Properties

Label 285.2.i.f.121.4
Level $285$
Weight $2$
Character 285.121
Analytic conductor $2.276$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} - 2x^{7} + 56x^{6} - 18x^{5} + 125x^{4} + x^{3} + 189x^{2} - 52x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.4
Root \(0.823305 - 1.42601i\) of defining polynomial
Character \(\chi\) \(=\) 285.121
Dual form 285.2.i.f.106.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.823305 + 1.42601i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.355663 + 0.616027i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-0.823305 + 1.42601i) q^{6} +4.47988 q^{7} +2.12194 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.823305 - 1.42601i) q^{10} -3.44134 q^{11} -0.711327 q^{12} +(-1.23994 + 2.14764i) q^{13} +(3.68831 + 6.38834i) q^{14} +(0.500000 - 0.866025i) q^{15} +(2.45833 + 4.25796i) q^{16} +(-3.81400 - 6.60604i) q^{17} -1.64661 q^{18} +(-3.67522 + 2.34366i) q^{19} +0.711327 q^{20} +(2.23994 + 3.87969i) q^{21} +(-2.83327 - 4.90737i) q^{22} +(-1.93528 + 3.35201i) q^{23} +(1.06097 + 1.83766i) q^{24} +(-0.500000 + 0.866025i) q^{25} -4.08340 q^{26} -1.00000 q^{27} +(-1.59333 + 2.75973i) q^{28} +(4.36728 - 7.56435i) q^{29} +1.64661 q^{30} -0.422654 q^{31} +(-1.92598 + 3.33589i) q^{32} +(-1.72067 - 2.98028i) q^{33} +(6.28017 - 10.8776i) q^{34} +(-2.23994 - 3.87969i) q^{35} +(-0.355663 - 0.616027i) q^{36} +3.90253 q^{37} +(-6.36790 - 3.31135i) q^{38} -2.47988 q^{39} +(-1.06097 - 1.83766i) q^{40} +(-2.64661 - 4.58406i) q^{41} +(-3.68831 + 6.38834i) q^{42} +(-1.23994 - 2.14764i) q^{43} +(1.22396 - 2.11996i) q^{44} +1.00000 q^{45} -6.37332 q^{46} +(0.338665 - 0.586585i) q^{47} +(-2.45833 + 4.25796i) q^{48} +13.0693 q^{49} -1.64661 q^{50} +(3.81400 - 6.60604i) q^{51} +(-0.882003 - 1.52767i) q^{52} +(-5.74928 + 9.95805i) q^{53} +(-0.823305 - 1.42601i) q^{54} +(1.72067 + 2.98028i) q^{55} +9.50605 q^{56} +(-3.86728 - 2.01101i) q^{57} +14.3824 q^{58} +(4.26526 + 7.38765i) q^{59} +(0.355663 + 0.616027i) q^{60} +(-4.10117 + 7.10343i) q^{61} +(-0.347973 - 0.602707i) q^{62} +(-2.23994 + 3.87969i) q^{63} +3.49067 q^{64} +2.47988 q^{65} +(2.83327 - 4.90737i) q^{66} +(4.81729 - 8.34379i) q^{67} +5.42600 q^{68} -3.87057 q^{69} +(3.68831 - 6.38834i) q^{70} +(1.92594 + 3.33583i) q^{71} +(-1.06097 + 1.83766i) q^{72} +(-8.39260 - 14.5364i) q^{73} +(3.21298 + 5.56504i) q^{74} -1.00000 q^{75} +(-0.136613 - 3.09759i) q^{76} -15.4168 q^{77} +(-2.04170 - 3.53633i) q^{78} +(-6.06262 - 10.5008i) q^{79} +(2.45833 - 4.25796i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(4.35794 - 7.54817i) q^{82} -2.03855 q^{83} -3.18666 q^{84} +(-3.81400 + 6.60604i) q^{85} +(2.04170 - 3.53633i) q^{86} +8.73456 q^{87} -7.30232 q^{88} +(1.57255 - 2.72374i) q^{89} +(0.823305 + 1.42601i) q^{90} +(-5.55478 + 9.62117i) q^{91} +(-1.37662 - 2.38437i) q^{92} +(-0.211327 - 0.366029i) q^{93} +1.11530 q^{94} +(3.86728 + 2.01101i) q^{95} -3.85195 q^{96} +(-1.00000 - 1.73205i) q^{97} +(10.7600 + 18.6370i) q^{98} +(1.72067 - 2.98028i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + q^{2} + 5 q^{3} - 7 q^{4} - 5 q^{5} - q^{6} + 4 q^{7} - 12 q^{8} - 5 q^{9} + q^{10} + 10 q^{11} - 14 q^{12} + 8 q^{13} + 4 q^{14} + 5 q^{15} - 7 q^{16} - 10 q^{17} - 2 q^{18} + 5 q^{19} + 14 q^{20}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.823305 + 1.42601i 0.582165 + 1.00834i 0.995222 + 0.0976341i \(0.0311275\pi\)
−0.413058 + 0.910705i \(0.635539\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.355663 + 0.616027i −0.177832 + 0.308014i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −0.823305 + 1.42601i −0.336113 + 0.582165i
\(7\) 4.47988 1.69324 0.846618 0.532201i \(-0.178635\pi\)
0.846618 + 0.532201i \(0.178635\pi\)
\(8\) 2.12194 0.750220
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.823305 1.42601i 0.260352 0.450943i
\(11\) −3.44134 −1.03760 −0.518801 0.854895i \(-0.673621\pi\)
−0.518801 + 0.854895i \(0.673621\pi\)
\(12\) −0.711327 −0.205342
\(13\) −1.23994 + 2.14764i −0.343898 + 0.595648i −0.985153 0.171680i \(-0.945081\pi\)
0.641255 + 0.767328i \(0.278414\pi\)
\(14\) 3.68831 + 6.38834i 0.985742 + 1.70736i
\(15\) 0.500000 0.866025i 0.129099 0.223607i
\(16\) 2.45833 + 4.25796i 0.614583 + 1.06449i
\(17\) −3.81400 6.60604i −0.925030 1.60220i −0.791513 0.611153i \(-0.790706\pi\)
−0.133518 0.991046i \(-0.542627\pi\)
\(18\) −1.64661 −0.388110
\(19\) −3.67522 + 2.34366i −0.843154 + 0.537672i
\(20\) 0.711327 0.159058
\(21\) 2.23994 + 3.87969i 0.488795 + 0.846618i
\(22\) −2.83327 4.90737i −0.604055 1.04625i
\(23\) −1.93528 + 3.35201i −0.403535 + 0.698942i −0.994150 0.108011i \(-0.965552\pi\)
0.590615 + 0.806953i \(0.298885\pi\)
\(24\) 1.06097 + 1.83766i 0.216570 + 0.375110i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −4.08340 −0.800820
\(27\) −1.00000 −0.192450
\(28\) −1.59333 + 2.75973i −0.301111 + 0.521540i
\(29\) 4.36728 7.56435i 0.810983 1.40466i −0.101193 0.994867i \(-0.532266\pi\)
0.912177 0.409797i \(-0.134401\pi\)
\(30\) 1.64661 0.300629
\(31\) −0.422654 −0.0759108 −0.0379554 0.999279i \(-0.512084\pi\)
−0.0379554 + 0.999279i \(0.512084\pi\)
\(32\) −1.92598 + 3.33589i −0.340468 + 0.589707i
\(33\) −1.72067 2.98028i −0.299530 0.518801i
\(34\) 6.28017 10.8776i 1.07704 1.86549i
\(35\) −2.23994 3.87969i −0.378619 0.655787i
\(36\) −0.355663 0.616027i −0.0592772 0.102671i
\(37\) 3.90253 0.641573 0.320786 0.947152i \(-0.396053\pi\)
0.320786 + 0.947152i \(0.396053\pi\)
\(38\) −6.36790 3.31135i −1.03301 0.537172i
\(39\) −2.47988 −0.397099
\(40\) −1.06097 1.83766i −0.167754 0.290559i
\(41\) −2.64661 4.58406i −0.413331 0.715911i 0.581921 0.813246i \(-0.302301\pi\)
−0.995252 + 0.0973351i \(0.968968\pi\)
\(42\) −3.68831 + 6.38834i −0.569119 + 0.985742i
\(43\) −1.23994 2.14764i −0.189089 0.327512i 0.755858 0.654736i \(-0.227220\pi\)
−0.944947 + 0.327224i \(0.893887\pi\)
\(44\) 1.22396 2.11996i 0.184518 0.319595i
\(45\) 1.00000 0.149071
\(46\) −6.37332 −0.939695
\(47\) 0.338665 0.586585i 0.0493994 0.0855622i −0.840268 0.542171i \(-0.817603\pi\)
0.889668 + 0.456608i \(0.150936\pi\)
\(48\) −2.45833 + 4.25796i −0.354830 + 0.614583i
\(49\) 13.0693 1.86705
\(50\) −1.64661 −0.232866
\(51\) 3.81400 6.60604i 0.534066 0.925030i
\(52\) −0.882003 1.52767i −0.122312 0.211850i
\(53\) −5.74928 + 9.95805i −0.789725 + 1.36784i 0.136411 + 0.990652i \(0.456443\pi\)
−0.926136 + 0.377191i \(0.876890\pi\)
\(54\) −0.823305 1.42601i −0.112038 0.194055i
\(55\) 1.72067 + 2.98028i 0.232015 + 0.401861i
\(56\) 9.50605 1.27030
\(57\) −3.86728 2.01101i −0.512234 0.266365i
\(58\) 14.3824 1.88850
\(59\) 4.26526 + 7.38765i 0.555290 + 0.961791i 0.997881 + 0.0650670i \(0.0207261\pi\)
−0.442591 + 0.896724i \(0.645941\pi\)
\(60\) 0.355663 + 0.616027i 0.0459159 + 0.0795288i
\(61\) −4.10117 + 7.10343i −0.525101 + 0.909501i 0.474472 + 0.880271i \(0.342639\pi\)
−0.999573 + 0.0292304i \(0.990694\pi\)
\(62\) −0.347973 0.602707i −0.0441926 0.0765439i
\(63\) −2.23994 + 3.87969i −0.282206 + 0.488795i
\(64\) 3.49067 0.436334
\(65\) 2.47988 0.307591
\(66\) 2.83327 4.90737i 0.348751 0.604055i
\(67\) 4.81729 8.34379i 0.588525 1.01936i −0.405901 0.913917i \(-0.633042\pi\)
