Properties

Label 285.2.i.f.106.4
Level $285$
Weight $2$
Character 285.106
Analytic conductor $2.276$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} - 2x^{7} + 56x^{6} - 18x^{5} + 125x^{4} + x^{3} + 189x^{2} - 52x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.4
Root \(0.823305 + 1.42601i\) of defining polynomial
Character \(\chi\) \(=\) 285.106
Dual form 285.2.i.f.121.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.823305 - 1.42601i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.355663 - 0.616027i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(-0.823305 - 1.42601i) q^{6} +4.47988 q^{7} +2.12194 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.823305 + 1.42601i) q^{10} -3.44134 q^{11} -0.711327 q^{12} +(-1.23994 - 2.14764i) q^{13} +(3.68831 - 6.38834i) q^{14} +(0.500000 + 0.866025i) q^{15} +(2.45833 - 4.25796i) q^{16} +(-3.81400 + 6.60604i) q^{17} -1.64661 q^{18} +(-3.67522 - 2.34366i) q^{19} +0.711327 q^{20} +(2.23994 - 3.87969i) q^{21} +(-2.83327 + 4.90737i) q^{22} +(-1.93528 - 3.35201i) q^{23} +(1.06097 - 1.83766i) q^{24} +(-0.500000 - 0.866025i) q^{25} -4.08340 q^{26} -1.00000 q^{27} +(-1.59333 - 2.75973i) q^{28} +(4.36728 + 7.56435i) q^{29} +1.64661 q^{30} -0.422654 q^{31} +(-1.92598 - 3.33589i) q^{32} +(-1.72067 + 2.98028i) q^{33} +(6.28017 + 10.8776i) q^{34} +(-2.23994 + 3.87969i) q^{35} +(-0.355663 + 0.616027i) q^{36} +3.90253 q^{37} +(-6.36790 + 3.31135i) q^{38} -2.47988 q^{39} +(-1.06097 + 1.83766i) q^{40} +(-2.64661 + 4.58406i) q^{41} +(-3.68831 - 6.38834i) q^{42} +(-1.23994 + 2.14764i) q^{43} +(1.22396 + 2.11996i) q^{44} +1.00000 q^{45} -6.37332 q^{46} +(0.338665 + 0.586585i) q^{47} +(-2.45833 - 4.25796i) q^{48} +13.0693 q^{49} -1.64661 q^{50} +(3.81400 + 6.60604i) q^{51} +(-0.882003 + 1.52767i) q^{52} +(-5.74928 - 9.95805i) q^{53} +(-0.823305 + 1.42601i) q^{54} +(1.72067 - 2.98028i) q^{55} +9.50605 q^{56} +(-3.86728 + 2.01101i) q^{57} +14.3824 q^{58} +(4.26526 - 7.38765i) q^{59} +(0.355663 - 0.616027i) q^{60} +(-4.10117 - 7.10343i) q^{61} +(-0.347973 + 0.602707i) q^{62} +(-2.23994 - 3.87969i) q^{63} +3.49067 q^{64} +2.47988 q^{65} +(2.83327 + 4.90737i) q^{66} +(4.81729 + 8.34379i) q^{67} +5.42600 q^{68} -3.87057 q^{69} +(3.68831 + 6.38834i) q^{70} +(1.92594 - 3.33583i) q^{71} +(-1.06097 - 1.83766i) q^{72} +(-8.39260 + 14.5364i) q^{73} +(3.21298 - 5.56504i) q^{74} -1.00000 q^{75} +(-0.136613 + 3.09759i) q^{76} -15.4168 q^{77} +(-2.04170 + 3.53633i) q^{78} +(-6.06262 + 10.5008i) q^{79} +(2.45833 + 4.25796i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(4.35794 + 7.54817i) q^{82} -2.03855 q^{83} -3.18666 q^{84} +(-3.81400 - 6.60604i) q^{85} +(2.04170 + 3.53633i) q^{86} +8.73456 