
\(58\) 12.8952 1.69323
\(59\) −0.540099 0.935479i −0.0703149 0.121789i 0.828724 0.559657i \(-0.189067\pi\)
−0.899039 + 0.437868i \(0.855734\pi\)
\(60\) 2.62233 + 4.54201i 0.338541 + 0.586371i
\(61\) −2.03612 + 3.52667i −0.260699 + 0.451544i −0.966428 0.256938i \(-0.917286\pi\)
0.705729 + 0.708482i \(0.250620\pi\)
\(62\) −12.7707 22.1195i −1.62188 2.80917i
\(63\) 0.398522 0.690261i 0.0502091 0.0869646i
\(64\) 21.2575 2.65719
\(65\) −2.79704 −0.346931
\(66\) −3.48863 + 6.04249i −0.429421 + 0.743779i
\(67\) −6.88784 + 11.9301i −0.841484 + 1.45749i 0.0471566 + 0.998888i \(0.484984\pi\)
−0.888640 + 0.458605i \(0.848349\pi\)
\(68\) −30.2747 −3.67134
\(69\) 3.10614 0.373935
\(70\) −1.07266 + 1.85790i −0.128207 + 0.222061i
\(71\) 5.98771 + 10.3710i 0.710611 + 1.23081i 0.964628 + 0.263615i \(0.0849147\pi\)
−0.254017 + 0.967200i \(0.581752\pi\)
\(72\) 4.36665 7.56325i 0.514614 0.891338i
\(73\) −4.25389 7.36795i −0.497880 0.862354i 0.502117 0.864800i \(-0.332555\pi\)
−0.999997 + 0.00244612i \(0.999221\pi\)
\(74\) 10.3522 + 17.9306i 1.20342 + 2.08439i
\(75\) −1.00000 −0.115470
\(76\) −22.7988 + 1.68395i −2.61521 + 0.193162i
\(77\) −2.06614 −0.235458
\(78\) 3.76425 + 6.51987i 0.426217 + 0.738230i
\(79\) −3.24092 5.61344i −0.364632 0.631561i 0.624085 0.781356i \(-0.285472\pi\)
−0.988717 + 0.149795i \(0.952139\pi\)
\(80\) −6.50857 + 11.2732i −0.727680 + 1.26038i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 9.93625 17.2101i 1.09728 1.90054i
\(83\) −2.79520 −0.306813 −0.153407 0.988163i \(-0.549024\pi\)
−0.153407 + 0.988163i \(0.549024\pi\)
\(84\) 4.18023 0.456100
\(85\) 2.88624 4.99911i 0.313056 0.542229i
\(86\) −3.76425 + 6.51987i −0.405909 + 0.703056i
\(87\) 4.79093 0.513642
\(88\) −22.6389 −2.41331
\(89\) 6.67930 11.5689i 0.708005 1.22630i −0.257591 0.966254i \(-0.582929\pi\)
0.965596 0.260046i \(-0.0837379\pi\)
\(90\) 1.34580 + 2.33099i 0.141859 + 0.245707i
\(91\) −1.11468 + 1.93069i −0.116851 + 0.202391i
\(92\) 8.14532 + 14.1081i 0.849208 + 1.47087i
\(93\) −4.74466 8.21799i −0.491998 0.852166i
\(94\) 29.8155 3.07524
\(95\) 1.89547 3.92520i 0.194471 0.402717i
\(96\) 17.5702 1.79325
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) −8.56561 14.8361i −0.865257 1.49867i
\(99\) −1.29612 + 2.24495i −0.130265 + 0.225626i
\(100\) −2.62233 4.54201i −0.262233 0.454201i
\(101\) −6.54078 + 11.3290i −0.650832 + 1.12727i 0.332089 + 0.943248i \(0.392247\pi\)
−0.982921 + 0.184026i \(0.941087\pi\)
\(102\) −15.5371 −1.53841
\(103\) 14.4586 1.42465 0.712326 0.701849i \(-0.247642\pi\)
0.712326 + 0.701849i \(0.247642\pi\)
\(104\) −12.2137 + 21.1548i −1.19765 + 2.07439i
\(105\) −0.398522 + 0.690261i −0.0388918 + 0.0673625i
\(106\) 23.8976 2.32114
\(107\) 3.20480 0.309819 0.154910 0.987929i \(-0.450491\pi\)
0.154910 + 0.987929i \(0.450491\pi\)
\(108\) 2.62233 4.54201i 0.252334 0.437055i
\(109\) −3.89921 6.75362i −0.373476 0.646880i 0.616622 0.787260i \(-0.288501\pi\)
−0.990098 + 0.140380i \(0.955168\pi\)
\(110\) 3.48863 6.04249i 0.332628 0.576129i
\(111\) 3.84614 + 6.66170i 0.365059 + 0.632301i
\(112\) 5.18761 + 8.98521i 0.490184 + 0.849023i
\(113\) 8.26042 0.777075 0.388538 0.921433i \(-0.372980\pi\)
0.388538 + 0.921433i \(0.372980\pi\)
\(114\) −11.7005 + 0.864212i −1.09585 + 0.0809409i
\(115\) −3.10614 −0.289649
\(116\) 12.5634 + 21.7605i 1.16648 + 2.02041i
\(117\) 1.39852 + 2.42231i 0.129293 + 0.223943i
\(118\) 1.45373 2.51793i 0.133826 0.231794i
\(119\) −2.30046 3.98451i −0.210883 0.365259i
\(120\) −4.36665 + 7.56325i −0.398619 + 0.690428i
\(121\) −4.28025 −0.389114
\(122\) −10.9608 −0.992346
\(123\) 3.69159 6.39402i 0.332860 0.576530i
\(124\) 24.8841 43.1006i 2.23466 3.87054i
\(125\) 1.00000 0.0894427
\(126\) 2.14532 0.191120
\(127\) −2.24466 + 3.88786i −0.199181 + 0.344992i −0.948263 0.317485i \(-0.897162\pi\)
0.749082 + 0.662477i \(0.230495\pi\)
\(128\) 11.0381 + 19.1185i 0.975637 + 1.68985i
\(129\) −1.39852 + 2.42231i −0.123133 + 0.213273i
\(130\) −3.76425 6.51987i −0.330146 0.571830i
\(131\) −9.73940 16.8691i −0.850936 1.47386i −0.880365 0.474297i \(-0.842702\pi\)
0.0294291 0.999567i \(-0.490631\pi\)
\(132\) −13.5955 −1.18333
\(133\) −1.95403 2.87265i −0.169436 0.249090i
\(134\) −37.0785 −3.20309
\(135\) 0.500000 + 0.866025i 0.0430331 + 0.0745356i
\(136\) −25.2064 43.6587i −2.16143 3.74370i
\(137\) −2.11376 + 3.66115i −0.180591 + 0.312793i −0.942082 0.335383i \(-0.891134\pi\)
0.761491 + 0.648176i \(0.224468\pi\)
\(138\) 4.18023 + 7.24036i 0.355844 + 0.616341i
\(139\) −3.89547 + 6.74715i −0.330409 + 0.572285i −0.982592 0.185776i \(-0.940520\pi\)
0.652183 + 0.758062i \(0.273853\pi\)
\(140\) −4.18023 −0.353294
\(141\) 11.0773 0.932877
\(142\) −16.1165 + 27.9146i −1.35246 + 2.34254i
\(143\) 3.62532 6.27923i 0.303164 0.525096i
\(144\) 13.0171 1.08476
\(145\) −4.79093 −0.397865
\(146\) 11.4497 19.8315i 0.947586 1.64127i
\(147\) −3.18236 5.51201i −0.262477 0.454623i
\(148\) −20.1717 + 34.9384i −1.65810 + 2.87192i
\(149\) 0.0453536 + 0.0785548i 0.00371552 + 0.00643546i 0.867877 0.496779i \(-0.165484\pi\)
−0.864162 + 0.503214i \(0.832151\pi\)
\(150\) −1.34580 2.33099i −0.109884 0.190324i
\(151\) −4.49727 −0.365983 −0.182991 0.983115i \(-0.558578\pi\)
−0.182991 + 0.983115i \(0.558578\pi\)
\(152\) −21.4105 31.4759i −1.73662 2.55303i
\(153\) −5.77247 −0.466677
\(154\) −2.78060 4.81613i −0.224067 0.388095i
\(155\) 4.74466 + 8.21799i 0.381100 + 0.660085i
\(156\) −7.33477 + 12.7042i −0.587252 + 1.01715i
\(157\) −8.82341 15.2826i −0.704184 1.21968i −0.966985 0.254833i \(-0.917979\pi\)
0.262801 0.964850i \(-0.415354\pi\)
\(158\) 8.72323 15.1091i 0.693983 1.20201i
\(159\) 8.87861 0.704120
\(160\) −17.5702 −1.38905
\(161\) −1.23786 + 2.14404i −0.0975574 + 0.168974i
\(162\) 1.34580 2.33099i 0.105736 0.183140i
\(163\) 4.25858 0.333558 0.166779 0.985994i \(-0.446663\pi\)
0.166779 + 0.985994i \(0.446663\pi\)
\(164\) 38.7223 3.02370
\(165\) 1.29612 2.24495i 0.100903 0.174769i
\(166\) −3.76177 6.51558i −0.291970 0.505707i
\(167\) −1.98985 + 3.44652i −0.153979 + 0.266700i −0.932687 0.360687i \(-0.882542\pi\)
0.778708 + 0.627387i \(0.215876\pi\)
\(168\) 3.48041 + 6.02825i 0.268520 + 0.465089i
\(169\) 2.58827 + 4.48302i 0.199098 + 0.344848i
\(170\) 15.5371 1.19164
\(171\) −4.34706 + 0.321078i −0.332428 + 0.0245535i