0.994426 0.105438i \(-0.0336246\pi\)
\(68\) 5.42600 0.657999
\(69\) −3.87057 −0.465962
\(70\) 3.68831 6.38834i 0.440837 0.763553i
\(71\) 1.92594 + 3.33583i 0.228567 + 0.395890i 0.957384 0.288819i \(-0.0932625\pi\)
−0.728816 + 0.684709i \(0.759929\pi\)
\(72\) −1.06097 + 1.83766i −0.125037 + 0.216570i
\(73\) −8.39260 14.5364i −0.982280 1.70136i −0.653451 0.756969i \(-0.726679\pi\)
−0.328829 0.944389i \(-0.606654\pi\)
\(74\) 3.21298 + 5.56504i 0.373501 + 0.646923i
\(75\) −1.00000 −0.115470
\(76\) −0.136613 3.09759i −0.0156706 0.355318i
\(77\) −15.4168 −1.75690
\(78\) −2.04170 3.53633i −0.231177 0.400410i
\(79\) −6.06262 10.5008i −0.682098 1.18143i −0.974339 0.225084i \(-0.927734\pi\)
0.292241 0.956345i \(-0.405599\pi\)
\(80\) 2.45833 4.25796i 0.274850 0.476054i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 4.35794 7.54817i 0.481254 0.833556i
\(83\) −2.03855 −0.223759 −0.111880 0.993722i \(-0.535687\pi\)
−0.111880 + 0.993722i \(0.535687\pi\)
\(84\) −3.18666 −0.347693
\(85\) −3.81400 + 6.60604i −0.413686 + 0.716525i
\(86\) 2.04170 3.53633i 0.220162 0.381332i
\(87\) 8.73456 0.936443
\(88\) −7.30232 −0.778430
\(89\) 1.57255 2.72374i 0.166690 0.288716i −0.770564 0.637363i \(-0.780025\pi\)
0.937254 + 0.348647i \(0.113359\pi\)
\(90\) 0.823305 + 1.42601i 0.0867840 + 0.150314i
\(91\) −5.55478 + 9.62117i −0.582300 + 1.00857i
\(92\) −1.37662 2.38437i −0.143522 0.248588i
\(93\) −0.211327 0.366029i −0.0219136 0.0379554i
\(94\) 1.11530 0.115034
\(95\) 3.86728 + 2.01101i 0.396774 + 0.206325i
\(96\) −3.85195 −0.393138
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 10.7600 + 18.6370i 1.08693 + 1.88262i
\(99\) 1.72067 2.98028i 0.172934 0.299530i
\(100\) −0.355663 0.616027i −0.0355663 0.0616027i
\(101\) 1.00934 1.74823i 0.100433 0.173955i −0.811430 0.584450i \(-0.801310\pi\)
0.911863 + 0.410494i \(0.134644\pi\)
\(102\) 12.5603 1.24366
\(103\) 6.48898 0.639378 0.319689 0.947523i \(-0.396422\pi\)
0.319689 + 0.947523i \(0.396422\pi\)
\(104\) −2.63108 + 4.55717i −0.257999 + 0.446867i
\(105\) 2.23994 3.87969i 0.218596 0.378619i
\(106\) −18.9337 −1.83900
\(107\) 3.96145 0.382968 0.191484 0.981496i \(-0.438670\pi\)
0.191484 + 0.981496i \(0.438670\pi\)
\(108\) 0.355663 0.616027i 0.0342237 0.0592772i
\(109\) 1.48402 + 2.57039i 0.142143 + 0.246199i 0.928303 0.371824i \(-0.121267\pi\)
−0.786160 + 0.618023i \(0.787934\pi\)
\(110\) −2.83327 + 4.90737i −0.270142 + 0.467899i
\(111\) 1.95127 + 3.37969i 0.185206 + 0.320786i
\(112\) 11.0130 + 19.0751i 1.04063 + 1.80243i
\(113\) −8.71719 −0.820044 −0.410022 0.912076i \(-0.634479\pi\)
−0.410022 + 0.912076i \(0.634479\pi\)
\(114\) −0.316239 7.17044i −0.0296185 0.671573i
\(115\) 3.87057 0.360932
\(116\) 3.10656 + 5.38072i 0.288437 + 0.499588i
\(117\) −1.23994 2.14764i −0.114633 0.198549i
\(118\) −7.02323 + 12.1646i −0.646541 + 1.11984i
\(119\) −17.0863 29.5943i −1.56629 2.71290i
\(120\) 1.06097 1.83766i 0.0968530 0.167754i
\(121\) 0.842790 0.0766172
\(122\) −13.5061 −1.22278
\(123\) 2.64661 4.58406i 0.238637 0.413331i
\(124\) 0.150322 0.260366i 0.0134994 0.0233816i
\(125\) 1.00000 0.0894427
\(126\) −7.37662 −0.657161
\(127\) 2.28867 3.96410i 0.203087 0.351757i −0.746435 0.665459i \(-0.768236\pi\)
0.949522 + 0.313702i \(0.101569\pi\)
\(128\) 6.72584 + 11.6495i 0.594486 + 1.02968i
\(129\) 1.23994 2.14764i 0.109171 0.189089i
\(130\) 2.04170 + 3.53633i 0.179069 + 0.310156i
\(131\) 10.3364 + 17.9031i 0.903094 + 1.56420i 0.823456 + 0.567380i \(0.192043\pi\)
0.0796380 + 0.996824i \(0.474624\pi\)
\(132\) 2.44791 0.213064
\(133\) −16.4646 + 10.4993i −1.42766 + 0.910405i
\(134\) 15.8644 1.37047
\(135\) 0.500000 + 0.866025i 0.0430331 + 0.0745356i
\(136\) −8.09309 14.0176i −0.693976 1.20200i
\(137\) −8.81400 + 15.2663i −0.753031 + 1.30429i 0.193317 + 0.981136i \(0.438075\pi\)
−0.946347 + 0.323151i \(0.895258\pi\)
\(138\) −3.18666 5.51946i −0.271266 0.469847i
\(139\) −5.86728 + 10.1624i −0.497656 + 0.861966i −0.999996 0.00270444i \(-0.999139\pi\)
0.502340 + 0.864670i \(0.332472\pi\)
\(140\) 3.18666 0.269322
\(141\) 0.677330 0.0570415
\(142\) −3.17128 + 5.49282i −0.266128 + 0.460947i
\(143\) 4.26705 7.39075i 0.356829 0.618045i
\(144\) −4.91667 −0.409722
\(145\) −8.73456 −0.725365
\(146\) 13.8193 23.9358i 1.14370 1.98094i
\(147\) 6.53467 + 11.3184i 0.538970 + 0.933524i
\(148\) −1.38799 + 2.40407i −0.114092 + 0.197613i
\(149\) 10.7824 + 18.6757i 0.883332 + 1.52998i 0.847613 + 0.530614i \(0.178039\pi\)
0.0357187 + 0.999362i \(0.488628\pi\)
\(150\) −0.823305 1.42601i −0.0672226 0.116433i
\(151\) 18.3102 1.49006 0.745032 0.667029i \(-0.232434\pi\)
0.745032 + 0.667029i \(0.232434\pi\)
\(152\) −7.79862 + 4.97311i −0.632551 + 0.403372i
\(153\) 7.62799 0.616687
\(154\) −12.6927 21.9844i −1.02281 1.77156i
\(155\) 0.211327 + 0.366029i 0.0169742 + 0.0294001i
\(156\) 0.882003 1.52767i 0.0706167 0.122312i
\(157\) 5.71527 + 9.89914i 0.456128 + 0.790038i 0.998752 0.0499382i \(-0.0159024\pi\)
−0.542624 + 0.839976i \(0.682569\pi\)
\(158\) 9.98278 17.2907i 0.794187 1.37557i
\(159\) −11.4986 −0.911895
\(160\) 3.85195 0.304524
\(161\) −8.66984 + 15.0166i −0.683279 + 1.18347i
\(162\) 0.823305 1.42601i 0.0646850 0.112038i
\(163\) −8.19876 −0.642177 −0.321088 0.947049i \(-0.604049\pi\)
−0.321088 + 0.947049i \(0.604049\pi\)
\(164\) 3.76521 0.294014
\(165\) −1.72067 + 2.98028i −0.133954 + 0.232015i
\(166\) −1.67835 2.90698i −0.130265 0.225625i
\(167\) 4.42206 7.65924i 0.342189 0.592690i −0.642650 0.766160i \(-0.722165\pi\)
0.984839 + 0.173471i \(0.0554982\pi\)
\(168\) 4.75303 + 8.23248i 0.366704 + 0.635150i
\(169\) 3.42510 + 5.93244i 0.263469 + 0.456342i
\(170\) −12.5603 −0.963334
\(171\) −0.192054 4.35467i −0.0146868 0.333010i
\(172\) 1.76401 0.134504
\(173\) −8.77310 15.1955i −0.667007 1.15529i −0.978737 0.205119i \(-0.934242\pi\)
0.311731 0.950171i \(-0.399091\pi\)
\(174\) 7.19121 + 12.4555i 0.545164 + 0.944252i
\(175\) −2.23994 + 3.87969i −0.169324 + 0.293277i
\(176\) −8.45995 14.6531i −0.637693 1.10452i
\(177\) −4.26526 + 7.38765i −0.320597 + 0.555290i
\(178\) 5.17877 0.388165
\(179\) 4.30890 0.322062 0.161031 0.986949i \(-0.448518\pi\)
0.161031 + 0.986949i \(0.448518\pi\)
\(180\) −0.355663 + 0.616027i −0.0265096 + 0.0459159i
\(181\) −3.17193 + 5.49395i −0.235768 + 0.408362i −0.959496 0.281724i \(-0.909094\pi\)
0.723728 + 0.690086i \(0.242427\pi\)
\(182\) −18.2931 −1.35598
\(183\) −8.20233 −0.606334
\(184\) −4.10656 + 7.11277i −0.302740 + 0.524361i
\(185\) −1.95127 3.37969i −0.143460 0.248480i
\(186\) 0.347973 0.602707i 0.0255146 0.0441926i
\(187\) 13.1252 + 22.7336i 0.959813 + 1.66244i
\(188\) 0.240901 + 0.417254i 0.0175695 + 0.0304313i
\(189\) −4.47988 −0.325863
\(190\) 0.316239 + 7.17044i 0.0229424 + 0.520198i
\(191\) 0.845796 0.0611997 0.0305998 0.999532i \(-0.490258\pi\)
0.0305998 + 0.999532i \(0.490258\pi\)
\(192\) 1.74534 + 3.02301i 0.125959 + 0.218167i
\(193\) 6.59039 + 11.4149i 0.474387 + 0.821662i 0.999570 0.0293275i \(-0.00933658\pi\)
−0.525183 + 0.850989i \(0.676003\pi\)
\(194\) 1.64661 2.85201i 0.118220 0.204763i
\(195\) 1.23994 + 2.14764i 0.0887940 + 0.153796i
\(196\) −4.64828 + 8.05106i −0.332020 + 0.575076i