q^{87} -7.30232 q^{88} +(1.57255 + 2.72374i) q^{89} +(0.823305 - 1.42601i) q^{90} +(-5.55478 - 9.62117i) q^{91} +(-1.37662 + 2.38437i) q^{92} +(-0.211327 + 0.366029i) q^{93} +1.11530 q^{94} +(3.86728 - 2.01101i) q^{95} -3.85195 q^{96} +(-1.00000 + 1.73205i) q^{97} +(10.7600 - 18.6370i) q^{98} +(1.72067 + 2.98028i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + q^{2} + 5 q^{3} - 7 q^{4} - 5 q^{5} - q^{6} + 4 q^{7} - 12 q^{8} - 5 q^{9} + q^{10} + 10 q^{11} - 14 q^{12} + 8 q^{13} + 4 q^{14} + 5 q^{15} - 7 q^{16} - 10 q^{17} - 2 q^{18} + 5 q^{19} + 14 q^{20}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.823305 1.42601i 0.582165 1.00834i −0.413058 0.910705i \(-0.635539\pi\)
0.995222 0.0976341i \(-0.0311275\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −0.355663 0.616027i −0.177832 0.308014i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) −0.823305 1.42601i −0.336113 0.582165i
\(7\) 4.47988 1.69324 0.846618 0.532201i \(-0.178635\pi\)
0.846618 + 0.532201i \(0.178635\pi\)
\(8\) 2.12194 0.750220
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.823305 + 1.42601i 0.260352 + 0.450943i
\(11\) −3.44134 −1.03760 −0.518801 0.854895i \(-0.673621\pi\)
−0.518801 + 0.854895i \(0.673621\pi\)
\(12\) −0.711327 −0.205342
\(13\) −1.23994 2.14764i −0.343898 0.595648i 0.641255 0.767328i \(-0.278414\pi\)
−0.985153 + 0.171680i \(0.945081\pi\)
\(14\) 3.68831 6.38834i 0.985742 1.70736i
\(15\) 0.500000 + 0.866025i 0.129099 + 0.223607i
\(16\) 2.45833 4.25796i 0.614583 1.06449i
\(17\) −3.81400 + 6.60604i −0.925030 + 1.60220i −0.133518 + 0.991046i \(0.542627\pi\)
−0.791513 + 0.611153i \(0.790706\pi\)
\(18\) −1.64661 −0.388110
\(19\) −3.67522 2.34366i −0.843154 0.537672i
\(20\) 0.711327 0.159058
\(21\) 2.23994 3.87969i 0.488795 0.846618i
\(22\) −2.83327 + 4.90737i −0.604055 + 1.04625i
\(23\) −1.93528 3.35201i −0.403535 0.698942i 0.590615 0.806953i \(-0.298885\pi\)
−0.994150 + 0.108011i \(0.965552\pi\)
\(24\) 1.06097 1.83766i 0.216570 0.375110i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −4.08340 −0.800820
\(27\) −1.00000 −0.192450
\(28\) −1.59333 2.75973i −0.301111 0.521540i
\(29\) 4.36728 + 7.56435i 0.810983 + 1.40466i 0.912177 + 0.409797i \(0.134401\pi\)
−0.101193 + 0.994867i \(0.532266\pi\)
\(30\) 1.64661 0.300629
\(31\) −0.422654 −0.0759108 −0.0379554 0.999279i \(-0.512084\pi\)
−0.0379554 + 0.999279i \(0.512084\pi\)
\(32\) −1.92598 3.33589i −0.340468 0.589707i
\(33\) −1.72067 + 2.98028i −0.299530 + 0.518801i
\(34\) 6.28017 + 10.8776i 1.07704 + 1.86549i
\(35\) −2.23994 + 3.87969i −0.378619 + 0.655787i
\(36\) −0.355663 + 0.616027i −0.0592772 + 0.102671i
\(37\) 3.90253 0.641573 0.320786 0.947152i \(-0.396053\pi\)