\(172\) −14.6695 −1.11854
\(173\) −5.58614 9.67547i −0.424706 0.735613i 0.571687 0.820472i \(-0.306289\pi\)
−0.996393 + 0.0848594i \(0.972956\pi\)
\(174\) 6.44762 + 11.1676i 0.488792 + 0.846613i
\(175\) 0.398522 0.690261i 0.0301254 0.0521788i
\(176\) −16.8718 29.2228i −1.27176 2.20275i
\(177\) 0.540099 0.935479i 0.0405963 0.0703149i
\(178\) 35.9559 2.69501
\(179\) 9.63565 0.720203 0.360101 0.932913i \(-0.382742\pi\)
0.360101 + 0.932913i \(0.382742\pi\)
\(180\) −2.62233 + 4.54201i −0.195457 + 0.338541i
\(181\) −2.05001 + 3.55073i −0.152376 + 0.263923i −0.932101 0.362200i \(-0.882026\pi\)
0.779724 + 0.626123i \(0.215359\pi\)
\(182\) −6.00055 −0.444790
\(183\) −4.07225 −0.301029
\(184\) −13.5634 + 23.4925i −0.999908 + 1.73189i
\(185\) −3.84614 6.66170i −0.282774 0.489778i
\(186\) 12.7707 22.1195i 0.936392 1.62188i
\(187\) 7.48184 + 12.9589i 0.547126 + 0.947651i
\(188\) 29.0483 + 50.3132i 2.11857 + 3.66946i
\(189\) 0.797044 0.0579764
\(190\) 11.7005 0.864212i 0.848843 0.0626965i
\(191\) −22.6143 −1.63631 −0.818156 0.574996i \(-0.805004\pi\)
−0.818156 + 0.574996i \(0.805004\pi\)
\(192\) 10.6288 + 18.4096i 0.767065 + 1.32860i
\(193\) −8.30170 14.3790i −0.597570 1.03502i −0.993179 0.116602i \(-0.962800\pi\)
0.395609 0.918419i \(-0.370534\pi\)
\(194\) 2.69159 4.66197i 0.193245 0.334710i
\(195\) −1.39852 2.42231i −0.100150 0.173465i
\(196\) 16.6904 28.9086i 1.19217 2.06490i
\(197\) −17.6450 −1.25715 −0.628576 0.777748i \(-0.716362\pi\)
−0.628576 + 0.777748i \(0.716362\pi\)
\(198\) −6.97727 −0.495853
\(199\) −9.53155 + 16.5091i −0.675674 + 1.17030i 0.300598 + 0.953751i \(0.402814\pi\)
−0.976271 + 0.216550i \(0.930519\pi\)
\(200\) 4.36665 7.56325i 0.308769 0.534803i
\(201\) −13.7757 −0.971662
\(202\) −35.2102 −2.47738
\(203\) −1.90929 + 3.30699i −0.134006 + 0.232105i
\(204\) −15.1373 26.2186i −1.05982 1.83567i
\(205\) −3.69159 + 6.39402i −0.257832 + 0.446578i
\(206\) 19.4584 + 33.7029i 1.35573 + 2.34819i
\(207\) 1.55307 + 2.68999i 0.107946 + 0.186968i
\(208\) −36.4095 −2.52454
\(209\) 6.35513 + 9.34278i 0.439594 + 0.646254i
\(210\) −2.14532 −0.148041
\(211\) 7.02170 + 12.1619i 0.483394 + 0.837263i 0.999818 0.0190700i \(-0.00607055\pi\)
−0.516424 + 0.856333i \(0.672737\pi\)
\(212\) 23.2826 + 40.3267i 1.59906 + 2.76965i
\(213\) −5.98771 + 10.3710i −0.410271 + 0.710611i
\(214\) 4.31300 + 7.47033i 0.294831 + 0.510662i
\(215\) 1.39852 2.42231i 0.0953784 0.165200i
\(216\) 8.73329 0.594225
\(217\) 7.56341 0.513437
\(218\) 10.4951 18.1780i 0.710816 1.23117i
\(219\) 4.25389 7.36795i 0.287451 0.497880i
\(220\) 13.5955 0.916605
\(221\) 16.1459 1.08609
\(222\) −10.3522 + 17.9306i −0.694796 + 1.20342i
\(223\) 12.0926 + 20.9451i 0.809783 + 1.40259i 0.913014 + 0.407928i \(0.133748\pi\)
−0.103231 + 0.994657i \(0.532918\pi\)
\(224\) −7.00211 + 12.1280i −0.467848 + 0.810337i
\(225\) −0.500000 0.866025i −0.0333333 0.0577350i
\(226\) 11.1168 + 19.2549i 0.739481 + 1.28082i
\(227\) 3.38455 0.224640 0.112320 0.993672i \(-0.464172\pi\)
0.112320 + 0.993672i \(0.464172\pi\)
\(228\) −12.8578 18.9024i −0.851526 1.25184i
\(229\) −25.9664 −1.71591 −0.857955 0.513726i \(-0.828265\pi\)
−0.857955 + 0.513726i \(0.828265\pi\)
\(230\) −4.18023 7.24036i −0.275636 0.477415i
\(231\) −1.03307 1.78933i −0.0679709 0.117729i
\(232\) −20.9203 + 36.2350i −1.37349 + 2.37895i
\(233\) 3.35911 + 5.81814i 0.220062 + 0.381159i 0.954827 0.297163i \(-0.0960406\pi\)
−0.734764 + 0.678323i \(0.762707\pi\)
\(234\) −3.76425 + 6.51987i −0.246077 + 0.426217i
\(235\) −11.0773 −0.722603
\(236\) 5.66527 0.368778
\(237\) 3.24092 5.61344i 0.210520 0.364632i
\(238\) 6.19189 10.7247i 0.401361 0.695177i
\(239\) 25.7818 1.66769 0.833843 0.552002i \(-0.186136\pi\)
0.833843 + 0.552002i \(0.186136\pi\)
\(240\) −13.0171 −0.840252
\(241\) 3.88929 6.73645i 0.250531 0.433933i −0.713141 0.701021i \(-0.752728\pi\)
0.963672 + 0.267088i \(0.0860614\pi\)
\(242\) −5.76034 9.97721i −0.370289 0.641359i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −10.6788 18.4962i −0.683638 1.18410i
\(245\) 3.18236 + 5.51201i 0.203314 + 0.352149i
\(246\) 19.8725 1.26702
\(247\) 12.1589 0.898071i 0.773653 0.0571429i
\(248\) 82.8730 5.26244
\(249\) −1.39760 2.42072i −0.0885694 0.153407i
\(250\) 1.34580 + 2.33099i 0.0851156 + 0.147424i
\(251\) −5.43717 + 9.41745i −0.343191 + 0.594424i −0.985023 0.172421i \(-0.944841\pi\)
0.641832 + 0.766845i \(0.278175\pi\)
\(252\) 2.09011 + 3.62018i 0.131665 + 0.228050i
\(253\) 4.02594 6.97313i 0.253109 0.438397i
\(254\) −12.0834 −0.758180
\(255\) 5.77247 0.361486
\(256\) −8.45244 + 14.6401i −0.528278 + 0.915004i
\(257\) −5.62716 + 9.74652i −0.351012 + 0.607971i −0.986427 0.164200i \(-0.947496\pi\)
0.635415 + 0.772171i \(0.280829\pi\)
\(258\) −7.52850 −0.468704
\(259\) −6.13108 −0.380967
\(260\) 7.33477 12.7042i 0.454883 0.787881i
\(261\) 2.39547 + 4.14907i 0.148276 + 0.256821i
\(262\) 26.2145 45.4048i 1.61954 2.80512i
\(263\) 6.66936 + 11.5517i 0.411250 + 0.712306i 0.995027 0.0996082i \(-0.0317589\pi\)
−0.583777 + 0.811914i \(0.698426\pi\)
\(264\) −11.3194 19.6058i −0.696663 1.20666i
\(265\) −8.87861 −0.545409
\(266\) 4.06638 8.42080i 0.249325 0.516312i
\(267\) 13.3586 0.817534
\(268\) −36.1244 62.5693i −2.20665 3.82203i
\(269\) 3.53399 + 6.12105i 0.215471 + 0.373207i 0.953418 0.301652i \(-0.0975380\pi\)
−0.737947 + 0.674859i \(0.764205\pi\)
\(270\) −1.34580 + 2.33099i −0.0819025 + 0.141859i
\(271\) 11.5289 + 19.9686i 0.700330 + 1.21301i 0.968351 + 0.249594i \(0.0802971\pi\)
−0.268021 + 0.963413i \(0.586370\pi\)
\(272\) 37.5705 65.0741i 2.27805 3.94569i
\(273\) −2.22937 −0.134927
\(274\) −11.3788 −0.687417
\(275\) −1.29612 + 2.24495i −0.0781592 + 0.135376i
\(276\) −8.14532 + 14.1081i −0.490290 + 0.849208i
\(277\) 18.8461 1.13235 0.566176 0.824284i \(-0.308422\pi\)
0.566176 + 0.824284i \(0.308422\pi\)
\(278\) −20.9700 −1.25770
\(279\) 4.74466 8.21799i 0.284055 0.491998i
\(280\) −3.48041 6.02825i −0.207994 0.360257i
\(281\) −8.32486 + 14.4191i −0.496619 + 0.860170i −0.999992 0.00389922i \(-0.998759\pi\)
0.503373 + 0.864069i \(0.332092\pi\)
\(282\) 14.9078 + 25.8210i 0.887745 + 1.53762i
\(283\) −6.52597 11.3033i −0.387929 0.671912i 0.604242 0.796801i \(-0.293476\pi\)
−0.992171 + 0.124888i \(0.960143\pi\)
\(284\) −62.8070 −3.72691
\(285\) 4.34706 0.321078i 0.257497 0.0190190i