\(197\) 6.91212 0.492468 0.246234 0.969210i \(-0.420807\pi\)
0.246234 + 0.969210i \(0.420807\pi\)
\(198\) 5.66654 0.402703
\(199\) 6.69062 11.5885i 0.474285 0.821486i −0.525281 0.850929i \(-0.676040\pi\)
0.999566 + 0.0294426i \(0.00937321\pi\)
\(200\) −1.06097 + 1.83766i −0.0750220 + 0.129942i
\(201\) 9.63457 0.679570
\(202\) 3.32398 0.233875
\(203\) 19.5649 33.8874i 1.37319 2.37843i
\(204\) 2.71300 + 4.69905i 0.189948 + 0.328999i
\(205\) −2.64661 + 4.58406i −0.184847 + 0.320165i
\(206\) 5.34241 + 9.25332i 0.372223 + 0.644710i
\(207\) −1.93528 3.35201i −0.134512 0.232981i
\(208\) −12.1927 −0.845415
\(209\) 12.6477 8.06531i 0.874858 0.557889i
\(210\) 7.37662 0.509035
\(211\) 7.37512 + 12.7741i 0.507724 + 0.879404i 0.999960 + 0.00894190i \(0.00284633\pi\)
−0.492236 + 0.870462i \(0.663820\pi\)
\(212\) −4.08962 7.08343i −0.280876 0.486492i
\(213\) −1.92594 + 3.33583i −0.131963 + 0.228567i
\(214\) 3.26149 + 5.64906i 0.222951 + 0.386162i
\(215\) −1.23994 + 2.14764i −0.0845632 + 0.146468i
\(216\) −2.12194 −0.144380
\(217\) −1.89344 −0.128535
\(218\) −2.44360 + 4.23244i −0.165501 + 0.286657i
\(219\) 8.39260 14.5364i 0.567120 0.982280i
\(220\) −2.44791 −0.165038
\(221\) 18.9165 1.27246
\(222\) −3.21298 + 5.56504i −0.215641 + 0.373501i
\(223\) 1.14417 + 1.98176i 0.0766192 + 0.132708i 0.901789 0.432176i \(-0.142254\pi\)
−0.825170 + 0.564884i \(0.808921\pi\)
\(224\) −8.62814 + 14.9444i −0.576492 + 0.998513i
\(225\) −0.500000 0.866025i −0.0333333 0.0577350i
\(226\) −7.17691 12.4308i −0.477401 0.826882i
\(227\) −4.19493 −0.278427 −0.139214 0.990262i \(-0.544457\pi\)
−0.139214 + 0.990262i \(0.544457\pi\)
\(228\) 2.61429 1.66711i 0.173135 0.110407i
\(229\) −26.2742 −1.73625 −0.868123 0.496348i \(-0.834674\pi\)
−0.868123 + 0.496348i \(0.834674\pi\)
\(230\) 3.18666 + 5.51946i 0.210122 + 0.363942i
\(231\) −7.70839 13.3513i −0.507175 0.878452i
\(232\) 9.26712 16.0511i 0.608416 1.05381i
\(233\) 2.78125 + 4.81726i 0.182206 + 0.315589i 0.942631 0.333836i \(-0.108343\pi\)
−0.760426 + 0.649425i \(0.775010\pi\)
\(234\) 2.04170 3.53633i 0.133470 0.231177i
\(235\) −0.677330 −0.0441841
\(236\) −6.06799 −0.394993
\(237\) 6.06262 10.5008i 0.393810 0.682098i
\(238\) 28.1344 48.7302i 1.82368 3.15871i
\(239\) −6.84901 −0.443026 −0.221513 0.975157i \(-0.571099\pi\)
−0.221513 + 0.975157i \(0.571099\pi\)
\(240\) 4.91667 0.317370
\(241\) −7.42122 + 12.8539i −0.478043 + 0.827994i −0.999683 0.0251714i \(-0.991987\pi\)
0.521641 + 0.853165i \(0.325320\pi\)
\(242\) 0.693873 + 1.20182i 0.0446039 + 0.0772561i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −2.91727 5.05286i −0.186759 0.323476i
\(245\) −6.53467 11.3184i −0.417484 0.723104i
\(246\) 8.71588 0.555704
\(247\) −0.476272 10.7991i −0.0303044 0.687127i
\(248\) −0.896847 −0.0569498
\(249\) −1.01927 1.76543i −0.0645938 0.111880i
\(250\) 0.823305 + 1.42601i 0.0520704 + 0.0901886i
\(251\) 2.40128 4.15913i 0.151567 0.262522i −0.780237 0.625484i \(-0.784901\pi\)
0.931804 + 0.362962i \(0.118235\pi\)
\(252\) −1.59333 2.75973i −0.100370 0.173847i
\(253\) 6.65996 11.5354i 0.418708 0.725224i
\(254\) 7.53711 0.472920
\(255\) −7.62799 −0.477684
\(256\) −7.58417 + 13.1362i −0.474011 + 0.821010i
\(257\) −1.74862 + 3.02871i −0.109076 + 0.188926i −0.915396 0.402554i \(-0.868123\pi\)
0.806320 + 0.591479i \(0.201456\pi\)
\(258\) 4.08340 0.254221
\(259\) 17.4829 1.08633
\(260\) −0.882003 + 1.52767i −0.0546995 + 0.0947423i
\(261\) 4.36728 + 7.56435i 0.270328 + 0.468221i
\(262\) −17.0200 + 29.4795i −1.05150 + 1.82125i
\(263\) 2.61621 + 4.53141i 0.161322 + 0.279419i 0.935343 0.353741i \(-0.115091\pi\)
−0.774021 + 0.633160i \(0.781757\pi\)
\(264\) −3.65116 6.32399i −0.224713 0.389215i
\(265\) 11.4986 0.706351
\(266\) −28.5274 14.8344i −1.74913 0.909558i
\(267\) 3.14511 0.192477
\(268\) 3.42667 + 5.93516i 0.209317 + 0.362547i
\(269\) 7.94917 + 13.7684i 0.484670 + 0.839472i 0.999845 0.0176124i \(-0.00560650\pi\)
−0.515175 + 0.857085i \(0.672273\pi\)
\(270\) −0.823305 + 1.42601i −0.0501048 + 0.0867840i
\(271\) −4.99789 8.65661i −0.303600 0.525851i 0.673348 0.739325i \(-0.264855\pi\)
−0.976949 + 0.213474i \(0.931522\pi\)
\(272\) 18.7522 32.4797i 1.13702 1.96937i
\(273\) −11.1096 −0.672382
\(274\) −29.0264 −1.75355
\(275\) 1.72067 2.98028i 0.103760 0.179718i
\(276\) 1.37662 2.38437i 0.0828627 0.143522i
\(277\) 4.08619 0.245515 0.122758 0.992437i \(-0.460826\pi\)
0.122758 + 0.992437i \(0.460826\pi\)
\(278\) −19.3222 −1.15887
\(279\) 0.211327 0.366029i 0.0126518 0.0219136i
\(280\) −4.75303 8.23248i −0.284048 0.491985i
\(281\) 5.81920 10.0792i 0.347144 0.601272i −0.638596 0.769542i \(-0.720485\pi\)
0.985741 + 0.168270i \(0.0538180\pi\)
\(282\) 0.557649 + 0.965877i 0.0332075 + 0.0575171i
\(283\) −2.17910 3.77432i −0.129534 0.224360i 0.793962 0.607967i \(-0.208015\pi\)
−0.923496 + 0.383607i \(0.874682\pi\)
\(284\) −2.73995 −0.162586
\(285\) 0.192054 + 4.35467i 0.0113763 + 0.257948i
\(286\) 14.0523 0.830932
\(287\) −11.8565 20.5361i −0.699867 1.21221i
\(288\) −1.92598 3.33589i −0.113489 0.196569i
\(289\) −20.5932 + 35.6684i −1.21136 + 2.09814i
\(290\) −7.19121 12.4555i −0.422282 0.731414i
\(291\) 1.00000 1.73205i 0.0586210 0.101535i
\(292\) 11.9398 0.698722
\(293\) −7.20233 −0.420765 −0.210382 0.977619i \(-0.567471\pi\)
−0.210382 + 0.977619i \(0.567471\pi\)
\(294\) −10.7600 + 18.6370i −0.627539 + 1.08693i
\(295\) 4.26526 7.38765i 0.248333 0.430126i
\(296\) 8.28096 0.481321
\(297\) 3.44134 0.199687
\(298\) −17.7545 + 30.7517i −1.02849 + 1.78140i
\(299\) −4.79927 8.31258i −0.277549 0.480729i
\(300\) 0.355663 0.616027i 0.0205342 0.0355663i
\(301\) −5.55478 9.62117i −0.320172 0.554555i
\(302\) 15.0749 + 26.1105i 0.867463 + 1.50249i
\(303\) 2.01868 0.115970
\(304\) −19.0141 9.88746i −1.09053 0.567085i
\(305\) 8.20233 0.469664
\(306\) 6.28017 + 10.8776i 0.359013 + 0.621829i
\(307\) −8.14056 14.0999i −0.464606 0.804722i 0.534577 0.845120i \(-0.320471\pi\)
−0.999184 + 0.0403979i \(0.987137\pi\)
\(308\) 5.48318 9.49715i 0.312433 0.541150i
\(309\) 3.24449 + 5.61962i 0.184573 + 0.319689i
\(310\) −0.347973 + 0.602707i −0.0197635 + 0.0342315i
\(311\) −4.07709 −0.231191 −0.115595 0.993296i \(-0.536878\pi\)
−0.115595 + 0.993296i \(0.536878\pi\)
\(312\) −5.26217 −0.297911
\(313\) 10.7777 18.6674i 0.609189 1.05515i −0.382186 0.924086i \(-0.624828\pi\)
0.991374 0.131060i \(-0.0418382\pi\)
\(314\) −9.41083 + 16.3000i −0.531084 + 0.919864i
\(315\) 4.47988 0.252413
\(316\) 8.62501 0.485195
\(317\) 7.13339 12.3554i 0.400651 0.693948i −0.593154 0.805089i \(-0.702117\pi\)
0.993805 + 0.111141i \(0.0354506\pi\)
\(318\) −9.46683 16.3970i −0.530873 0.919500i
\(319\) −15.0293 + 26.0315i −0.841478 + 1.45748i
\(320\) −1.74534 3.02301i −0.0975672 0.168991i
\(321\) 1.98073 + 3.43072i 0.110553 + 0.191484i
\(322\) −28.5517 −1.59112
\(323\) 29.4996 + 15.3400i 1.64140 + 0.853539i
\(324\) 0.711327 0.0395182
\(325\) −1.23994 2.14764i −0.0687795 0.119130i
\(326\) −6.75008 11.6915i −0.373853 0.647532i
\(327\) −1.48402 + 2.57039i −0.0820663 + 0.142143i
\(328\) −5.61596 9.72712i −0.310089 0.537091i
\(329\) 1.51718 2.62783i 0.0836448 0.144877i
\(330\) −5.66654 −0.311933