0.320786 + 0.947152i \(0.396053\pi\)
\(38\) −6.36790 + 3.31135i −1.03301 + 0.537172i
\(39\) −2.47988 −0.397099
\(40\) −1.06097 + 1.83766i −0.167754 + 0.290559i
\(41\) −2.64661 + 4.58406i −0.413331 + 0.715911i −0.995252 0.0973351i \(-0.968968\pi\)
0.581921 + 0.813246i \(0.302301\pi\)
\(42\) −3.68831 6.38834i −0.569119 0.985742i
\(43\) −1.23994 + 2.14764i −0.189089 + 0.327512i −0.944947 0.327224i \(-0.893887\pi\)
0.755858 + 0.654736i \(0.227220\pi\)
\(44\) 1.22396 + 2.11996i 0.184518 + 0.319595i
\(45\) 1.00000 0.149071
\(46\) −6.37332 −0.939695
\(47\) 0.338665 + 0.586585i 0.0493994 + 0.0855622i 0.889668 0.456608i \(-0.150936\pi\)
−0.840268 + 0.542171i \(0.817603\pi\)
\(48\) −2.45833 4.25796i −0.354830 0.614583i
\(49\) 13.0693 1.86705
\(50\) −1.64661 −0.232866
\(51\) 3.81400 + 6.60604i 0.534066 + 0.925030i
\(52\) −0.882003 + 1.52767i −0.122312 + 0.211850i
\(53\) −5.74928 9.95805i −0.789725 1.36784i −0.926136 0.377191i \(-0.876890\pi\)
0.136411 0.990652i \(-0.456443\pi\)
\(54\) −0.823305 + 1.42601i −0.112038 + 0.194055i
\(55\) 1.72067 2.98028i 0.232015 0.401861i
\(56\) 9.50605 1.27030
\(57\) −3.86728 + 2.01101i −0.512234 + 0.266365i
\(58\) 14.3824 1.88850
\(59\) 4.26526 7.38765i 0.555290 0.961791i −0.442591 0.896724i \(-0.645941\pi\)
0.997881 0.0650670i \(-0.0207261\pi\)
\(60\) 0.355663 0.616027i 0.0459159 0.0795288i
\(61\) −4.10117 7.10343i −0.525101 0.909501i −0.999573 0.0292304i \(-0.990694\pi\)
0.474472 0.880271i \(-0.342639\pi\)
\(62\) −0.347973 + 0.602707i −0.0441926 + 0.0765439i
\(63\) −2.23994 3.87969i −0.282206 0.488795i
\(64\) 3.49067 0.436334
\(65\) 2.47988 0.307591
\(66\) 2.83327 + 4.90737i 0.348751 + 0.604055i
\(67\) 4.81729 + 8.34379i 0.588525 + 1.01936i 0.994426 + 0.105438i \(0.0336246\pi\)
−0.405901 + 0.913917i \(0.633042\pi\)
\(68\) 5.42600 0.657999
\(69\) −3.87057 −0.465962
\(70\) 3.68831 + 6.38834i 0.440837 + 0.763553i
\(71\) 1.92594 3.33583i 0.228567 0.395890i −0.728816 0.684709i \(-0.759929\pi\)
0.957384 + 0.288819i \(0.0932625\pi\)
\(72\) −1.06097 1.83766i −0.125037 0.216570i
\(73\) −8.39260 + 14.5364i −0.982280 + 1.70136i −0.328829 + 0.944389i \(0.606654\pi\)
−0.653451 + 0.756969i \(0.726679\pi\)
\(74\) 3.21298 5.56504i 0.373501 0.646923i
\(75\) −1.00000 −0.115470
\(76\) −0.136613 + 3.09759i −0.0156706 + 0.355318i
\(77\) −15.4168 −1.75690
\(78\) −2.04170 + 3.53633i −0.231177 + 0.400410i
\(79\) −6.06262 + 10.5008i −0.682098 + 1.18143i 0.292241 + 0.956345i \(0.405599\pi\)
−0.974339 + 0.225084i \(0.927734\pi\)
\(80\) 2.45833 + 4.25796i 0.274850 + 0.476054i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 4.35794 + 7.54817i 0.481254 + 0.833556i
\(83\) −2.03855 −0.223759 −0.111880 0.993722i \(-0.535687\pi\)