\(286\) 19.5157 1.15399
\(287\) 2.94236 + 5.09632i 0.173682 + 0.300826i
\(288\) 8.78510 + 15.2162i 0.517667 + 0.896626i
\(289\) −8.16072 + 14.1348i −0.480042 + 0.831458i
\(290\) −6.44762 11.1676i −0.378617 0.655784i
\(291\) 1.00000 1.73205i 0.0586210 0.101535i
\(292\) 44.6204 2.61121
\(293\) −3.07225 −0.179483 −0.0897413 0.995965i \(-0.528604\pi\)
−0.0897413 + 0.995965i \(0.528604\pi\)
\(294\) 8.56561 14.8361i 0.499557 0.865257i
\(295\) −0.540099 + 0.935479i −0.0314458 + 0.0544657i
\(296\) −67.1789 −3.90469
\(297\) −2.59225 −0.150417
\(298\) −0.122073 + 0.211437i −0.00707152 + 0.0122482i
\(299\) −4.34400 7.52403i −0.251220 0.435126i
\(300\) 2.62233 4.54201i 0.151400 0.262233i
\(301\) −1.11468 1.93069i −0.0642493 0.111283i
\(302\) −6.05240 10.4831i −0.348277 0.603233i
\(303\) −13.0816 −0.751516
\(304\) 24.6735 51.0949i 1.41512 2.93049i
\(305\) 4.07225 0.233176
\(306\) −7.76857 13.4556i −0.444099 0.769203i
\(307\) −11.7308 20.3183i −0.669510 1.15963i −0.978041 0.208412i \(-0.933171\pi\)
0.308531 0.951214i \(-0.400163\pi\)
\(308\) 5.41809 9.38441i 0.308724 0.534726i
\(309\) 7.22932 + 12.5215i 0.411262 + 0.712326i
\(310\) −12.7707 + 22.1195i −0.725326 + 1.25630i
\(311\) −5.59041 −0.317003 −0.158501 0.987359i \(-0.550666\pi\)
−0.158501 + 0.987359i \(0.550666\pi\)
\(312\) −24.4274 −1.38293
\(313\) 14.2140 24.6193i 0.803421 1.39157i −0.113930 0.993489i \(-0.536344\pi\)
0.917352 0.398078i \(-0.130323\pi\)
\(314\) 23.7490 41.1345i 1.34023 2.32135i
\(315\) −0.797044 −0.0449084
\(316\) 33.9950 1.91237
\(317\) 5.25481 9.10160i 0.295140 0.511197i −0.679878 0.733325i \(-0.737967\pi\)
0.975017 + 0.222129i \(0.0713005\pi\)
\(318\) 11.9488 + 20.6959i 0.670055 + 1.16057i
\(319\) 6.20964 10.7554i 0.347673 0.602188i
\(320\) −10.6288 18.4096i −0.594166 1.02913i
\(321\) 1.60240 + 2.77544i 0.0894371 + 0.154910i
\(322\) −6.66365 −0.371351
\(323\) −10.9415 + 22.6581i −0.608803 + 1.26073i
\(324\) 5.24466 0.291370
\(325\) 1.39852 + 2.42231i 0.0775760 + 0.134366i
\(326\) 5.73118 + 9.92670i 0.317421 + 0.549789i
\(327\) 3.89921 6.75362i 0.215627 0.373476i
\(328\) 32.2397 + 55.8409i 1.78014 + 3.08330i
\(329\) −4.41455 + 7.64622i −0.243382 + 0.421550i
\(330\) 6.97727 0.384086
\(331\) −6.39618 −0.351566 −0.175783 0.984429i \(-0.556246\pi\)
−0.175783 + 0.984429i \(0.556246\pi\)
\(332\) 7.32995 12.6958i 0.402283 0.696775i
\(333\) −3.84614 + 6.66170i −0.210767 + 0.365059i
\(334\) −10.7117 −0.586119
\(335\) 13.7757 0.752646
\(336\) −5.18761 + 8.98521i −0.283008 + 0.490184i
\(337\) 9.13861 + 15.8285i 0.497812 + 0.862235i 0.999997 0.00252482i \(-0.000803675\pi\)
−0.502185 + 0.864760i \(0.667470\pi\)
\(338\) −6.96657 + 12.0664i −0.378931 + 0.656328i
\(339\) 4.13021 + 7.15374i 0.224322 + 0.388538i
\(340\) 15.1373 + 26.2186i 0.820937 + 1.42190i
\(341\) −24.5987 −1.33209
\(342\) −6.59868 9.70082i −0.356816 0.524560i
\(343\) 10.6523 0.575169
\(344\) −12.2137 21.1548i −0.658519 1.14059i
\(345\) −1.55307 2.68999i −0.0836144 0.144824i
\(346\) 15.0356 26.0424i 0.808318 1.40005i
\(347\) 15.8293 + 27.4171i 0.849760 + 1.47183i 0.881422 + 0.472329i \(0.156587\pi\)
−0.0316618 + 0.999499i \(0.510080\pi\)
\(348\) −12.5634 + 21.7605i −0.673469 + 1.16648i
\(349\) 12.0802 0.646638 0.323319 0.946290i \(-0.395201\pi\)
0.323319 + 0.946290i \(0.395201\pi\)
\(350\) 2.14532 0.114672
\(351\) −1.39852 + 2.42231i −0.0746476 + 0.129293i
\(352\) 22.7732 39.4443i 1.21381 2.10239i
\(353\) 3.63101 0.193259 0.0966296 0.995320i \(-0.469194\pi\)
0.0966296 + 0.995320i \(0.469194\pi\)
\(354\) 2.90745 0.154529
\(355\) 5.98771 10.3710i 0.317795 0.550437i
\(356\) 35.0307 + 60.6749i 1.85662 + 3.21576i
\(357\) 2.30046 3.98451i 0.121753 0.210883i
\(358\) 12.9676 + 22.4606i 0.685360 + 1.18708i
\(359\) 2.95898 + 5.12510i 0.156169 + 0.270493i 0.933484 0.358619i \(-0.116752\pi\)
−0.777315 + 0.629112i \(0.783419\pi\)
\(360\) −8.73329 −0.460285
\(361\) −6.97940 + 17.6717i −0.367337 + 0.930088i
\(362\) −11.0356 −0.580018
\(363\) −2.14013 3.70681i −0.112327 0.194557i
\(364\) −5.84614 10.1258i −0.306421 0.530736i
\(365\) −4.25389 + 7.36795i −0.222659 + 0.385656i
\(366\) −5.48041 9.49235i −0.286466 0.496173i
\(367\) −3.09080 + 5.35342i −0.161338 + 0.279446i −0.935349 0.353727i \(-0.884914\pi\)
0.774011 + 0.633173i \(0.218248\pi\)
\(368\) −40.4330 −2.10772
\(369\) 7.38318 0.384353
\(370\) 10.3522 17.9306i 0.538187 0.932167i
\(371\) −3.53832 + 6.12855i −0.183701 + 0.318179i
\(372\) 49.7682 2.58036
\(373\) −7.24346 −0.375052 −0.187526 0.982260i \(-0.560047\pi\)
−0.187526 + 0.982260i \(0.560047\pi\)
\(374\) −20.1380 + 34.8801i −1.04131 + 1.80361i
\(375\) 0.500000 + 0.866025i 0.0258199 + 0.0447214i
\(376\) −48.3706 + 83.7804i −2.49453 + 4.32064i
\(377\) −6.70023 11.6051i −0.345079 0.597695i
\(378\) 1.07266 + 1.85790i 0.0551716 + 0.0955600i
\(379\) 15.4483 0.793524 0.396762 0.917922i \(-0.370134\pi\)
0.396762 + 0.917922i \(0.370134\pi\)
\(380\) 12.8578 + 18.9024i 0.659589 + 0.969672i
\(381\) −4.48932 −0.229995
\(382\) −30.4342 52.7136i −1.55715 2.69706i
\(383\) 9.75805 + 16.9014i 0.498613 + 0.863623i 0.999999 0.00160064i \(-0.000509500\pi\)
−0.501386 + 0.865224i \(0.667176\pi\)
\(384\) −11.0381 + 19.1185i −0.563284 + 0.975637i
\(385\) 1.03307 + 1.78933i 0.0526500 + 0.0911925i
\(386\) 22.3448 38.7023i 1.13732 1.96990i
\(387\) −2.79704 −0.142182
\(388\) 10.4893 0.532514
\(389\) −7.12876 + 12.3474i −0.361443 + 0.626037i −0.988198 0.153179i \(-0.951049\pi\)
0.626756 + 0.779216i \(0.284382\pi\)
\(390\) 3.76425 6.51987i 0.190610 0.330146i
\(391\) 17.9301 0.906764
\(392\) 55.5850 2.80747
\(393\) 9.73940 16.8691i 0.491288 0.850936i
\(394\) −23.7465 41.1302i −1.19633 2.07211i
\(395\) −3.24092 + 5.61344i −0.163068 + 0.282443i
\(396\) −6.79773 11.7740i −0.341599 0.591666i
\(397\) −13.9540 24.1690i −0.700330 1.21301i −0.968351 0.249594i \(-0.919703\pi\)
0.268021 0.963413i \(-0.413630\pi\)
\(398\) −51.3101 −2.57194
\(399\) 1.51077 3.12856i 0.0756331 0.156624i
\(400\) 13.0171 0.650857
\(401\) −9.86205 17.0816i −0.492487 0.853013i 0.507475 0.861666i \(-0.330579\pi\)
−0.999963 + 0.00865308i \(0.997246\pi\)
\(402\) −18.5392 32.1109i −0.924654 1.60155i
\(403\) −13.2710 + 22.9861i −0.661077 + 1.14502i
\(404\) −34.3042 59.4166i −1.70670 2.95609i
\(405\) −0.500000 + 0.866025i −0.0248452 + 0.0430331i