\(331\) 23.9646 1.31722 0.658608 0.752486i \(-0.271146\pi\)
0.658608 + 0.752486i \(0.271146\pi\)
\(332\) 0.725036 1.25580i 0.0397915 0.0689209i
\(333\) −1.95127 + 3.37969i −0.106929 + 0.185206i
\(334\) 14.5628 0.796843
\(335\) −9.63457 −0.526393
\(336\) −11.0130 + 19.0751i −0.600811 + 1.04063i
\(337\) −16.3204 28.2678i −0.889029 1.53984i −0.841025 0.540996i \(-0.818048\pi\)
−0.0480033 0.998847i \(-0.515286\pi\)
\(338\) −5.63980 + 9.76842i −0.306765 + 0.531332i
\(339\) −4.35859 7.54931i −0.236726 0.410022i
\(340\) −2.71300 4.69905i −0.147133 0.254842i
\(341\) 1.45449 0.0787652
\(342\) 6.05166 3.85909i 0.327236 0.208676i
\(343\) 27.1899 1.46812
\(344\) −2.63108 4.55717i −0.141858 0.245706i
\(345\) 1.93528 + 3.35201i 0.104192 + 0.180466i
\(346\) 14.4459 25.0210i 0.776616 1.34514i
\(347\) −8.41457 14.5745i −0.451718 0.782398i 0.546775 0.837280i \(-0.315855\pi\)
−0.998493 + 0.0548811i \(0.982522\pi\)
\(348\) −3.10656 + 5.38072i −0.166529 + 0.288437i
\(349\) 2.46947 0.132188 0.0660939 0.997813i \(-0.478946\pi\)
0.0660939 + 0.997813i \(0.478946\pi\)
\(350\) −7.37662 −0.394297
\(351\) 1.23994 2.14764i 0.0661831 0.114633i
\(352\) 6.62793 11.4799i 0.353270 0.611881i
\(353\) 27.7653 1.47780 0.738900 0.673815i \(-0.235346\pi\)
0.738900 + 0.673815i \(0.235346\pi\)
\(354\) −14.0465 −0.746561
\(355\) 1.92594 3.33583i 0.102218 0.177048i
\(356\) 1.11860 + 1.93747i 0.0592857 + 0.102686i
\(357\) 17.0863 29.5943i 0.904300 1.56629i
\(358\) 3.54754 + 6.14452i 0.187493 + 0.324748i
\(359\) 10.0245 + 17.3629i 0.529072 + 0.916379i 0.999425 + 0.0339009i \(0.0107931\pi\)
−0.470354 + 0.882478i \(0.655874\pi\)
\(360\) 2.12194 0.111836
\(361\) 8.01455 17.2269i 0.421818 0.906680i
\(362\) −10.4459 −0.549023
\(363\) 0.421395 + 0.729877i 0.0221175 + 0.0383086i
\(364\) −3.95127 6.84380i −0.207103 0.358712i
\(365\) −8.39260 + 14.5364i −0.439289 + 0.760871i
\(366\) −6.75303 11.6966i −0.352986 0.611390i
\(367\) 3.33741 5.78056i 0.174211 0.301743i −0.765677 0.643225i \(-0.777596\pi\)
0.939888 + 0.341483i \(0.110929\pi\)
\(368\) −19.0303 −0.992023
\(369\) 5.29322 0.275554
\(370\) 3.21298 5.56504i 0.167035 0.289313i
\(371\) −25.7561 + 44.6109i −1.33719 + 2.31608i
\(372\) 0.300645 0.0155877
\(373\) −12.4380 −0.644014 −0.322007 0.946737i \(-0.604357\pi\)
−0.322007 + 0.946737i \(0.604357\pi\)
\(374\) −21.6122 + 37.4334i −1.11754 + 1.93563i
\(375\) 0.500000 + 0.866025i 0.0258199 + 0.0447214i
\(376\) 0.718628 1.24470i 0.0370604 0.0641905i
\(377\) 10.8303 + 18.7587i 0.557790 + 0.966121i
\(378\) −3.68831 6.38834i −0.189706 0.328581i
\(379\) 21.3994 1.09921 0.549607 0.835423i \(-0.314777\pi\)
0.549607 + 0.835423i \(0.314777\pi\)
\(380\) −2.61429 + 1.66711i −0.134110 + 0.0855207i
\(381\) 4.57735 0.234505
\(382\) 0.696349 + 1.20611i 0.0356283 + 0.0617100i
\(383\) −5.35405 9.27348i −0.273579 0.473853i 0.696197 0.717851i \(-0.254874\pi\)
−0.969776 + 0.243998i \(0.921541\pi\)
\(384\) −6.72584 + 11.6495i −0.343227 + 0.594486i
\(385\) 7.70839 + 13.3513i 0.392856 + 0.680446i
\(386\) −10.8518 + 18.7959i −0.552342 + 0.956685i
\(387\) 2.47988 0.126059
\(388\) 1.42265 0.0722243
\(389\) 1.75466 3.03917i 0.0889650 0.154092i −0.818109 0.575063i \(-0.804977\pi\)
0.907074 + 0.420971i \(0.138311\pi\)
\(390\) −2.04170 + 3.53633i −0.103385 + 0.179069i
\(391\) 29.5247 1.49313
\(392\) 27.7324 1.40070
\(393\) −10.3364 + 17.9031i −0.521401 + 0.903094i
\(394\) 5.69079 + 9.85673i 0.286698 + 0.496575i
\(395\) −6.06262 + 10.5008i −0.305044 + 0.528351i
\(396\) 1.22396 + 2.11996i 0.0615062 + 0.106532i
\(397\) −15.5995 27.0191i −0.782916 1.35605i −0.930236 0.366961i \(-0.880398\pi\)
0.147321 0.989089i \(-0.452935\pi\)
\(398\) 22.0337 1.10445
\(399\) −17.3249 9.00908i −0.867332 0.451018i
\(400\) −4.91667 −0.245833
\(401\) 9.87661 + 17.1068i 0.493214 + 0.854272i 0.999969 0.00781786i \(-0.00248853\pi\)
−0.506755 + 0.862090i \(0.669155\pi\)
\(402\) 7.93220 + 13.7390i 0.395622 + 0.685237i
\(403\) 0.524065 0.907708i 0.0261055 0.0452161i
\(404\) 0.717971 + 1.24356i 0.0357204 + 0.0618696i
\(405\) −0.500000 + 0.866025i −0.0248452 + 0.0430331i
\(406\) 64.4315 3.19768
\(407\) −13.4299 −0.665697
\(408\) 8.09309 14.0176i 0.400667 0.693976i
\(409\) 1.06951 1.85244i 0.0528838 0.0915974i −0.838372 0.545099i \(-0.816492\pi\)
0.891255 + 0.453502i \(0.149825\pi\)
\(410\) −8.71588 −0.430446
\(411\) −17.6280 −0.869525
\(412\) −2.30789 + 3.99739i −0.113702 + 0.196937i
\(413\) 19.1079 + 33.0958i 0.940237 + 1.62854i
\(414\) 3.18666 5.51946i 0.156616 0.271266i
\(415\) 1.01927 + 1.76543i 0.0500341 + 0.0866616i
\(416\) −4.77619 8.27260i −0.234172 0.405598i
\(417\) −11.7346 −0.574644
\(418\) 21.9141 + 11.3955i 1.07185 + 0.557370i
\(419\) −5.70341 −0.278630 −0.139315 0.990248i \(-0.544490\pi\)
−0.139315 + 0.990248i \(0.544490\pi\)
\(420\) 1.59333 + 2.75973i 0.0777465 + 0.134661i
\(421\) −19.5265 33.8209i −0.951664 1.64833i −0.741823 0.670595i \(-0.766039\pi\)
−0.209841 0.977736i \(-0.567295\pi\)
\(422\) −12.1439 + 21.0339i −0.591158 + 1.02392i
\(423\) 0.338665 + 0.586585i 0.0164665 + 0.0285207i
\(424\) −12.1996 + 21.1304i −0.592467 + 1.02618i
\(425\) 7.62799 0.370012
\(426\) −6.34256 −0.307298
\(427\) −18.3727 + 31.8225i −0.889119 + 1.54000i
\(428\) −1.40894 + 2.44036i −0.0681039 + 0.117959i
\(429\) 8.53410 0.412030
\(430\) −4.08340 −0.196919
\(431\) −0.868782 + 1.50477i −0.0418477 + 0.0724824i −0.886191 0.463321i \(-0.846658\pi\)
0.844343 + 0.535803i \(0.179991\pi\)
\(432\) −2.45833 4.25796i −0.118277 0.204861i
\(433\) −11.8156 + 20.4652i −0.567821 + 0.983495i 0.428960 + 0.903324i \(0.358880\pi\)
−0.996781 + 0.0801716i \(0.974453\pi\)
\(434\) −1.55888 2.70005i −0.0748285 0.129607i
\(435\) −4.36728 7.56435i −0.209395 0.362683i
\(436\) −2.11124 −0.101110
\(437\) −0.743359 16.8550i −0.0355597 0.806285i
\(438\) 27.6387 1.32063
\(439\) 1.58465 + 2.74469i 0.0756310 + 0.130997i 0.901360 0.433070i \(-0.142570\pi\)
−0.825730 + 0.564066i \(0.809236\pi\)
\(440\) 3.65116 + 6.32399i 0.174062 + 0.301485i
\(441\) −6.53467 + 11.3184i −0.311175 + 0.538970i
\(442\) 15.5741 + 26.9751i 0.740783 + 1.28307i
\(443\) −11.5916 + 20.0773i −0.550736 + 0.953902i 0.447486 + 0.894291i \(0.352319\pi\)
−0.998222 + 0.0596114i \(0.981014\pi\)
\(444\) −2.77598 −0.131742
\(445\) −3.14511 −0.149092
\(446\) −1.88400 + 3.26318i −0.0892100 + 0.154516i
\(447\) −10.7824 + 18.6757i −0.509992 + 0.883332i
\(448\) 15.6378 0.738816
\(449\) 13.2505 0.625328 0.312664 0.949864i \(-0.398779\pi\)
0.312664 + 0.949864i \(0.398779\pi\)
\(450\) 0.823305 1.42601i 0.0388110 0.0672226i
\(451\) 9.10788 + 15.7753i 0.428873 + 0.742830i
\(452\) 3.10038 5.37002i 0.145830 0.252585i
\(453\) 9.15510 + 15.8571i 0.430144 + 0.745032i
\(454\) −3.45371 5.98200i −0.162091 0.280749i
\(455\) 11.1096 0.520825
\(456\) −8.20614 4.26725i −0.384288 0.199832i
\(457\) 4.13077 0.193229 0.0966146 0.995322i \(-0.469199\pi\)
0.0966146 + 0.995322i \(0.469199\pi\)
\(458\) −21.6317 37.4672i −1.01078 1.75073i
\(459\) 3.81400 + 6.60604i 0.178022 + 0.308343i
\(460\) −1.37662 + 2.38437i −0.0641852 + 0.111172i
\(461\) −10.9292 18.9300i −0.509026 0.881658i −0.999945 0.0104535i \(-0.996673\pi\)