−0.111880 + 0.993722i \(0.535687\pi\)
\(84\) −3.18666 −0.347693
\(85\) −3.81400 6.60604i −0.413686 0.716525i
\(86\) 2.04170 + 3.53633i 0.220162 + 0.381332i
\(87\) 8.73456 0.936443
\(88\) −7.30232 −0.778430
\(89\) 1.57255 + 2.72374i 0.166690 + 0.288716i 0.937254 0.348647i \(-0.113359\pi\)
−0.770564 + 0.637363i \(0.780025\pi\)
\(90\) 0.823305 1.42601i 0.0867840 0.150314i
\(91\) −5.55478 9.62117i −0.582300 1.00857i
\(92\) −1.37662 + 2.38437i −0.143522 + 0.248588i
\(93\) −0.211327 + 0.366029i −0.0219136 + 0.0379554i
\(94\) 1.11530 0.115034
\(95\) 3.86728 2.01101i 0.396774 0.206325i
\(96\) −3.85195 −0.393138
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 10.7600 18.6370i 1.08693 1.88262i
\(99\) 1.72067 + 2.98028i 0.172934 + 0.299530i
\(100\) −0.355663 + 0.616027i −0.0355663 + 0.0616027i
\(101\) 1.00934 + 1.74823i 0.100433 + 0.173955i 0.911863 0.410494i \(-0.134644\pi\)
−0.811430 + 0.584450i \(0.801310\pi\)
\(102\) 12.5603 1.24366
\(103\) 6.48898 0.639378 0.319689 0.947523i \(-0.396422\pi\)
0.319689 + 0.947523i \(0.396422\pi\)
\(104\) −2.63108 4.55717i −0.257999 0.446867i
\(105\) 2.23994 + 3.87969i 0.218596 + 0.378619i
\(106\) −18.9337 −1.83900
\(107\) 3.96145 0.382968 0.191484 0.981496i \(-0.438670\pi\)
0.191484 + 0.981496i \(0.438670\pi\)
\(108\) 0.355663 + 0.616027i 0.0342237 + 0.0592772i
\(109\) 1.48402 2.57039i 0.142143 0.246199i −0.786160 0.618023i \(-0.787934\pi\)
0.928303 + 0.371824i \(0.121267\pi\)
\(110\) −2.83327 4.90737i −0.270142 0.467899i
\(111\) 1.95127 3.37969i 0.185206 0.320786i
\(112\) 11.0130 19.0751i 1.04063 1.80243i
\(113\) −8.71719 −0.820044 −0.410022 0.912076i \(-0.634479\pi\)
−0.410022 + 0.912076i \(0.634479\pi\)
\(114\) −0.316239 + 7.17044i −0.0296185 + 0.671573i
\(115\) 3.87057 0.360932
\(116\) 3.10656 5.38072i 0.288437 0.499588i
\(117\) −1.23994 + 2.14764i −0.114633 + 0.198549i
\(118\) −7.02323 12.1646i −0.646541 1.11984i
\(119\) −17.0863 + 29.5943i −1.56629 + 2.71290i
\(120\) 1.06097 + 1.83766i 0.0968530 + 0.167754i
\(121\) 0.842790 0.0766172
\(122\) −13.5061 −1.22278
\(123\) 2.64661 + 4.58406i 0.238637 + 0.413331i
\(124\) 0.150322 + 0.260366i 0.0134994 + 0.0233816i
\(125\) 1.00000 0.0894427
\(126\) −7.37662 −0.657161
\(127\) 2.28867 + 3.96410i 0.203087 + 0.351757i 0.949522 0.313702i \(-0.101569\pi\)
−0.746435 + 0.665459i \(0.768236\pi\)
\(128\) 6.72584 11.6495i 0.594486 1.02968i
\(129\) 1.23994 + 2.14764i 0.109171 + 0.189089i
\(130\) 2.04170 3.53633i 0.179069 0.310156i
\(131\) 10.3364 17.9031i 0.903094 1.56420i 0.0796380 0.996824i \(-0.474624\pi\)
0.823456 0.567380i \(-0.192043\pi\)
\(132\) 2.44791 0.213064
\(133\) −16.4646 10.4993i −1.42766 0.910405i
\(134\) 15.8644 1.37047