\(406\) −10.2781 −0.510092
\(407\) 19.9403 0.988403
\(408\) 25.2064 43.6587i 1.24790 2.16143i
\(409\) −9.61555 + 16.6546i −0.475459 + 0.823518i −0.999605 0.0281099i \(-0.991051\pi\)
0.524146 + 0.851628i \(0.324385\pi\)
\(410\) −19.8725 −0.981433
\(411\) −4.22753 −0.208529
\(412\) −37.9153 + 65.6712i −1.86795 + 3.23539i
\(413\) 0.430483 + 0.745618i 0.0211827 + 0.0366895i
\(414\) −4.18023 + 7.24036i −0.205447 + 0.355844i
\(415\) 1.39760 + 2.42072i 0.0686056 + 0.118828i
\(416\) −24.5723 42.5605i −1.20476 2.08670i
\(417\) −7.79093 −0.381524
\(418\) −13.2252 + 27.3872i −0.646865 + 1.33955i
\(419\) −4.45253 −0.217520 −0.108760 0.994068i \(-0.534688\pi\)
−0.108760 + 0.994068i \(0.534688\pi\)
\(420\) −2.09011 3.62018i −0.101987 0.176647i
\(421\) −6.04467 10.4697i −0.294599 0.510261i 0.680292 0.732941i \(-0.261853\pi\)
−0.974892 + 0.222680i \(0.928519\pi\)
\(422\) −18.8995 + 32.7350i −0.920016 + 1.59351i
\(423\) 5.53865 + 9.59322i 0.269298 + 0.466438i
\(424\) −38.7698 + 67.1512i −1.88283 + 3.26115i
\(425\) −5.77247 −0.280006
\(426\) −32.2329 −1.56169
\(427\) 1.62288 2.81091i 0.0785367 0.136030i
\(428\) −8.40403 + 14.5562i −0.406224 + 0.703601i
\(429\) 7.25063 0.350064
\(430\) 7.52850 0.363056
\(431\) 10.2716 17.7909i 0.494763 0.856955i −0.505219 0.862991i \(-0.668588\pi\)
0.999982 + 0.00603633i \(0.00192143\pi\)
\(432\) 6.50857 + 11.2732i 0.313144 + 0.542381i
\(433\) 9.68673 16.7779i 0.465514 0.806294i −0.533710 0.845667i \(-0.679203\pi\)
0.999225 + 0.0393730i \(0.0125360\pi\)
\(434\) 10.1788 + 17.6302i 0.488598 + 0.846276i
\(435\) −2.39547 4.14907i −0.114854 0.198933i
\(436\) 40.9000 1.95876
\(437\) 13.5026 0.997314i 0.645915 0.0477080i
\(438\) 22.8995 1.09418
\(439\) −8.61579 14.9230i −0.411209 0.712235i 0.583813 0.811888i \(-0.301560\pi\)
−0.995022 + 0.0996528i \(0.968227\pi\)
\(440\) 11.3194 + 19.6058i 0.539633 + 0.934671i
\(441\) 3.18236 5.51201i 0.151541 0.262477i
\(442\) 21.7290 + 37.6358i 1.03354 + 1.79015i
\(443\) −8.32774 + 14.4241i −0.395663 + 0.685308i −0.993186 0.116544i \(-0.962818\pi\)
0.597523 + 0.801852i \(0.296152\pi\)
\(444\) −40.3434 −1.91461
\(445\) −13.3586 −0.633259
\(446\) −32.5484 + 56.3755i −1.54121 + 2.66946i
\(447\) −0.0453536 + 0.0785548i −0.00214515 + 0.00371552i
\(448\) −16.9432 −0.800490
\(449\) −18.4698 −0.871644 −0.435822 0.900033i \(-0.643542\pi\)
−0.435822 + 0.900033i \(0.643542\pi\)
\(450\) 1.34580 2.33099i 0.0634414 0.109884i
\(451\) −9.56952 16.5749i −0.450611 0.780481i
\(452\) −21.6616 + 37.5189i −1.01887 + 1.76474i
\(453\) −2.24864 3.89475i −0.105650 0.182991i
\(454\) 4.55491 + 7.88933i 0.213772 + 0.370265i
\(455\) 2.22937 0.104514
\(456\) 16.5537 34.2799i 0.775196 1.60531i
\(457\) 3.40669 0.159358 0.0796791 0.996821i \(-0.474610\pi\)
0.0796791 + 0.996821i \(0.474610\pi\)
\(458\) −34.9455 60.5273i −1.63289 2.82826i
\(459\) −2.88624 4.99911i −0.134718 0.233338i
\(460\) 8.14532 14.1081i 0.379777 0.657794i
\(461\) −20.2028 34.9924i −0.940940 1.62976i −0.763682 0.645592i \(-0.776611\pi\)
−0.177258 0.984164i \(-0.556723\pi\)
\(462\) 2.78060 4.81613i 0.129365 0.224067i
\(463\) −22.9724 −1.06762 −0.533809 0.845605i \(-0.679240\pi\)
−0.533809 + 0.845605i \(0.679240\pi\)
\(464\) −62.3642 −2.89519
\(465\) −4.74466 + 8.21799i −0.220028 + 0.381100i
\(466\) −9.04134 + 15.6601i −0.418832 + 0.725438i
\(467\) 7.02174 0.324927 0.162464 0.986715i \(-0.448056\pi\)
0.162464 + 0.986715i \(0.448056\pi\)
\(468\) −14.6695 −0.678100
\(469\) 5.48991 9.50881i 0.253501 0.439076i
\(470\) −14.9078 25.8210i −0.687644 1.19103i
\(471\) 8.82341 15.2826i 0.406561 0.704184i
\(472\) 4.71685 + 8.16982i 0.217110 + 0.376046i
\(473\) 3.62532 + 6.27923i 0.166692 + 0.288719i
\(474\) 17.4465 0.801342
\(475\) −4.34706 + 0.321078i −0.199457 + 0.0147321i
\(476\) 24.1302 1.10601
\(477\) 4.43931 + 7.68910i 0.203262 + 0.352060i
\(478\) 34.6970 + 60.0970i 1.58700 + 2.74877i
\(479\) 1.46058 2.52981i 0.0667358 0.115590i −0.830727 0.556680i \(-0.812075\pi\)
0.897463 + 0.441090i \(0.145408\pi\)
\(480\) −8.78510 15.2162i −0.400983 0.694523i
\(481\) 10.7578 18.6331i 0.490514 0.849595i
\(482\) 20.9368 0.953643
\(483\) −2.47573 −0.112650
\(484\) 11.2242 19.4409i 0.510192 0.883679i
\(485\) −1.00000 + 1.73205i −0.0454077 + 0.0786484i
\(486\) 2.69159 0.122093
\(487\) 19.2038 0.870207 0.435104 0.900380i \(-0.356712\pi\)
0.435104 + 0.900380i \(0.356712\pi\)
\(488\) 17.7821 30.7994i 0.804956 1.39423i
\(489\) 2.12929 + 3.68804i 0.0962899 + 0.166779i
\(490\) −8.56561 + 14.8361i −0.386955 + 0.670225i
\(491\) −5.21845 9.03862i −0.235505 0.407907i 0.723914 0.689890i \(-0.242341\pi\)
−0.959419 + 0.281983i \(0.909008\pi\)
\(492\) 19.3611 + 33.5345i 0.872867 + 1.51185i
\(493\) 27.6555 1.24554
\(494\) 18.4568 + 27.1336i 0.830410 + 1.22080i
\(495\) 2.59225 0.116513
\(496\) 61.7619 + 106.975i 2.77319 + 4.80330i
\(497\) −4.77247 8.26617i −0.214075 0.370788i
\(498\) 3.76177 6.51558i 0.168569 0.291970i
\(499\) −13.0850 22.6639i −0.585766 1.01458i −0.994780 0.102048i \(-0.967461\pi\)
0.409014 0.912528i \(-0.365873\pi\)
\(500\) −2.62233 + 4.54201i −0.117274 + 0.203125i
\(501\) −3.97970 −0.177800
\(502\) −29.2693 −1.30635
\(503\) −2.67547 + 4.63405i −0.119293 + 0.206622i −0.919488 0.393119i \(-0.871396\pi\)
0.800195 + 0.599740i \(0.204730\pi\)
\(504\) −3.48041 + 6.02825i −0.155030 + 0.268520i
\(505\) 13.0816 0.582122
\(506\) 21.6724 0.963454
\(507\) −2.58827 + 4.48302i −0.114949 + 0.199098i
\(508\) −11.7725 20.3905i −0.522319 0.904683i
\(509\) −4.89455 + 8.47760i −0.216947 + 0.375763i −0.953873 0.300210i \(-0.902943\pi\)
0.736926 + 0.675973i \(0.236277\pi\)
\(510\) 7.76857 + 13.4556i 0.343998 + 0.595822i
\(511\) 3.39054 + 5.87258i 0.149989 + 0.259788i
\(512\) −1.34875 −0.0596067
\(513\) −2.45159 3.60412i −0.108240 0.159126i
\(514\) −30.2920 −1.33612
\(515\) −7.22932 12.5215i −0.318562 0.551765i
\(516\) −7.33477 12.7042i −0.322895 0.559271i
\(517\) 14.3575 24.8680i 0.631444 1.09369i
\(518\) −8.25118 14.2915i −0.362536 0.627931i
\(519\) 5.58614 9.67547i 0.245204 0.424706i
\(520\) 24.4274 1.07121
\(521\) 26.4315 1.15799 0.578993 0.815333i \(-0.303446\pi\)
0.578993 + 0.815333i \(0.303446\pi\)
\(522\) −6.44762 + 11.1676i −0.282204 + 0.488792i
\(523\) −14.3312 + 24.8223i −0.626659 + 1.08541i 0.361559 + 0.932349i \(0.382245\pi\)