0.490920 0.871205i \(-0.336661\pi\)
\(462\) 12.6927 21.9844i 0.590518 1.02281i
\(463\) 30.9461 1.43819 0.719094 0.694913i \(-0.244557\pi\)
0.719094 + 0.694913i \(0.244557\pi\)
\(464\) 42.9449 1.99367
\(465\) −0.211327 + 0.366029i −0.00980005 + 0.0169742i
\(466\) −4.57963 + 7.93216i −0.212147 + 0.367450i
\(467\) 0.394259 0.0182441 0.00912207 0.999958i \(-0.497096\pi\)
0.00912207 + 0.999958i \(0.497096\pi\)
\(468\) 1.76401 0.0815412
\(469\) 21.5809 37.3792i 0.996512 1.72601i
\(470\) −0.557649 0.965877i −0.0257224 0.0445526i
\(471\) −5.71527 + 9.89914i −0.263346 + 0.456128i
\(472\) 9.05065 + 15.6762i 0.416590 + 0.721555i
\(473\) 4.26705 + 7.39075i 0.196199 + 0.339827i
\(474\) 19.9656 0.917048
\(475\) −0.192054 4.35467i −0.00881205 0.199806i
\(476\) 24.3078 1.11415
\(477\) −5.74928 9.95805i −0.263242 0.455948i
\(478\) −5.63883 9.76674i −0.257914 0.446720i
\(479\) 3.52119 6.09888i 0.160887 0.278665i −0.774300 0.632819i \(-0.781898\pi\)
0.935187 + 0.354154i \(0.115231\pi\)
\(480\) 1.92598 + 3.33589i 0.0879084 + 0.152262i
\(481\) −4.83891 + 8.38124i −0.220635 + 0.382152i
\(482\) −24.4397 −1.11320
\(483\) −17.3397 −0.788983
\(484\) −0.299749 + 0.519181i −0.0136250 + 0.0235991i
\(485\) −1.00000 + 1.73205i −0.0454077 + 0.0786484i
\(486\) 1.64661 0.0746918
\(487\) 0.689174 0.0312295 0.0156147 0.999878i \(-0.495029\pi\)
0.0156147 + 0.999878i \(0.495029\pi\)
\(488\) −8.70244 + 15.0731i −0.393941 + 0.682326i
\(489\) −4.09938 7.10034i −0.185380 0.321088i
\(490\) 10.7600 18.6370i 0.486089 0.841932i
\(491\) −4.54736 7.87626i −0.205219 0.355450i 0.744983 0.667083i \(-0.232457\pi\)
−0.950203 + 0.311633i \(0.899124\pi\)
\(492\) 1.88261 + 3.26077i 0.0848744 + 0.147007i
\(493\) −66.6272 −3.00074
\(494\) 15.0074 9.57008i 0.675215 0.430578i
\(495\) −3.44134 −0.154677
\(496\) −1.03902 1.79964i −0.0466535 0.0808063i
\(497\) 8.62799 + 14.9441i 0.387018 + 0.670336i
\(498\) 1.67835 2.90698i 0.0752084 0.130265i
\(499\) 11.5404 + 19.9886i 0.516619 + 0.894811i 0.999814 + 0.0192976i \(0.00614300\pi\)
−0.483195 + 0.875513i \(0.660524\pi\)
\(500\) −0.355663 + 0.616027i −0.0159058 + 0.0275496i
\(501\) 8.84413 0.395126
\(502\) 7.90793 0.352948
\(503\) 10.5982 18.3567i 0.472552 0.818483i −0.526955 0.849893i \(-0.676666\pi\)
0.999507 + 0.0314099i \(0.00999972\pi\)
\(504\) −4.75303 + 8.23248i −0.211717 + 0.366704i
\(505\) −2.01868 −0.0898302
\(506\) 21.9327 0.975029
\(507\) −3.42510 + 5.93244i −0.152114 + 0.263469i
\(508\) 1.62799 + 2.81977i 0.0722306 + 0.125107i
\(509\) −9.12649 + 15.8075i −0.404525 + 0.700657i −0.994266 0.106935i \(-0.965896\pi\)
0.589741 + 0.807592i \(0.299230\pi\)
\(510\) −6.28017 10.8776i −0.278091 0.481667i
\(511\) −37.5979 65.1214i −1.66323 2.88080i
\(512\) 1.92701 0.0851627
\(513\) 3.67522 2.34366i 0.162265 0.103475i
\(514\) −5.75861 −0.254001
\(515\) −3.24449 5.61962i −0.142969 0.247630i
\(516\) 0.882003 + 1.52767i 0.0388280 + 0.0672521i
\(517\) −1.16546 + 2.01864i −0.0512569 + 0.0887795i
\(518\) 14.3938 + 24.9307i 0.632425 + 1.09539i
\(519\) 8.77310 15.1955i 0.385096 0.667007i
\(520\) 5.26217 0.230761
\(521\) −34.4874 −1.51092 −0.755461 0.655194i \(-0.772587\pi\)
−0.755461 + 0.655194i \(0.772587\pi\)
\(522\) −7.19121 + 12.4555i −0.314751 + 0.545164i
\(523\) −8.06993 + 13.9775i −0.352874 + 0.611195i −0.986752 0.162238i \(-0.948129\pi\)
0.633878 + 0.773433i \(0.281462\pi\)
\(524\) −14.7051 −0.642395
\(525\) −4.47988 −0.195518
\(526\) −4.30788 + 7.46147i −0.187833 + 0.325336i
\(527\) 1.61200 + 2.79207i 0.0702198 + 0.121624i
\(528\) 8.45995 14.6531i 0.368172 0.637693i
\(529\) 4.00935 + 6.94440i 0.174320 + 0.301931i
\(530\) 9.46683 + 16.3970i 0.411213 + 0.712241i
\(531\) −8.53053 −0.370193
\(532\) −0.612011 13.8768i −0.0265341 0.601637i
\(533\) 13.1266 0.568574
\(534\) 2.58938 + 4.48494i 0.112054 + 0.194083i
\(535\) −1.98073 3.43072i −0.0856343 0.148323i
\(536\) 10.2220 17.7050i 0.441523 0.764741i
\(537\) 2.15445 + 3.73161i 0.0929713 + 0.161031i
\(538\) −13.0892 + 22.6711i −0.564315 + 0.977423i
\(539\) −44.9759 −1.93725
\(540\) −0.711327 −0.0306106
\(541\) −8.46634 + 14.6641i −0.363996 + 0.630460i −0.988615 0.150470i \(-0.951921\pi\)
0.624618 + 0.780930i \(0.285255\pi\)
\(542\) 8.22959 14.2541i 0.353491 0.612264i
\(543\) −6.34387 −0.272242
\(544\) 29.3827 1.25977
\(545\) 1.48402 2.57039i 0.0635683 0.110104i
\(546\) −9.14657 15.8423i −0.391437 0.677989i
\(547\) 14.6871 25.4389i 0.627977 1.08769i −0.359981 0.932960i \(-0.617217\pi\)
0.987957 0.154728i \(-0.0494500\pi\)
\(548\) −6.26963 10.8593i −0.267825 0.463887i
\(549\) −4.10117 7.10343i −0.175034 0.303167i
\(550\) 5.66654 0.241622
\(551\) 1.67751 + 38.0361i 0.0714643 + 1.62039i
\(552\) −8.21312 −0.349574
\(553\) −27.1598 47.0422i −1.15495 2.00044i
\(554\) 3.36418 + 5.82693i 0.142930 + 0.247563i
\(555\) 1.95127 3.37969i 0.0828267 0.143460i
\(556\) −4.17355 7.22880i −0.176998 0.306570i
\(557\) −4.29322 + 7.43608i −0.181910 + 0.315077i −0.942531 0.334119i \(-0.891561\pi\)
0.760621 + 0.649196i \(0.224895\pi\)
\(558\) 0.695946 0.0294617
\(559\) 6.14981 0.260109
\(560\) 11.0130 19.0751i 0.465386 0.806072i
\(561\) −13.1252 + 22.7336i −0.554148 + 0.959813i
\(562\) 19.1639 0.808381
\(563\) 2.59685 0.109444 0.0547221 0.998502i \(-0.482573\pi\)
0.0547221 + 0.998502i \(0.482573\pi\)
\(564\) −0.240901 + 0.417254i −0.0101438 + 0.0175695i
\(565\) 4.35859 + 7.54931i 0.183367 + 0.317602i
\(566\) 3.58814 6.21483i 0.150821 0.261229i
\(567\) −2.23994 3.87969i −0.0940687 0.162932i
\(568\) 4.08674 + 7.07844i 0.171476 + 0.297005i
\(569\) −33.8768 −1.42019 −0.710094 0.704107i \(-0.751348\pi\)
−0.710094 + 0.704107i \(0.751348\pi\)
\(570\) −6.05166 + 3.85909i −0.253476 + 0.161640i
\(571\) −10.6731 −0.446657 −0.223329 0.974743i \(-0.571692\pi\)
−0.223329 + 0.974743i \(0.571692\pi\)
\(572\) 3.03527 + 5.25724i 0.126911 + 0.219816i
\(573\) 0.422898 + 0.732481i 0.0176668 + 0.0305998i
\(574\) 19.5230 33.8149i 0.814876 1.41141i
\(575\) −1.93528 3.35201i −0.0807069 0.139788i
\(576\) −1.74534 + 3.02301i −0.0727223 + 0.125959i
\(577\) −11.6607 −0.485440 −0.242720 0.970096i \(-0.578040\pi\)
−0.242720 + 0.970096i \(0.578040\pi\)
\(578\) −67.8178 −2.82085
\(579\) −6.59039 + 11.4149i −0.273887 + 0.474387i
\(580\) 3.10656 5.38072i 0.128993 0.223422i
\(581\) −9.13244 −0.378877
\(582\) 3.29322 0.136508
\(583\) 19.7852 34.2690i 0.819419 1.41928i
\(584\) −17.8086 30.8454i −0.736926 1.27639i
\(585\) −1.23994 + 2.14764i −0.0512652 + 0.0887940i
\(586\) −5.92972 10.2706i −0.244954 0.424274i
\(587\) −20.1362 34.8770i −0.831112 1.43953i −0.897157 0.441711i \(-0.854372\pi\)
0.0660456 0.997817i \(-0.478962\pi\)
\(588\) −9.29656 −0.383384
\(589\) 1.55335 0.990555i 0.0640045 0.0408151i
\(590\) 14.0465 0.578284
\(591\) 3.45606 + 5.98607i 0.142163 + 0.246234i
\(592\) 9.59373 + 16.6168i 0.394300 + 0.682948i
\(593\) 7.05130 12.2132i 0.289562 0.501537i −0.684143 0.729348i \(-0.739824\pi\)
0.973705 + 0.227811i \(0.0731569\pi\)
\(594\) 2.83327 + 4.90737i 0.116250 + 0.201352i
\(595\) −17.0863 + 29.5943i −0.700468 + 1.21325i
\(596\) −15.3397 −0.628338
\(597\) 13.3812 0.547657
\(598\) 7.90253 13.6876i 0.323159 0.559727i