\(135\) 0.500000 0.866025i 0.0430331 0.0745356i
\(136\) −8.09309 + 14.0176i −0.693976 + 1.20200i
\(137\) −8.81400 15.2663i −0.753031 1.30429i −0.946347 0.323151i \(-0.895258\pi\)
0.193317 0.981136i \(-0.438075\pi\)
\(138\) −3.18666 + 5.51946i −0.271266 + 0.469847i
\(139\) −5.86728 10.1624i −0.497656 0.861966i 0.502340 0.864670i \(-0.332472\pi\)
−0.999996 + 0.00270444i \(0.999139\pi\)
\(140\) 3.18666 0.269322
\(141\) 0.677330 0.0570415
\(142\) −3.17128 5.49282i −0.266128 0.460947i
\(143\) 4.26705 + 7.39075i 0.356829 + 0.618045i
\(144\) −4.91667 −0.409722
\(145\) −8.73456 −0.725365
\(146\) 13.8193 + 23.9358i 1.14370 + 1.98094i
\(147\) 6.53467 11.3184i 0.538970 0.933524i
\(148\) −1.38799 2.40407i −0.114092 0.197613i
\(149\) 10.7824 18.6757i 0.883332 1.52998i 0.0357187 0.999362i \(-0.488628\pi\)
0.847613 0.530614i \(-0.178039\pi\)
\(150\) −0.823305 + 1.42601i −0.0672226 + 0.116433i
\(151\) 18.3102 1.49006 0.745032 0.667029i \(-0.232434\pi\)
0.745032 + 0.667029i \(0.232434\pi\)
\(152\) −7.79862 4.97311i −0.632551 0.403372i
\(153\) 7.62799 0.616687
\(154\) −12.6927 + 21.9844i −1.02281 + 1.77156i
\(155\) 0.211327 0.366029i 0.0169742 0.0294001i
\(156\) 0.882003 + 1.52767i 0.0706167 + 0.122312i
\(157\) 5.71527 9.89914i 0.456128 0.790038i −0.542624 0.839976i \(-0.682569\pi\)
0.998752 + 0.0499382i \(0.0159024\pi\)
\(158\) 9.98278 + 17.2907i 0.794187 + 1.37557i
\(159\) −11.4986 −0.911895
\(160\) 3.85195 0.304524
\(161\) −8.66984 15.0166i −0.683279 1.18347i
\(162\) 0.823305 + 1.42601i 0.0646850 + 0.112038i
\(163\) −8.19876 −0.642177 −0.321088 0.947049i \(-0.604049\pi\)
−0.321088 + 0.947049i \(0.604049\pi\)
\(164\) 3.76521 0.294014
\(165\) −1.72067 2.98028i −0.133954 0.232015i
\(166\) −1.67835 + 2.90698i −0.130265 + 0.225625i
\(167\) 4.42206 + 7.65924i 0.342189 + 0.592690i 0.984839 0.173471i \(-0.0554982\pi\)
−0.642650 + 0.766160i \(0.722165\pi\)
\(168\) 4.75303 8.23248i 0.366704 0.635150i
\(169\) 3.42510 5.93244i 0.263469 0.456342i
\(170\) −12.5603 −0.963334
\(171\) −0.192054 + 4.35467i −0.0146868 + 0.333010i
\(172\) 1.76401 0.134504
\(173\) −8.77310 + 15.1955i −0.667007 + 1.15529i 0.311731 + 0.950171i \(0.399091\pi\)
−0.978737 + 0.205119i \(0.934242\pi\)
\(174\) 7.19121 12.4555i 0.545164 0.944252i
\(175\) −2.23994 3.87969i −0.169324 0.293277i
\(176\) −8.45995 + 14.6531i −0.637693 + 1.10452i
\(177\) −4.26526 7.38765i −0.320597 0.555290i
\(178\) 5.17877 0.388165
\(179\) 4.30890 0.322062 0.161031 0.986949i \(-0.448518\pi\)
0.161031 + 0.986949i \(0.448518\pi\)
\(180\) −0.355663 0.616027i −0.0265096 0.0459159i
\(181\) −3.17193 5.49395i −0.235768 0.408362i 0.723728 0.690086i \(-0.242427\pi\)
−0.959496 + 0.281724i \(0.909094\pi\)