−0.988218 + 0.153056i \(0.951089\pi\)
\(524\) 102.160 4.46287
\(525\) 0.797044 0.0347859
\(526\) −17.9512 + 31.0924i −0.782709 + 1.35569i
\(527\) −27.3884 47.4381i −1.19306 2.06644i
\(528\) 16.8718 29.2228i 0.734252 1.27176i
\(529\) 6.67595 + 11.5631i 0.290259 + 0.502743i
\(530\) −11.9488 20.6959i −0.519022 0.898973i
\(531\) 1.08020 0.0468766
\(532\) 18.1717 1.34218i 0.787842 0.0581909i
\(533\) −20.6511 −0.894498
\(534\) 17.9780 + 31.1387i 0.777982 + 1.34750i
\(535\) −1.60240 2.77544i −0.0692777 0.119993i
\(536\) 60.1535 104.189i 2.59824 4.50028i
\(537\) 4.81783 + 8.34472i 0.207905 + 0.360101i
\(538\) −9.51205 + 16.4754i −0.410094 + 0.710303i
\(539\) −16.4989 −0.710659
\(540\) −5.24466 −0.225694
\(541\) 12.0973 20.9531i 0.520103 0.900846i −0.479623 0.877474i \(-0.659227\pi\)
0.999727 0.0233711i \(-0.00743993\pi\)
\(542\) −31.0310 + 53.7473i −1.33290 + 2.30865i
\(543\) −4.10003 −0.175949
\(544\) 101.424 4.34850
\(545\) −3.89921 + 6.75362i −0.167024 + 0.289293i
\(546\) −3.00027 5.19662i −0.128400 0.222395i
\(547\) −15.4959 + 26.8396i −0.662555 + 1.14758i 0.317387 + 0.948296i \(0.397195\pi\)
−0.979942 + 0.199283i \(0.936139\pi\)
\(548\) −11.0860 19.2015i −0.473569 0.820246i
\(549\) −2.03612 3.52667i −0.0868996 0.150515i
\(550\) −6.97727 −0.297512
\(551\) 20.8265 1.53827i 0.887237 0.0655323i
\(552\) −27.1268 −1.15459
\(553\) 2.58316 + 4.47416i 0.109847 + 0.190261i
\(554\) 25.3630 + 43.9300i 1.07757 + 1.86641i
\(555\) 3.84614 6.66170i 0.163259 0.282774i
\(556\) −20.4304 35.3865i −0.866442 1.50072i
\(557\) −6.38318 + 11.0560i −0.270464 + 0.468457i −0.968981 0.247136i \(-0.920510\pi\)
0.698517 + 0.715594i \(0.253844\pi\)
\(558\) 25.5414 1.08125
\(559\) 7.82346 0.330897
\(560\) 5.18761 8.98521i 0.219217 0.379695i
\(561\) −7.48184 + 12.9589i −0.315884 + 0.547126i
\(562\) −44.8142 −1.89037
\(563\) −8.11088 −0.341833 −0.170916 0.985286i \(-0.554673\pi\)
−0.170916 + 0.985286i \(0.554673\pi\)
\(564\) −29.0483 + 50.3132i −1.22315 + 2.11857i
\(565\) −4.13021 7.15374i −0.173759 0.300960i
\(566\) 17.5652 30.4239i 0.738322 1.27881i
\(567\) 0.398522 + 0.690261i 0.0167364 + 0.0289882i
\(568\) −52.2925 90.5732i −2.19414 3.80037i
\(569\) 21.0412 0.882091 0.441046 0.897485i \(-0.354608\pi\)
0.441046 + 0.897485i \(0.354608\pi\)
\(570\) 6.59868 + 9.70082i 0.276388 + 0.406323i
\(571\) −8.45300 −0.353747 −0.176873 0.984234i \(-0.556598\pi\)
−0.176873 + 0.984234i \(0.556598\pi\)
\(572\) 19.0135 + 32.9324i 0.794996 + 1.37697i
\(573\) −11.3071 19.5845i −0.472363 0.818156i
\(574\) −7.91963 + 13.7172i −0.330559 + 0.572545i
\(575\) 1.55307 + 2.68999i 0.0647674 + 0.112181i
\(576\) −10.6288 + 18.4096i −0.442865 + 0.767065i
\(577\) 23.4005 0.974174 0.487087 0.873354i \(-0.338060\pi\)
0.487087 + 0.873354i \(0.338060\pi\)
\(578\) −43.9306 −1.82727
\(579\) 8.30170 14.3790i 0.345007 0.597570i
\(580\) 12.5634 21.7605i 0.521667 0.903554i
\(581\) 2.22790 0.0924289
\(582\) 5.38318 0.223140
\(583\) 11.5078 19.9321i 0.476604 0.825501i
\(584\) 37.1505 + 64.3465i 1.53730 + 2.66268i
\(585\) 1.39852 2.42231i 0.0578218 0.100150i
\(586\) −4.13462 7.16136i −0.170799 0.295833i
\(587\) −15.0838 26.1258i −0.622574 1.07833i −0.989005 0.147884i \(-0.952754\pi\)
0.366431 0.930445i \(-0.380580\pi\)
\(588\) 33.3808 1.37660
\(589\) −23.2639 34.2007i −0.958573 1.40921i
\(590\) −2.90745 −0.119698
\(591\) −8.82249 15.2810i −0.362909 0.628576i
\(592\) −50.0657 86.7163i −2.05769 3.56402i
\(593\) −11.3496 + 19.6581i −0.466073 + 0.807262i −0.999249 0.0387422i \(-0.987665\pi\)
0.533176 + 0.846004i \(0.320998\pi\)
\(594\) −3.48863 6.04249i −0.143140 0.247926i
\(595\) −2.30046 + 3.98451i −0.0943096 + 0.163349i
\(596\) −0.475729 −0.0194866
\(597\) −19.0631 −0.780201
\(598\) 11.6923 20.2516i 0.478133 0.828150i
\(599\) 9.96335 17.2570i 0.407091 0.705103i −0.587471 0.809245i \(-0.699876\pi\)
0.994562 + 0.104142i \(0.0332098\pi\)
\(600\) 8.73329 0.356535
\(601\) 24.8942 1.01545 0.507727 0.861518i \(-0.330486\pi\)
0.507727 + 0.861518i \(0.330486\pi\)
\(602\) 3.00027 5.19662i 0.122282 0.211799i
\(603\) −6.88784 11.9301i −0.280495 0.485831i
\(604\) 11.7933 20.4266i 0.479864 0.831148i
\(605\) 2.14013 + 3.70681i 0.0870085 + 0.150703i
\(606\) −17.6051 30.4929i −0.715159 1.23869i
\(607\) −11.3318 −0.459945 −0.229972 0.973197i \(-0.573864\pi\)
−0.229972 + 0.973197i \(0.573864\pi\)
\(608\) 76.3787 5.64141i 3.09756 0.228790i
\(609\) −3.81859 −0.154737
\(610\) 5.48041 + 9.49235i 0.221895 + 0.384334i
\(611\) −15.4918 26.8327i −0.626733 1.08553i
\(612\) 15.1373 26.2186i 0.611890 1.05982i
\(613\) 3.48427 + 6.03493i 0.140728 + 0.243749i 0.927771 0.373150i \(-0.121722\pi\)
−0.787043 + 0.616898i \(0.788389\pi\)
\(614\) 31.5744 54.6885i 1.27424 2.20705i
\(615\) −7.38318 −0.297719
\(616\) 18.0442 0.727020
\(617\) 2.46999 4.27814i 0.0994380 0.172232i −0.812014 0.583638i \(-0.801629\pi\)
0.911452 + 0.411406i \(0.134962\pi\)
\(618\) −19.4584 + 33.7029i −0.782730 + 1.35573i
\(619\) −17.7750 −0.714439 −0.357219 0.934021i \(-0.616275\pi\)
−0.357219 + 0.934021i \(0.616275\pi\)
\(620\) −49.7682 −1.99874
\(621\) −1.55307 + 2.68999i −0.0623225 + 0.107946i
\(622\) −7.52354 13.0312i −0.301667 0.522502i
\(623\) −5.32370 + 9.22092i −0.213290 + 0.369428i
\(624\) −18.2047 31.5315i −0.728773 1.26227i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 76.5164 3.05821
\(627\) −4.91352 + 10.1751i −0.196227 + 0.406354i
\(628\) 92.5515 3.69321
\(629\) 22.2017 + 38.4545i 0.885241 + 1.53328i
\(630\) −1.07266 1.85790i −0.0427357 0.0740205i
\(631\) 5.14920 8.91868i 0.204987 0.355047i −0.745142 0.666906i \(-0.767618\pi\)
0.950128 + 0.311859i \(0.100952\pi\)
\(632\) 28.3039 + 49.0238i 1.12587 + 1.95006i
\(633\) −7.02170 + 12.1619i −0.279088 + 0.483394i
\(634\) 28.2876 1.12344
\(635\) 4.48932 0.178153
\(636\) −23.2826 + 40.3267i −0.923217 + 1.59906i
\(637\) −8.90120 + 15.4173i −0.352678 + 0.610857i
\(638\) 33.4276 1.32341
\(639\) −11.9754 −0.473741
\(640\) 11.0381 19.1185i 0.436318 0.755725i
\(641\) −12.4745 21.6065i −0.492713 0.853405i 0.507251 0.861798i \(-0.330662\pi\)
−0.999965 + 0.00839344i \(0.997328\pi\)
\(642\) −4.31300 + 7.47033i −0.170221 + 0.294831i
\(643\) 2.84614 + 4.92965i 0.112241 + 0.194407i 0.916673 0.399637i \(-0.130864\pi\)
−0.804433 + 0.594044i \(0.797531\pi\)