\(599\) 5.24355 9.08209i 0.214246 0.371084i −0.738793 0.673932i \(-0.764604\pi\)
0.953039 + 0.302848i \(0.0979374\pi\)
\(600\) −2.12194 −0.0866280
\(601\) 21.0718 0.859539 0.429769 0.902939i \(-0.358595\pi\)
0.429769 + 0.902939i \(0.358595\pi\)
\(602\) 9.14657 15.8423i 0.372786 0.645685i
\(603\) 4.81729 + 8.34379i 0.196175 + 0.339785i
\(604\) −6.51227 + 11.2796i −0.264981 + 0.458960i
\(605\) −0.421395 0.729877i −0.0171321 0.0296737i
\(606\) 1.66199 + 2.87865i 0.0675138 + 0.116937i
\(607\) −22.2759 −0.904149 −0.452074 0.891980i \(-0.649316\pi\)
−0.452074 + 0.891980i \(0.649316\pi\)
\(608\) −0.739784 16.7740i −0.0300022 0.680274i
\(609\) 39.1298 1.58562
\(610\) 6.75303 + 11.6966i 0.273422 + 0.473581i
\(611\) 0.839849 + 1.45466i 0.0339766 + 0.0588493i
\(612\) −2.71300 + 4.69905i −0.109666 + 0.189948i
\(613\) 8.94766 + 15.4978i 0.361393 + 0.625950i 0.988190 0.153232i \(-0.0489681\pi\)
−0.626798 + 0.779182i \(0.715635\pi\)
\(614\) 13.4043 23.2170i 0.540955 0.936961i
\(615\) −5.29322 −0.213443
\(616\) −32.7135 −1.31806
\(617\) −8.81560 + 15.2691i −0.354903 + 0.614710i −0.987101 0.160097i \(-0.948819\pi\)
0.632198 + 0.774806i \(0.282153\pi\)
\(618\) −5.34241 + 9.25332i −0.214903 + 0.372223i
\(619\) −49.2003 −1.97753 −0.988763 0.149490i \(-0.952237\pi\)
−0.988763 + 0.149490i \(0.952237\pi\)
\(620\) −0.300645 −0.0120742
\(621\) 1.93528 3.35201i 0.0776603 0.134512i
\(622\) −3.35669 5.81396i −0.134591 0.233118i
\(623\) 7.04485 12.2020i 0.282246 0.488865i
\(624\) −6.09637 10.5592i −0.244050 0.422708i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 35.4932 1.41859
\(627\) 13.3086 + 6.92056i 0.531494 + 0.276380i
\(628\) −8.13085 −0.324456
\(629\) −14.8843 25.7803i −0.593474 1.02793i
\(630\) 3.68831 + 6.38834i 0.146946 + 0.254518i
\(631\) 16.6592 28.8547i 0.663194 1.14869i −0.316578 0.948567i \(-0.602534\pi\)
0.979772 0.200119i \(-0.0641329\pi\)
\(632\) −12.8645 22.2820i −0.511724 0.886332i
\(633\) −7.37512 + 12.7741i −0.293135 + 0.507724i
\(634\) 23.4918 0.932980
\(635\) −4.57735 −0.181646
\(636\) 4.08962 7.08343i 0.162164 0.280876i
\(637\) −16.2052 + 28.0682i −0.642073 + 1.11210i
\(638\) −49.4947 −1.95951
\(639\) −3.85189 −0.152378
\(640\) 6.72584 11.6495i 0.265862 0.460487i
\(641\) −6.61110 11.4508i −0.261123 0.452278i 0.705418 0.708792i \(-0.250759\pi\)
−0.966541 + 0.256514i \(0.917426\pi\)
\(642\) −3.26149 + 5.64906i −0.128721 + 0.222951i
\(643\) 0.951267 + 1.64764i 0.0375143 + 0.0649767i 0.884173 0.467160i \(-0.154723\pi\)
−0.846659 + 0.532136i \(0.821389\pi\)
\(644\) −6.16709 10.6817i −0.243017 0.420918i
\(645\) −2.47988 −0.0976452
\(646\) 2.41227 + 54.6961i 0.0949093 + 2.15199i
\(647\) 27.2141 1.06989 0.534947 0.844885i \(-0.320331\pi\)
0.534947 + 0.844885i \(0.320331\pi\)
\(648\) −1.06097 1.83766i −0.0416789 0.0721900i
\(649\) −14.6782 25.4234i −0.576170 0.997956i
\(650\) 2.04170 3.53633i 0.0800820 0.138706i
\(651\) −0.946719 1.63977i −0.0371048 0.0642675i
\(652\) 2.91600 5.05066i 0.114199 0.197799i
\(653\) −43.6980 −1.71004 −0.855018 0.518599i \(-0.826454\pi\)
−0.855018 + 0.518599i \(0.826454\pi\)
\(654\) −4.88720 −0.191104
\(655\) 10.3364 17.9031i 0.403876 0.699533i
\(656\) 13.0125 22.5383i 0.508053 0.879974i
\(657\) 16.7852 0.654853
\(658\) 4.99640 0.194780
\(659\) 3.43672 5.95258i 0.133876 0.231879i −0.791292 0.611439i \(-0.790591\pi\)
0.925167 + 0.379559i \(0.123924\pi\)
\(660\) −1.22396 2.11996i −0.0476425 0.0825192i
\(661\) −18.6491 + 32.3012i −0.725367 + 1.25637i 0.233456 + 0.972367i \(0.424996\pi\)
−0.958823 + 0.284005i \(0.908337\pi\)
\(662\) 19.7302 + 34.1737i 0.766837 + 1.32820i
\(663\) 9.45826 + 16.3822i 0.367328 + 0.636231i
\(664\) −4.32568 −0.167869
\(665\) 17.3249 + 9.00908i 0.671833 + 0.349357i
\(666\) −6.42595 −0.249001
\(667\) 16.9038 + 29.2783i 0.654520 + 1.13366i
\(668\) 3.14553 + 5.44822i 0.121704 + 0.210798i
\(669\) −1.14417 + 1.98176i −0.0442361 + 0.0766192i
\(670\) −7.93220 13.7390i −0.306447 0.530783i
\(671\) 14.1135 24.4453i 0.544845 0.943700i
\(672\) −17.2563 −0.665676
\(673\) 50.6185 1.95120 0.975601 0.219553i \(-0.0704597\pi\)
0.975601 + 0.219553i \(0.0704597\pi\)
\(674\) 26.8733 46.5460i 1.03512 1.79288i
\(675\) 0.500000 0.866025i 0.0192450 0.0333333i
\(676\) −4.87273 −0.187413
\(677\) 33.8725 1.30182 0.650912 0.759153i \(-0.274387\pi\)
0.650912 + 0.759153i \(0.274387\pi\)
\(678\) 7.17691 12.4308i 0.275627 0.477401i
\(679\) −4.47988 7.75938i −0.171922 0.297778i
\(680\) −8.09309 + 14.0176i −0.310356 + 0.537552i
\(681\) −2.09747 3.63292i −0.0803751 0.139214i
\(682\) 1.19749 + 2.07412i 0.0458543 + 0.0794220i
\(683\) 47.0846 1.80164 0.900822 0.434190i \(-0.142965\pi\)
0.900822 + 0.434190i \(0.142965\pi\)
\(684\) 2.75090 + 1.43048i 0.105183 + 0.0546959i
\(685\) 17.6280 0.673531
\(686\) 22.3856 + 38.7729i 0.854685 + 1.48036i
\(687\) −13.1371 22.7541i −0.501211 0.868123i
\(688\) 6.09637 10.5592i 0.232422 0.402567i
\(689\) −14.2575 24.6948i −0.543169 0.940796i
\(690\) −3.18666 + 5.51946i −0.121314 + 0.210122i
\(691\) 3.91269 0.148846 0.0744228 0.997227i \(-0.476289\pi\)
0.0744228 + 0.997227i \(0.476289\pi\)
\(692\) 12.4811 0.474460
\(693\) 7.70839 13.3513i 0.292817 0.507175i
\(694\) 13.8555 23.9985i 0.525949 0.910970i
\(695\) 11.7346 0.445117
\(696\) 18.5342 0.702538
\(697\) −20.1883 + 34.9672i −0.764688 + 1.32448i
\(698\) 2.03313 + 3.52148i 0.0769551 + 0.133290i
\(699\) −2.78125 + 4.81726i −0.105196 + 0.182206i
\(700\) −1.59333 2.75973i −0.0602222 0.104308i
\(701\) −6.60352 11.4376i −0.249411 0.431993i 0.713951 0.700195i \(-0.246904\pi\)
−0.963363 + 0.268202i \(0.913570\pi\)
\(702\) 4.08340 0.154118
\(703\) −14.3427 + 9.14620i −0.540945 + 0.344955i
\(704\) −12.0126 −0.452741
\(705\) −0.338665 0.586585i −0.0127549 0.0220921i
\(706\) 22.8594 + 39.5936i 0.860323 + 1.49012i
\(707\) 4.52173 7.83186i 0.170057 0.294547i
\(708\) −3.03400 5.25504i −0.114025 0.197496i
\(709\) 8.99856 15.5860i 0.337948 0.585343i −0.646099 0.763254i \(-0.723600\pi\)
0.984047 + 0.177911i \(0.0569338\pi\)
\(710\) 6.34256 0.238032
\(711\) 12.1252 0.454732
\(712\) 3.33687 5.77963i 0.125054 0.216601i
\(713\) 0.817955 1.41674i 0.0306326 0.0530573i
\(714\) 56.2688 2.10581
\(715\) −8.53410 −0.319157
\(716\) −1.53252 + 2.65440i −0.0572728 + 0.0991995i
\(717\) −3.42451 5.93142i −0.127890 0.221513i
\(718\) −16.5064 + 28.5899i −0.616014 + 1.06697i
\(719\) 6.23909 + 10.8064i 0.232679 + 0.403012i 0.958596 0.284771i \(-0.0919175\pi\)
−0.725917 + 0.687783i \(0.758584\pi\)
\(720\) 2.45833 + 4.25796i 0.0916167 + 0.158685i
\(721\) 29.0698 1.08262
\(722\) 31.1641 2.75423i 1.15981 0.102502i
\(723\) −14.8424 −0.551996
\(724\) −2.25628 3.90800i −0.0838541 0.145240i
\(725\) 4.36728 + 7.56435i 0.162197 + 0.280933i
\(726\) −0.693873 + 1.20182i −0.0257520 + 0.0446039i
\(727\) 21.7065 + 37.5968i 0.805051 + 1.39439i 0.916257 + 0.400592i \(0.131195\pi\)
−0.111206 + 0.993797i \(0.535471\pi\)
\(728\) −11.7869 + 20.4156i −0.436853 + 0.756651i
\(729\) 1.00000 0.0370370
\(730\) −27.6387 −1.02295
\(731\) −9.45826 + 16.3822i −0.349826 + 0.605917i
\(732\) 2.91727 5.05286i 0.107825 0.186759i
\(733\) −28.5740 −1.05540 −0.527702 0.849430i \(-0.676946\pi\)
−0.527702 + 0.849430i \(0.676946\pi\)