\(644\) −6.49218 11.2448i −0.255828 0.443106i
\(645\) 2.79704 0.110134
\(646\) −67.5408 + 4.98864i −2.65736 + 0.196275i
\(647\) −19.9379 −0.783840 −0.391920 0.919999i \(-0.628189\pi\)
−0.391920 + 0.919999i \(0.628189\pi\)
\(648\) 4.36665 + 7.56325i 0.171538 + 0.297113i
\(649\) −1.40007 2.42499i −0.0549576 0.0951894i
\(650\) −3.76425 + 6.51987i −0.147646 + 0.255730i
\(651\) 3.78170 + 6.55010i 0.148217 + 0.256719i
\(652\) −11.1674 + 19.3425i −0.437349 + 0.757511i
\(653\) 21.5636 0.843848 0.421924 0.906631i \(-0.361355\pi\)
0.421924 + 0.906631i \(0.361355\pi\)
\(654\) 20.9901 0.820779
\(655\) −9.73940 + 16.8691i −0.380550 + 0.659132i
\(656\) −48.0539 + 83.2318i −1.87619 + 3.24966i
\(657\) 8.50778 0.331920
\(658\) −23.7643 −0.926429
\(659\) 20.3255 35.2049i 0.791771 1.37139i −0.133099 0.991103i \(-0.542493\pi\)
0.924870 0.380284i \(-0.124174\pi\)
\(660\) 6.79773 + 11.7740i 0.264601 + 0.458303i
\(661\) 19.7551 34.2168i 0.768384 1.33088i −0.170055 0.985435i \(-0.554395\pi\)
0.938439 0.345445i \(-0.112272\pi\)
\(662\) −8.60795 14.9094i −0.334557 0.579471i
\(663\) 8.07293 + 13.9827i 0.313527 + 0.543044i
\(664\) 24.4113 0.947343
\(665\) −1.51077 + 3.12856i −0.0585852 + 0.121320i
\(666\) −20.7045 −0.802281
\(667\) −7.44065 12.8876i −0.288103 0.499009i
\(668\) −10.4361 18.0758i −0.403784 0.699375i
\(669\) −12.0926 + 20.9451i −0.467528 + 0.809783i
\(670\) 18.5392 + 32.1109i 0.716234 + 1.24055i
\(671\) −5.27814 + 9.14200i −0.203760 + 0.352923i
\(672\) −14.0042 −0.540225
\(673\) 6.47351 0.249536 0.124768 0.992186i \(-0.460181\pi\)
0.124768 + 0.992186i \(0.460181\pi\)
\(674\) −24.5974 + 42.6039i −0.947456 + 1.64104i
\(675\) 0.500000 0.866025i 0.0192450 0.0333333i
\(676\) −27.1492 −1.04420
\(677\) 45.8593 1.76252 0.881258 0.472636i \(-0.156697\pi\)
0.881258 + 0.472636i \(0.156697\pi\)
\(678\) −11.1168 + 19.2549i −0.426940 + 0.739481i
\(679\) 0.797044 + 1.38052i 0.0305877 + 0.0529795i
\(680\) −25.2064 + 43.6587i −0.966619 + 1.67423i
\(681\) 1.69227 + 2.93111i 0.0648481 + 0.112320i
\(682\) −33.1048 57.3391i −1.26765 2.19563i
\(683\) −7.04406 −0.269533 −0.134767 0.990877i \(-0.543028\pi\)
−0.134767 + 0.990877i \(0.543028\pi\)
\(684\) 9.94108 20.5863i 0.380107 0.787139i
\(685\) 4.22753 0.161526
\(686\) 14.3358 + 24.8303i 0.547343 + 0.948025i
\(687\) −12.9832 22.4876i −0.495340 0.857955i
\(688\) 18.2047 31.5315i 0.694049 1.20213i
\(689\) −12.4169 21.5068i −0.473047 0.819342i
\(690\) 4.18023 7.24036i 0.159138 0.275636i
\(691\) 6.01990 0.229008 0.114504 0.993423i \(-0.463472\pi\)
0.114504 + 0.993423i \(0.463472\pi\)
\(692\) 58.5948 2.22744
\(693\) 1.03307 1.78933i 0.0392430 0.0679709i
\(694\) −42.6059 + 73.7957i −1.61730 + 2.80124i
\(695\) 7.79093 0.295527
\(696\) −41.8406 −1.58596
\(697\) 21.3096 36.9093i 0.807159 1.39804i
\(698\) 16.2575 + 28.1588i 0.615354 + 1.06583i
\(699\) −3.35911 + 5.81814i −0.127053 + 0.220062i
\(700\) 2.09011 + 3.62018i 0.0789988 + 0.136830i
\(701\) −0.268547 0.465137i −0.0101429 0.0175680i 0.860909 0.508758i \(-0.169895\pi\)
−0.871052 + 0.491190i \(0.836562\pi\)
\(702\) −7.52850 −0.284145
\(703\) 18.8583 + 27.7239i 0.711255 + 1.04563i
\(704\) 55.1048 2.07684
\(705\) −5.53865 9.59322i −0.208598 0.361302i
\(706\) 4.88659 + 8.46383i 0.183909 + 0.318540i
\(707\) 5.21329 9.02969i 0.196066 0.339596i
\(708\) 2.83264 + 4.90627i 0.106457 + 0.184389i
\(709\) −11.3786 + 19.7083i −0.427333 + 0.740162i −0.996635 0.0819663i \(-0.973880\pi\)
0.569302 + 0.822128i \(0.307213\pi\)
\(710\) 32.2329 1.20968
\(711\) 6.48184 0.243088
\(712\) −58.3323 + 101.035i −2.18610 + 3.78643i
\(713\) −14.7376 + 25.5262i −0.551926 + 0.955964i
\(714\) 12.3838 0.463451
\(715\) −7.25063 −0.271158
\(716\) −25.2679 + 43.7652i −0.944304 + 1.63558i
\(717\) 12.8909 + 22.3277i 0.481419 + 0.833843i
\(718\) −7.96436 + 13.7947i −0.297227 + 0.514813i
\(719\) −1.29796 2.24814i −0.0484059 0.0838415i 0.840807 0.541335i \(-0.182081\pi\)
−0.889213 + 0.457493i \(0.848747\pi\)
\(720\) −6.50857 11.2732i −0.242560 0.420126i
\(721\) −11.5242 −0.429183
\(722\) −50.5853 + 7.51356i −1.88259 + 0.279626i
\(723\) 7.77858 0.289289
\(724\) −10.7516 18.6224i −0.399581 0.692094i
\(725\) 2.39547 + 4.14907i 0.0889654 + 0.154093i
\(726\) 5.76034 9.97721i 0.213786 0.370289i
\(727\) −12.0755 20.9155i −0.447857 0.775711i 0.550389 0.834908i \(-0.314479\pi\)
−0.998246 + 0.0591969i \(0.981146\pi\)
\(728\) 9.73486 16.8613i 0.360798 0.624920i
\(729\) 1.00000 0.0370370
\(730\) −22.8995 −0.847547
\(731\) −8.07293 + 13.9827i −0.298588 + 0.517170i
\(732\) 10.6788 18.4962i 0.394699 0.683638i
\(733\) 0.0870881 0.00321667 0.00160834 0.999999i \(-0.499488\pi\)
0.00160834 + 0.999999i \(0.499488\pi\)
\(734\) −16.6383 −0.614131
\(735\) −3.18236 + 5.51201i −0.117383 + 0.203314i
\(736\) −27.2877 47.2637i −1.00584 1.74216i
\(737\) −17.8550 + 30.9257i −0.657697 + 1.13916i
\(738\) 9.93625 + 17.2101i 0.365758 + 0.633512i
\(739\) 10.6880 + 18.5122i 0.393166 + 0.680983i 0.992865 0.119242i \(-0.0380465\pi\)
−0.599699 + 0.800225i \(0.704713\pi\)
\(740\) 40.3434 1.48305
\(741\) 6.85721 + 10.0809i 0.251906 + 0.370331i
\(742\) −19.0474 −0.699253
\(743\) 10.3616 + 17.9469i 0.380131 + 0.658407i 0.991081 0.133263i \(-0.0425454\pi\)
−0.610949 + 0.791670i \(0.709212\pi\)
\(744\) 41.4365 + 71.7701i 1.51914 + 2.63122i
\(745\) 0.0453536 0.0785548i 0.00166163 0.00287803i
\(746\) −9.74821 16.8844i −0.356907 0.618182i
\(747\) 1.39760 2.42072i 0.0511356 0.0885694i
\(748\) −78.4794 −2.86949
\(749\) −2.55436 −0.0933344
\(750\) −1.34580 + 2.33099i −0.0491415 + 0.0851156i
\(751\) −6.81691 + 11.8072i −0.248752 + 0.430852i −0.963180 0.268858i \(-0.913354\pi\)
0.714427 + 0.699709i \(0.246687\pi\)
\(752\) −144.195 −5.25824
\(753\) −10.8743 −0.396283
\(754\) 18.0343 31.2363i 0.656769 1.13756i
\(755\) 2.24864 + 3.89475i 0.0818362 + 0.141744i
\(756\) −2.09011 + 3.62018i −0.0760167 + 0.131665i
\(757\) 4.40600 + 7.63142i 0.160139 + 0.277369i 0.934918 0.354863i \(-0.115472\pi\)
−0.774780 + 0.632232i \(0.782139\pi\)
\(758\) 20.7902 + 36.0097i 0.755134 + 1.30793i
\(759\) 8.05188 0.292265
\(760\) −16.5537 + 34.2799i −0.600465 + 1.24346i
\(761\) 36.5972 1.32665 0.663323 0.748333i \(-0.269145\pi\)
0.663323 + 0.748333i \(0.269145\pi\)
\(762\) −6.04170 10.4645i −0.218868 0.379090i
\(763\) 3.10784 + 5.38294i 0.112511 + 0.194875i
\(764\) 59.3021 102.714i 2.14548 3.71607i
\(765\) 2.88624 + 4.99911i 0.104352 + 0.180743i
\(766\) −26.2647 + 45.4918i −0.948981 + 1.64368i
\(767\) −3.02136 −0.109095
\(768\) −16.9049 −0.610002
\(769\) −5.91386 + 10.2431i −0.213259 + 0.369376i −0.952733 0.303810i \(-0.901741\pi\)
0.739473 + 0.673186i \(0.235075\pi\)
\(770\) −2.78060 + 4.81613i −0.100206 + 0.173561i
\(771\) −11.2543 −0.405314
\(772\) 87.0792 3.13405
\(773\) 6.57819 11.3938i 0.236601 0.409805i −0.723136 0.690706i \(-0.757300\pi\)
0.959737 + 0.280901i \(0.0906333\pi\)
\(774\) −3.76425 6.51987i −0.135303 0.234352i
\(775\) 4.74466 8.21799i 0.170433 0.295199i
\(776\) 8.73329 + 15.1265i 0.313507 + 0.543010i
\(777\) −3.06554 5.30967i −0.109976 0.190483i
\(778\) −38.3754 −1.37583
\(779\) 13.9946 28.9805i 0.501408 1.03833i
\(780\) 14.6695 0.525254
\(781\) 15.5216 + 26.8843i 0.555408 + 0.961995i
\(782\) 24.1302 + 41.7948i 0.862895 + 1.49458i
\(783\) −2.39547 + 4.14907i −0.0856070 + 0.148276i
\(784\) 41.4252 + 71.7506i 1.47947 + 2.56252i
\(785\) −8.82341 + 15.2826i −0.314921 + 0.545459i
\(786\) 52.4290 1.87008
\(787\) 4.59331 0.163734 0.0818669 0.996643i \(-0.473912\pi\)
0.0818669 + 0.996643i \(0.473912\pi\)
\(788\) 46.2709 80.1436i 1.64833 2.85500i
\(789\) −6.66936 + 11.5517i −0.237435 + 0.411250i
\(790\) −17.4465 −0.620717
\(791\) −6.58392 −0.234097
\(792\) 11.3194 19.6058i 0.402218 0.696663i
\(793\) 5.69513 + 9.86425i 0.202240 + 0.350290i
\(794\) 37.5584 65.0530i 1.33290 2.30865i
\(795\) −4.43931 7.68910i −0.157446 0.272704i
\(796\) −49.9897 86.5848i −1.77184 3.06892i
\(797\) 10.1848 0.360764 0.180382 0.983597i \(-0.442267\pi\)
0.180382 + 0.983597i \(0.442267\pi\)
\(798\) 9.32581 0.688815i 0.330130 0.0243838i
\(799\) 63.9434 2.26215
\(800\) 8.78510 + 15.2162i 0.310600 + 0.537975i
\(801\) 6.67930 + 11.5689i 0.236002 + 0.408767i
\(802\) 26.5446 45.9766i 0.937323 1.62349i
\(803\) −11.0271 19.0996i −0.389139 0.674009i
\(804\) 36.1244 62.5693i 1.27401 2.20665i
\(805\) 2.47573 0.0872580
\(806\) −71.4403 −2.51638
\(807\) −3.53399 + 6.12105i −0.124402 + 0.215471i
\(808\) 57.1226 98.9392i 2.00957 3.48067i
\(809\) 31.9669 1.12390 0.561948 0.827173i \(-0.310052\pi\)
0.561948 + 0.827173i \(0.310052\pi\)
\(810\) −2.69159 −0.0945728
\(811\) −11.1179 + 19.2568i −0.390403 + 0.676198i −0.992503 0.122223i \(-0.960998\pi\)
0.602099 + 0.798421i \(0.294331\pi\)
\(812\) −10.0136 17.3440i −0.351408 0.608657i
\(813\) −11.5289 + 19.9686i −0.404336 + 0.700330i
\(814\) 26.8355 + 46.4805i 0.940585 + 1.62914i
\(815\) −2.12929 3.68804i −0.0745858 0.129186i
\(816\) 75.1410 2.63046
\(817\) −5.30170 + 10.9790i −0.185483 + 0.384105i
\(818\) −51.7623 −1.80983
\(819\) −1.11468 1.93069i −0.0389502 0.0674637i
\(820\) −19.3611 33.5345i −0.676120 1.17107i
\(821\) −25.5604 + 44.2720i −0.892065 + 1.54510i −0.0546706 + 0.998504i \(0.517411\pi\)
−0.837395 + 0.546598i \(0.815922\pi\)
\(822\) −5.68939 9.85431i −0.198440 0.343708i
\(823\) 17.1145 29.6431i 0.596573 1.03329i −0.396750 0.917927i \(-0.629862\pi\)
0.993323 0.115368i \(-0.0368046\pi\)
\(824\) −126.272 −4.39888
\(825\) −2.59225 −0.0902505
\(826\) −1.15868 + 2.00690i −0.0403158 + 0.0698290i
\(827\) −4.28856 + 7.42801i −0.149128 + 0.258297i −0.930905 0.365260i \(-0.880980\pi\)
0.781777 + 0.623558i \(0.214313\pi\)
\(828\) −16.2906 −0.566139
\(829\) −13.4230 −0.466199 −0.233099 0.972453i \(-0.574887\pi\)
−0.233099 + 0.972453i \(0.574887\pi\)
\(830\) −3.76177 + 6.51558i −0.130573 + 0.226159i
\(831\) 9.42304 + 16.3212i 0.326882 + 0.566176i
\(832\) 29.7291 51.4923i 1.03067 1.78518i
\(833\) −18.3701 31.8179i −0.636486 1.10243i
\(834\) −10.4850 18.1606i −0.363066 0.628849i
\(835\) 3.97970 0.137723
\(836\) −59.1002 + 4.36521i −2.04402 + 0.150974i
\(837\) 9.48932 0.327999
\(838\) −5.99219 10.3788i −0.206997 0.358529i
\(839\) −19.8194 34.3282i −0.684242 1.18514i −0.973675 0.227943i \(-0.926800\pi\)
0.289433 0.957198i \(-0.406533\pi\)
\(840\) 3.48041 6.02825i 0.120086 0.207994i
\(841\) 3.02348 + 5.23682i 0.104258 + 0.180580i
\(842\) 16.2698 28.1801i 0.560693 0.971150i
\(843\) −16.6497 −0.573447
\(844\) −73.6529 −2.53524
\(845\) 2.58827 4.48302i 0.0890393 0.154221i
\(846\) −14.9078 + 25.8210i −0.512540 + 0.887745i
\(847\) 3.41155 0.117222
\(848\) −115.574 −3.96883
\(849\) 6.52597 11.3033i 0.223971 0.387929i
\(850\) −7.76857 13.4556i −0.266460 0.461522i
\(851\) 11.9466 20.6922i 0.409525 0.709319i
\(852\) −31.4035 54.3925i −1.07587 1.86346i
\(853\) 3.02452 + 5.23863i 0.103558 + 0.179367i 0.913148 0.407628i \(-0.133644\pi\)
−0.809590 + 0.586995i \(0.800311\pi\)
\(854\) 8.73626 0.298949
\(855\) 2.45159 + 3.60412i 0.0838426 + 0.123258i
\(856\) −27.9884 −0.956625
\(857\) −25.6680 44.4583i −0.876803 1.51867i −0.854829 0.518909i \(-0.826338\pi\)
−0.0219737 0.999759i \(-0.506995\pi\)
\(858\) 9.75787 + 16.9011i 0.333128 + 0.576995i
\(859\) −6.03713 + 10.4566i −0.205984 + 0.356775i −0.950446 0.310890i \(-0.899373\pi\)
0.744462 + 0.667665i \(0.232706\pi\)
\(860\) 7.33477 + 12.7042i 0.250114 + 0.433210i
\(861\) −2.94236 + 5.09632i −0.100275 + 0.173682i
\(862\) 55.2936 1.88331
\(863\) −12.8023 −0.435797 −0.217898 0.975971i \(-0.569920\pi\)
−0.217898 + 0.975971i \(0.569920\pi\)
\(864\) −8.78510 + 15.2162i −0.298875 + 0.517667i
\(865\) −5.58614 + 9.67547i −0.189934 + 0.328976i
\(866\) 52.1454 1.77197
\(867\) −16.3214 −0.554305
\(868\) −19.8337 + 34.3531i −0.673201 + 1.16602i
\(869\) −8.40127 14.5514i −0.284993 0.493623i
\(870\) 6.44762 11.1676i 0.218595 0.378617i
\(871\) 19.2656 + 33.3690i 0.652790 + 1.13067i
\(872\) 34.0529 + 58.9814i 1.15318 + 1.99736i
\(873\) 2.00000 0.0676897
\(874\) 20.4964 + 30.1321i 0.693301 + 1.01923i
\(875\) −0.797044 −0.0269450
\(876\) 22.3102 + 38.6424i 0.753792 + 1.30561i
\(877\) 15.2683 + 26.4455i 0.515575 + 0.893002i 0.999837 + 0.0180785i \(0.00575488\pi\)
−0.484262 + 0.874923i \(0.660912\pi\)
\(878\) 23.1902 40.1666i 0.782631 1.35556i
\(879\) −1.53612 2.66064i −0.0518122 0.0897413i
\(880\) −16.8718 + 29.2228i −0.568749 + 0.985102i
\(881\) −6.79947 −0.229080 −0.114540 0.993419i \(-0.536539\pi\)
−0.114540 + 0.993419i \(0.536539\pi\)
\(882\) 17.1312 0.576838
\(883\) −13.5370 + 23.4468i −0.455558 + 0.789049i −0.998720 0.0505785i \(-0.983893\pi\)
0.543162 + 0.839628i \(0.317227\pi\)
\(884\) −42.3398 + 73.3346i −1.42404 + 2.46651i