\(734\) 10.9908 0.405678
\(735\) 6.53467 11.3184i 0.241035 0.417484i
\(736\) −7.45462 12.9118i −0.274781 0.475935i
\(737\) −16.5779 + 28.7138i −0.610655 + 1.05769i
\(738\) 4.35794 + 7.54817i 0.160418 + 0.277852i
\(739\) 4.61769 + 7.99807i 0.169864 + 0.294214i 0.938372 0.345627i \(-0.112334\pi\)
−0.768508 + 0.639841i \(0.779000\pi\)
\(740\) 2.77598 0.102047
\(741\) 9.11412 5.81199i 0.334815 0.213509i
\(742\) −84.8205 −3.11386
\(743\) 2.51875 + 4.36259i 0.0924038 + 0.160048i 0.908522 0.417837i \(-0.137212\pi\)
−0.816118 + 0.577885i \(0.803878\pi\)
\(744\) −0.448423 0.776692i −0.0164400 0.0284749i
\(745\) 10.7824 18.6757i 0.395038 0.684226i
\(746\) −10.2402 17.7366i −0.374922 0.649384i
\(747\) 1.01927 1.76543i 0.0372932 0.0645938i
\(748\) −18.6727 −0.682741
\(749\) 17.7468 0.648456
\(750\) −0.823305 + 1.42601i −0.0300629 + 0.0520704i
\(751\) −6.41366 + 11.1088i −0.234038 + 0.405365i −0.958993 0.283431i \(-0.908527\pi\)
0.724955 + 0.688796i \(0.241861\pi\)
\(752\) 3.33021 0.121440
\(753\) 4.80255 0.175015
\(754\) −17.8333 + 30.8882i −0.649452 + 1.12488i
\(755\) −9.15510 15.8571i −0.333188 0.577099i
\(756\) 1.59333 2.75973i 0.0579488 0.100370i
\(757\) −12.9425 22.4171i −0.470404 0.814764i 0.529023 0.848608i \(-0.322559\pi\)
−0.999427 + 0.0338435i \(0.989225\pi\)
\(758\) 17.6183 + 30.5157i 0.639924 + 1.10838i
\(759\) 13.3199 0.483483
\(760\) 8.20614 + 4.26725i 0.297668 + 0.154789i
\(761\) −28.9722 −1.05024 −0.525121 0.851028i \(-0.675980\pi\)
−0.525121 + 0.851028i \(0.675980\pi\)
\(762\) 3.76855 + 6.52733i 0.136520 + 0.236460i
\(763\) 6.64822 + 11.5151i 0.240682 + 0.416873i
\(764\) −0.300819 + 0.521033i −0.0108832 + 0.0188503i
\(765\) −3.81400 6.60604i −0.137895 0.238842i
\(766\) 8.81603 15.2698i 0.318536 0.551721i
\(767\) −21.1547 −0.763852
\(768\) −15.1683 −0.547340
\(769\) −2.72690 + 4.72313i −0.0983345 + 0.170320i −0.910995 0.412417i \(-0.864685\pi\)
0.812661 + 0.582737i \(0.198018\pi\)
\(770\) −12.6927 + 21.9844i −0.457414 + 0.792263i
\(771\) −3.49725 −0.125950
\(772\) −9.37584 −0.337444
\(773\) 23.5060 40.7135i 0.845451 1.46436i −0.0397783 0.999209i \(-0.512665\pi\)
0.885229 0.465155i \(-0.154001\pi\)
\(774\) 2.04170 + 3.53633i 0.0733874 + 0.127111i
\(775\) 0.211327 0.366029i 0.00759108 0.0131481i
\(776\) −2.12194 3.67531i −0.0761733 0.131936i
\(777\) 8.74144 + 15.1406i 0.313598 + 0.543167i
\(778\) 5.77850 0.207169
\(779\) 20.4704 + 10.6447i 0.733427 + 0.381387i
\(780\) −1.76401 −0.0631615
\(781\) −6.62782 11.4797i −0.237162 0.410776i
\(782\) 24.3078 + 42.1024i 0.869246 + 1.50558i
\(783\) −4.36728 + 7.56435i −0.156074 + 0.270328i
\(784\) 32.1288 + 55.6487i 1.14746 + 1.98745i
\(785\) 5.71527 9.89914i 0.203987 0.353316i
\(786\) −34.0400 −1.21417
\(787\) 3.86923 0.137923 0.0689616 0.997619i \(-0.478031\pi\)
0.0689616 + 0.997619i \(0.478031\pi\)
\(788\) −2.45839 + 4.25805i −0.0875764 + 0.151687i
\(789\) −2.61621 + 4.53141i −0.0931396 + 0.161322i
\(790\) −19.9656 −0.710343
\(791\) −39.0520 −1.38853
\(792\) 3.65116 6.32399i 0.129738 0.224713i
\(793\) −10.1704 17.6157i −0.361162 0.625550i
\(794\) 25.6863 44.4899i 0.911572 1.57889i
\(795\) 5.74928 + 9.95805i 0.203906 + 0.353176i
\(796\) 4.75921 + 8.24320i 0.168686 + 0.292173i
\(797\) −12.6814 −0.449198 −0.224599 0.974451i \(-0.572107\pi\)
−0.224599 + 0.974451i \(0.572107\pi\)
\(798\) −1.41671 32.1227i −0.0501510 1.13713i
\(799\) −5.16667 −0.182784
\(800\) −1.92598 3.33589i −0.0680935 0.117941i
\(801\) 1.57255 + 2.72374i 0.0555635 + 0.0962387i
\(802\) −16.2629 + 28.1682i −0.574264 + 0.994654i
\(803\) 28.8818 + 50.0247i 1.01922 + 1.76533i
\(804\) −3.42667 + 5.93516i −0.120849 + 0.209317i
\(805\) 17.3397 0.611143
\(806\) 1.72586 0.0607909
\(807\) −7.94917 + 13.7684i −0.279824 + 0.484670i
\(808\) 2.14176 3.70964i 0.0753470 0.130505i
\(809\) 33.2439 1.16879 0.584397 0.811468i \(-0.301331\pi\)
0.584397 + 0.811468i \(0.301331\pi\)
\(810\) −1.64661 −0.0578560
\(811\) 1.43265 2.48142i 0.0503072 0.0871346i −0.839775 0.542934i \(-0.817313\pi\)
0.890082 + 0.455800i \(0.150647\pi\)
\(812\) 13.9170 + 24.1050i 0.488392 + 0.845920i
\(813\) 4.99789 8.65661i 0.175284 0.303600i
\(814\) −11.0569 19.1512i −0.387545 0.671248i
\(815\) 4.09938 + 7.10034i 0.143595 + 0.248714i
\(816\) 37.5043 1.31291
\(817\) 9.59039 + 4.98706i 0.335525 + 0.174475i
\(818\) 3.52213 0.123148
\(819\) −5.55478 9.62117i −0.194100 0.336191i
\(820\) −1.88261 3.26077i −0.0657434 0.113871i
\(821\) 7.18851 12.4509i 0.250881 0.434538i −0.712888 0.701278i \(-0.752613\pi\)
0.963769 + 0.266740i \(0.0859465\pi\)
\(822\) −14.5132 25.1376i −0.506207 0.876776i
\(823\) −28.3639 + 49.1277i −0.988702 + 1.71248i −0.364540 + 0.931188i \(0.618774\pi\)
−0.624163 + 0.781294i \(0.714560\pi\)
\(824\) 13.7692 0.479674
\(825\) 3.44134 0.119812
\(826\) −31.4632 + 54.4959i −1.09475 + 1.89616i
\(827\) −10.0977 + 17.4897i −0.351131 + 0.608177i −0.986448 0.164074i \(-0.947536\pi\)
0.635317 + 0.772252i \(0.280870\pi\)
\(828\) 2.75324 0.0956817
\(829\) 38.0954 1.32311 0.661554 0.749898i \(-0.269897\pi\)
0.661554 + 0.749898i \(0.269897\pi\)
\(830\) −1.67835 + 2.90698i −0.0582562 + 0.100903i
\(831\) 2.04309 + 3.53874i 0.0708741 + 0.122758i
\(832\) −4.32822 + 7.49670i −0.150054 + 0.259901i
\(833\) −49.8464 86.3365i −1.72708 2.99138i
\(834\) −9.66112 16.7336i −0.334537 0.579436i
\(835\) −8.84413 −0.306064
\(836\) 0.470132 + 10.6598i 0.0162599 + 0.368679i
\(837\) 0.422654 0.0146090
\(838\) −4.69565 8.13311i −0.162209 0.280954i
\(839\) −19.1320 33.1376i −0.660511 1.14404i −0.980482 0.196611i \(-0.937007\pi\)
0.319971 0.947427i \(-0.396327\pi\)
\(840\) 4.75303 8.23248i 0.163995 0.284048i
\(841\) −23.6462 40.9565i −0.815388 1.41229i
\(842\) 32.1526 55.6899i 1.10805 1.91920i
\(843\) 11.6384 0.400848
\(844\) −10.4922 −0.361158
\(845\) 3.42510 5.93244i 0.117827 0.204082i
\(846\) −0.557649 + 0.965877i −0.0191724 + 0.0332075i
\(847\) 3.77560 0.129731
\(848\) −56.5346 −1.94141
\(849\) 2.17910 3.77432i 0.0747867 0.129534i
\(850\) 6.28017 + 10.8776i 0.215408 + 0.373098i
\(851\) −7.55251 + 13.0813i −0.258897 + 0.448422i
\(852\) −1.36997 2.37287i −0.0469346 0.0812931i
\(853\) −1.71697 2.97387i −0.0587878 0.101823i 0.835134 0.550047i \(-0.185390\pi\)
−0.893922 + 0.448224i \(0.852057\pi\)
\(854\) −60.5055 −2.07046
\(855\) −3.67522 + 2.34366i −0.125690 + 0.0801514i
\(856\) 8.40598 0.287311
\(857\) 13.6630 + 23.6650i 0.466719 + 0.808382i 0.999277 0.0380118i \(-0.0121024\pi\)
−0.532558 + 0.846394i \(0.678769\pi\)
\(858\) 7.02617 + 12.1697i 0.239870 + 0.415466i
\(859\) 22.0603 38.2096i 0.752689 1.30370i −0.193826 0.981036i \(-0.562090\pi\)
0.946515 0.322660i \(-0.104577\pi\)
\(860\) −0.882003 1.52767i −0.0300760 0.0520932i
\(861\) 11.8565 20.5361i 0.404068 0.699867i
\(862\) −2.86109 −0.0974491
\(863\) −41.3721 −1.40832 −0.704161 0.710040i \(-0.748677\pi\)
−0.704161 + 0.710040i \(0.748677\pi\)
\(864\) 1.92598 3.33589i 0.0655230 0.113489i
\(865\) −8.77310 + 15.1955i −0.298294 + 0.516661i
\(866\) −38.9114 −1.32226
\(867\) −41.1863 −1.39876
\(868\) 0.673427 1.16641i 0.0228576 0.0395905i
\(869\) 20.8635 + 36.1367i 0.707746 + 1.22585i
\(870\) 7.19121 12.4555i 0.243805 0.422282i