\(885\) −1.08020 −0.0363105
\(886\) −44.8297 −1.50608
\(887\) 5.62312 9.73952i 0.188806 0.327021i −0.756047 0.654518i \(-0.772872\pi\)
0.944852 + 0.327497i \(0.106205\pi\)
\(888\) −33.5894 58.1786i −1.12719 1.95235i
\(889\) 1.78909 3.09880i 0.0600042 0.103930i
\(890\) −17.9780 31.1387i −0.602622 1.04377i
\(891\) −1.29612 2.24495i −0.0434218 0.0752087i
\(892\) −126.844 −4.24704
\(893\) 48.1536 3.55668i 1.61140 0.119020i
\(894\) −0.244147 −0.00816549
\(895\) −4.81783 8.34472i −0.161042 0.278933i
\(896\) −8.79783 15.2383i −0.293915 0.509075i
\(897\) 4.34400 7.52403i 0.145042 0.251220i
\(898\) −24.8566 43.0528i −0.829474 1.43669i
\(899\) −22.7313 + 39.3718i −0.758133 + 1.31312i
\(900\) 5.24466 0.174822
\(901\) 51.2515 1.70744
\(902\) 25.7572 44.6128i 0.857622 1.48544i
\(903\) 1.11468 1.93069i 0.0370944 0.0642493i
\(904\) −72.1407 −2.39936
\(905\) 4.10003 0.136289
\(906\) 6.05240 10.4831i 0.201078 0.348277i
\(907\) 21.4377 + 37.1313i 0.711829 + 1.23292i 0.964170 + 0.265285i \(0.0854661\pi\)
−0.252341 + 0.967638i \(0.581201\pi\)
\(908\) −8.87540 + 15.3726i −0.294541 + 0.510159i
\(909\) −6.54078 11.3290i −0.216944 0.375758i
\(910\) 3.00027 + 5.19662i 0.0994581 + 0.172266i
\(911\) 39.7951 1.31847 0.659235 0.751937i \(-0.270880\pi\)
0.659235 + 0.751937i \(0.270880\pi\)
\(912\) 56.5862 4.17952i 1.87376 0.138398i
\(913\) −7.24586 −0.239803
\(914\) 4.58471 + 7.94095i 0.151649 + 0.262663i
\(915\) 2.03612 + 3.52667i 0.0673122 + 0.116588i
\(916\) 68.0925 117.940i 2.24984 3.89684i
\(917\) 7.76274 + 13.4455i 0.256348 + 0.444008i
\(918\) 7.76857 13.4556i 0.256401 0.444099i
\(919\) −51.8927 −1.71178 −0.855891 0.517156i \(-0.826991\pi\)
−0.855891 + 0.517156i \(0.826991\pi\)
\(920\) 27.1268 0.894345
\(921\) 11.7308 20.3183i 0.386542 0.669510i
\(922\) 54.3778 94.1851i 1.79084 3.10182i
\(923\) 33.4958 1.10253
\(924\) 10.8362 0.356484
\(925\) −3.84614 + 6.66170i −0.126460 + 0.219036i
\(926\) −30.9161 53.5483i −1.01597 1.75971i
\(927\) −7.22932 + 12.5215i −0.237442 + 0.411262i
\(928\) −42.0888 72.9000i −1.38163 2.39306i
\(929\) 13.0662 + 22.6313i 0.428687 + 0.742508i 0.996757 0.0804727i \(-0.0256430\pi\)
−0.568070 + 0.822980i \(0.692310\pi\)
\(930\) −25.5414 −0.837534
\(931\) −15.6037 22.9392i −0.511390 0.751803i
\(932\) −35.2347 −1.15415
\(933\) −2.79520 4.84143i −0.0915109 0.158501i
\(934\) 9.44982 + 16.3676i 0.309208 + 0.535563i
\(935\) 7.48184 12.9589i 0.244682 0.423802i
\(936\) −12.2137 21.1548i −0.399217 0.691465i
\(937\) −16.1159 + 27.9135i −0.526483 + 0.911895i 0.473041 + 0.881040i \(0.343156\pi\)
−0.999524 + 0.0308547i \(0.990177\pi\)
\(938\) 29.5532 0.964946
\(939\) 28.4280 0.927711
\(940\) 29.0483 50.3132i 0.947452 1.64103i
\(941\) 16.9670 29.3878i 0.553110 0.958014i −0.444938 0.895561i \(-0.646774\pi\)
0.998048 0.0624526i \(-0.0198922\pi\)
\(942\) 47.4980 1.54757
\(943\) −22.9332 −0.746807
\(944\) −7.03054 + 12.1773i −0.228825 + 0.396336i
\(945\) −0.398522 0.690261i −0.0129639 0.0224542i
\(946\) −9.75787 + 16.9011i −0.317256 + 0.549503i
\(947\) −0.448299 0.776476i −0.0145678 0.0252321i 0.858650 0.512563i \(-0.171304\pi\)
−0.873217 + 0.487331i \(0.837971\pi\)
\(948\) 16.9975 + 29.4406i 0.552054 + 0.956185i
\(949\) −23.7966 −0.772471
\(950\) −6.59868 9.70082i −0.214089 0.314736i
\(951\) 10.5096 0.340798
\(952\) 20.0906 + 34.7979i 0.651139 + 1.12781i
\(953\) 15.3609 + 26.6059i 0.497590 + 0.861851i 0.999996 0.00278072i \(-0.000885133\pi\)
−0.502406 + 0.864632i \(0.667552\pi\)
\(954\) −11.9488 + 20.6959i −0.386856 + 0.670055i
\(955\) 11.3071 + 19.5845i 0.365891 + 0.633741i
\(956\) −67.6084 + 117.101i −2.18661 + 3.78732i
\(957\) 12.4193 0.401458
\(958\) 7.86259 0.254029
\(959\) 1.68476 2.91810i 0.0544038 0.0942302i
\(960\) 10.6288 18.4096i 0.343042 0.594166i
\(961\) 59.0472 1.90475
\(962\) 57.9113 1.86713
\(963\) −1.60240 + 2.77544i −0.0516366 + 0.0894371i
\(964\) 20.3980 + 35.3304i 0.656976 + 1.13792i
\(965\) −8.30170 + 14.3790i −0.267241 + 0.462876i
\(966\) −3.33182 5.77089i −0.107200 0.185675i
\(967\) 6.82768 + 11.8259i 0.219563 + 0.380295i 0.954675 0.297652i \(-0.0962034\pi\)
−0.735111 + 0.677947i \(0.762870\pi\)
\(968\) 37.3807 1.20146
\(969\) −25.0933 + 1.85342i −0.806112 + 0.0595403i
\(970\) −5.38318 −0.172844
\(971\) −19.1657 33.1959i −0.615055 1.06531i −0.990375 0.138411i \(-0.955800\pi\)
0.375320 0.926895i \(-0.377533\pi\)
\(972\) 2.62233 + 4.54201i 0.0841113 + 0.145685i
\(973\) 3.10486 5.37777i 0.0995372 0.172404i
\(974\) 25.8444 + 44.7638i 0.828108 + 1.43432i
\(975\) −1.39852 + 2.42231i −0.0447886 + 0.0775760i
\(976\) 53.0090 1.69678
\(977\) −57.0555 −1.82537 −0.912684 0.408666i \(-0.865994\pi\)
−0.912684 + 0.408666i \(0.865994\pi\)
\(978\) −5.73118 + 9.92670i −0.183263 + 0.317421i
\(979\) 17.3144 29.9894i 0.553371 0.958467i
\(980\) −33.3808 −1.06631
\(981\) 7.79841 0.248984
\(982\) 14.0459 24.3283i 0.448224 0.776346i
\(983\) 14.4625 + 25.0499i 0.461284 + 0.798967i 0.999025 0.0441430i \(-0.0140557\pi\)
−0.537742 + 0.843110i \(0.680722\pi\)
\(984\) −32.2397 + 55.8409i −1.02777 + 1.78014i
\(985\) 8.82249 + 15.2810i 0.281108 + 0.486893i
\(986\) 37.2187 + 64.4646i 1.18528 + 2.05297i
\(987\) −8.82909 −0.281033
\(988\) −27.8056 + 57.5809i −0.884615 + 1.83189i
\(989\) 8.68800 0.276262
\(990\) 3.48863 + 6.04249i 0.110876 + 0.192043i
\(991\) −4.07064 7.05056i −0.129308 0.223968i 0.794101 0.607786i \(-0.207942\pi\)
−0.923409 + 0.383818i \(0.874609\pi\)
\(992\) −83.3646 + 144.392i −2.64683 + 4.58444i
\(993\) −3.19809 5.53926i −0.101488 0.175783i
\(994\) 12.8455 22.2491i 0.407436 0.705700i
\(995\) 19.0631 0.604341
\(996\) 14.6599 0.464516
\(997\) −21.8847 + 37.9054i −0.693095 + 1.20047i 0.277724 + 0.960661i \(0.410420\pi\)
−0.970819 + 0.239814i \(0.922914\pi\)
\(998\) 35.2195 61.0019i 1.11485 1.93098i
\(999\) −7.69227 −0.243373
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.2.i.f.121.5 yes 10
3.2 odd 2 855.2.k.i.406.1 10
19.7 even 3 5415.2.a.y.1.1 5
19.11 even 3 inner 285.2.i.f.106.5 10
19.12 odd 6 5415.2.a.z.1.5 5
57.11 odd 6 855.2.k.i.676.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.f.106.5 10 19.11 even 3 inner
285.2.i.f.121.5 yes 10 1.1 even 1 trivial
855.2.k.i.406.1 10 3.2 odd 2
855.2.k.i.676.1 10 57.11 odd 6
5415.2.a.y.1.1 5 19.7 even 3
5415.2.a.z.1.5 5 19.12 odd 6