\(871\) 11.9463 + 20.6916i 0.404785 + 0.701108i
\(872\) 3.14900 + 5.45423i 0.106639 + 0.184703i
\(873\) 2.00000 0.0676897
\(874\) 23.4234 14.9369i 0.792307 0.505247i
\(875\) 4.47988 0.151448
\(876\) 5.96988 + 10.3401i 0.201704 + 0.349361i
\(877\) −28.3151 49.0432i −0.956134 1.65607i −0.731751 0.681572i \(-0.761297\pi\)
−0.224383 0.974501i \(-0.572037\pi\)
\(878\) −2.60929 + 4.51943i −0.0880594 + 0.152523i
\(879\) −3.60117 6.23740i −0.121464 0.210382i
\(880\) −8.45995 + 14.6531i −0.285185 + 0.493955i
\(881\) −1.34253 −0.0452311 −0.0226156 0.999744i \(-0.507199\pi\)
−0.0226156 + 0.999744i \(0.507199\pi\)
\(882\) −21.5201 −0.724619
\(883\) −13.3420 + 23.1089i −0.448993 + 0.777678i −0.998321 0.0579288i \(-0.981550\pi\)
0.549328 + 0.835607i \(0.314884\pi\)
\(884\) −6.72791 + 11.6531i −0.226284 + 0.391936i
\(885\) 8.53053 0.286751
\(886\) −38.1739 −1.28248
\(887\) −13.8879 + 24.0545i −0.466309 + 0.807671i −0.999260 0.0384753i \(-0.987750\pi\)
0.532950 + 0.846147i \(0.321083\pi\)
\(888\) 4.14048 + 7.17152i 0.138945 + 0.240660i
\(889\) 10.2530 17.7587i 0.343874 0.595607i
\(890\) −2.58938 4.48494i −0.0867963 0.150336i
\(891\) 1.72067 + 2.98028i 0.0576445 + 0.0998433i
\(892\) −1.62776 −0.0545013
\(893\) 0.130084 + 2.94955i 0.00435310 + 0.0987028i
\(894\) −35.5090 −1.18760
\(895\) −2.15445 3.73161i −0.0720153 0.124734i
\(896\) 30.1310 + 52.1884i 1.00660 + 1.74349i
\(897\) 4.79927 8.31258i 0.160243 0.277549i
\(898\) 10.9092 + 18.8953i 0.364044 + 0.630543i
\(899\) −1.84585 + 3.19710i −0.0615624 + 0.106629i
\(900\) 0.711327 0.0237109
\(901\) 87.7110 2.92208
\(902\) −14.9971 + 25.9758i −0.499350 + 0.864899i
\(903\) 5.55478 9.62117i 0.184852 0.320172i
\(904\) −18.4974 −0.615214
\(905\) 6.34387 0.210877
\(906\) −15.0749 + 26.1105i −0.500830 + 0.867463i
\(907\) −3.69599 6.40164i −0.122723 0.212563i 0.798117 0.602502i \(-0.205829\pi\)
−0.920841 + 0.389939i \(0.872496\pi\)
\(908\) 1.49198 2.58419i 0.0495132 0.0857594i
\(909\) 1.00934 + 1.74823i 0.0334777 + 0.0579851i
\(910\) 9.14657 + 15.8423i 0.303206 + 0.525168i
\(911\) 13.3084 0.440926 0.220463 0.975395i \(-0.429243\pi\)
0.220463 + 0.975395i \(0.429243\pi\)
\(912\) −0.944267 21.4104i −0.0312678 0.708971i
\(913\) 7.01532 0.232173
\(914\) 3.40088 + 5.89050i 0.112491 + 0.194841i
\(915\) 4.10117 + 7.10343i 0.135580 + 0.234832i
\(916\) 9.34477 16.1856i 0.308760 0.534788i
\(917\) 46.3058 + 80.2039i 1.52915 + 2.64857i
\(918\) −6.28017 + 10.8776i −0.207276 + 0.359013i
\(919\) −27.8298 −0.918022 −0.459011 0.888431i \(-0.651796\pi\)
−0.459011 + 0.888431i \(0.651796\pi\)
\(920\) 8.21312 0.270779
\(921\) 8.14056 14.0999i 0.268241 0.464606i
\(922\) 17.9962 31.1704i 0.592674 1.02654i
\(923\) −9.55222 −0.314415
\(924\) 10.9664 0.360767
\(925\) −1.95127 + 3.37969i −0.0641573 + 0.111124i
\(926\) 25.4781 + 44.1294i 0.837262 + 1.45018i
\(927\) −3.24449 + 5.61962i −0.106563 + 0.184573i
\(928\) 16.8225 + 29.1375i 0.552227 + 0.956485i
\(929\) −3.17108 5.49247i −0.104040 0.180202i 0.809306 0.587388i \(-0.199844\pi\)
−0.913345 + 0.407186i \(0.866510\pi\)
\(930\) −0.695946 −0.0228210
\(931\) −48.0327 + 30.6300i −1.57421 + 1.00386i
\(932\) −3.95675 −0.129608
\(933\) −2.03855 3.53086i −0.0667390 0.115595i
\(934\) 0.324596 + 0.562216i 0.0106211 + 0.0183963i
\(935\) 13.1252 22.7336i 0.429241 0.743468i
\(936\) −2.63108 4.55717i −0.0859996 0.148956i
\(937\) 21.9869 38.0825i 0.718282 1.24410i −0.243398 0.969926i \(-0.578262\pi\)
0.961680 0.274174i \(-0.0884045\pi\)
\(938\) 71.0706 2.32054
\(939\) 21.5553 0.703431
\(940\) 0.240901 0.417254i 0.00785734 0.0136093i
\(941\) −7.97283 + 13.8093i −0.259907 + 0.450172i −0.966217 0.257731i \(-0.917025\pi\)
0.706310 + 0.707903i \(0.250358\pi\)
\(942\) −18.8217 −0.613243
\(943\) 20.4878 0.667174
\(944\) −20.9709 + 36.3226i −0.682544 + 1.18220i
\(945\) 2.23994 + 3.87969i 0.0728653 + 0.126206i
\(946\) −7.02617 + 12.1697i −0.228441 + 0.395671i
\(947\) 1.55287 + 2.68965i 0.0504615 + 0.0874018i 0.890153 0.455662i \(-0.150597\pi\)
−0.839691 + 0.543064i \(0.817264\pi\)
\(948\) 4.31251 + 7.46948i 0.140064 + 0.242597i
\(949\) 41.6253 1.35121
\(950\) 6.05166 3.85909i 0.196342 0.125205i
\(951\) 14.2668 0.462632
\(952\) −36.2561 62.7973i −1.17507 2.03527i
\(953\) 10.2628 + 17.7757i 0.332445 + 0.575812i 0.982991 0.183655i \(-0.0587929\pi\)
−0.650545 + 0.759467i \(0.725460\pi\)
\(954\) 9.46683 16.3970i 0.306500 0.530873i
\(955\) −0.422898 0.732481i −0.0136847 0.0237025i
\(956\) 2.43594 4.21918i 0.0787840 0.136458i
\(957\) −30.0585 −0.971655
\(958\) 11.5961 0.374651
\(959\) −39.4857 + 68.3912i −1.27506 + 2.20847i
\(960\) 1.74534 3.02301i 0.0563305 0.0975672i
\(961\) −30.8214 −0.994238
\(962\) −15.9356 −0.513784
\(963\) −1.98073 + 3.43072i −0.0638280 + 0.110553i
\(964\) −5.27891 9.14334i −0.170022 0.294487i
\(965\) 6.59039 11.4149i 0.212152 0.367458i
\(966\) −14.2759 24.7265i −0.459318 0.795562i
\(967\) −12.4113 21.4970i −0.399120 0.691296i 0.594498 0.804097i \(-0.297351\pi\)
−0.993618 + 0.112801i \(0.964018\pi\)
\(968\) 1.78835 0.0574798
\(969\) 1.46499 + 33.2174i 0.0470622 + 1.06710i
\(970\) −3.29322 −0.105739
\(971\) 18.2999 + 31.6963i 0.587271 + 1.01718i 0.994588 + 0.103896i \(0.0331309\pi\)
−0.407318 + 0.913287i \(0.633536\pi\)
\(972\) 0.355663 + 0.616027i 0.0114079 + 0.0197591i
\(973\) −26.2847 + 45.5264i −0.842649 + 1.45951i
\(974\) 0.567401 + 0.982767i 0.0181807 + 0.0314899i
\(975\) 1.23994 2.14764i 0.0397099 0.0687795i
\(976\) −40.3282 −1.29087
\(977\) 31.6228 1.01170 0.505851 0.862621i \(-0.331178\pi\)
0.505851 + 0.862621i \(0.331178\pi\)
\(978\) 6.75008 11.6915i 0.215844 0.373853i
\(979\) −5.41168 + 9.37331i −0.172958 + 0.299572i
\(980\) 9.29656 0.296968
\(981\) −2.96803 −0.0947620
\(982\) 7.48773 12.9691i 0.238943 0.413862i
\(983\) −22.8804 39.6300i −0.729771 1.26400i −0.956980 0.290154i \(-0.906293\pi\)
0.227209 0.973846i \(-0.427040\pi\)
\(984\) 5.61596 9.72712i 0.179030 0.310089i
\(985\) −3.45606 5.98607i −0.110119 0.190732i
\(986\) −54.8545 95.0108i −1.74692 3.02576i
\(987\) 3.03436 0.0965846
\(988\) 6.82190 + 3.54743i 0.217034 + 0.112859i
\(989\) 9.59855 0.305216
\(990\) −2.83327 4.90737i −0.0900472 0.155966i
\(991\) −13.2056 22.8728i −0.419490 0.726579i 0.576398 0.817169i \(-0.304458\pi\)
−0.995888 + 0.0905905i \(0.971125\pi\)
\(992\) 0.814021 1.40993i 0.0258452 0.0447652i
\(993\) 11.9823 + 20.7540i 0.380248 + 0.658608i
\(994\) −14.2069 + 24.6072i −0.450617 + 0.780492i
\(995\) −13.3812 −0.424214
\(996\) 1.45007 0.0459473
\(997\) 20.5781 35.6423i 0.651714 1.12880i −0.330992 0.943633i \(-0.607383\pi\)
0.982707 0.185169i \(-0.0592832\pi\)
\(998\) −19.0025 + 32.9134i −0.601515 + 1.04185i
\(999\) −3.90253 −0.123471
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.2.i.f.121.4 yes 10
3.2 odd 2 855.2.k.i.406.2 10
19.7 even 3 5415.2.a.y.1.2 5
19.11 even 3 inner 285.2.i.f.106.4 10
19.12 odd 6 5415.2.a.z.1.4 5
57.11 odd 6 855.2.k.i.676.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.f.106.4 10 19.11 even 3 inner
285.2.i.f.121.4 yes 10 1.1 even 1 trivial
855.2.k.i.406.2 10 3.2 odd 2
855.2.k.i.676.2 10 57.11 odd 6
5415.2.a.y.1.2 5 19.7 even 3
5415.2.a.z.1.4 5 19.12 odd 6