\(182\) −18.2931 −1.35598
\(183\) −8.20233 −0.606334
\(184\) −4.10656 7.11277i −0.302740 0.524361i
\(185\) −1.95127 + 3.37969i −0.143460 + 0.248480i
\(186\) 0.347973 + 0.602707i 0.0255146 + 0.0441926i
\(187\) 13.1252 22.7336i 0.959813 1.66244i
\(188\) 0.240901 0.417254i 0.0175695 0.0304313i
\(189\) −4.47988 −0.325863
\(190\) 0.316239 7.17044i 0.0229424 0.520198i
\(191\) 0.845796 0.0611997 0.0305998 0.999532i \(-0.490258\pi\)
0.0305998 + 0.999532i \(0.490258\pi\)
\(192\) 1.74534 3.02301i 0.125959 0.218167i
\(193\) 6.59039 11.4149i 0.474387 0.821662i −0.525183 0.850989i \(-0.676003\pi\)
0.999570 + 0.0293275i \(0.00933658\pi\)
\(194\) 1.64661 + 2.85201i 0.118220 + 0.204763i
\(195\) 1.23994 2.14764i 0.0887940 0.153796i
\(196\) −4.64828 8.05106i −0.332020 0.575076i
\(197\) 6.91212 0.492468 0.246234 0.969210i \(-0.420807\pi\)
0.246234 + 0.969210i \(0.420807\pi\)
\(198\) 5.66654 0.402703
\(199\) 6.69062 + 11.5885i 0.474285 + 0.821486i 0.999566 0.0294426i \(-0.00937321\pi\)
−0.525281 + 0.850929i \(0.676040\pi\)
\(200\) −1.06097 1.83766i −0.0750220 0.129942i
\(201\) 9.63457 0.679570
\(202\) 3.32398 0.233875
\(203\) 19.5649 + 33.8874i 1.37319 + 2.37843i
\(204\) 2.71300 4.69905i 0.189948 0.328999i
\(205\) −2.64661 4.58406i −0.184847 0.320165i
\(206\) 5.34241 9.25332i 0.372223 0.644710i
\(207\) −1.93528 + 3.35201i −0.134512 + 0.232981i
\(208\) −12.1927 −0.845415
\(209\) 12.6477 + 8.06531i 0.874858 + 0.557889i
\(210\) 7.37662 0.509035
\(211\) 7.37512 12.7741i 0.507724 0.879404i −0.492236 0.870462i \(-0.663820\pi\)
0.999960 0.00894190i \(-0.00284633\pi\)
\(212\) −4.08962 + 7.08343i −0.280876 + 0.486492i
\(213\) −1.92594 3.33583i −0.131963 0.228567i
\(214\) 3.26149 5.64906i 0.222951 0.386162i
\(215\) −1.23994 2.14764i −0.0845632 0.146468i
\(216\) −2.12194 −0.144380
\(217\) −1.89344 −0.128535
\(218\) −2.44360 4.23244i −0.165501 0.286657i
\(219\) 8.39260 + 14.5364i 0.567120 + 0.982280i
\(220\) −2.44791 −0.165038
\(221\) 18.9165 1.27246
\(222\) −3.21298 5.56504i −0.215641 0.373501i
\(223\) 1.14417 1.98176i 0.0766192 0.132708i −0.825170 0.564884i \(-0.808921\pi\)
0.901789 + 0.432176i \(0.142254\pi\)
\(224\) −8.62814 14.9444i −0.576492 0.998513i
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) −7.17691 + 12.4308i −0.477401 + 0.826882i
\(227\) −4.19493 −0.278427 −0.139214 0.990262i \(-0.544457\pi\)
−0.139214 + 0.990262i \(0.544457\pi\)
\(228\) 2.61429 + 1.66711i 0.173135 + 0.110407i
\(229\) −26.2742 −1.73625 −0.868123 0.496348i \(-0.834674\pi\)
−0.868123 + 0.496348i \(0.834674\pi\)
\(230\) 3.18666 5.51946i 0.210122 0.363942i
\(231\) −7.70839 + 13.3513i −0.507175 + 0.878452i
\(232\) 9.26712 + 16.0511i 0.608416 + 1.05381i
\(233\) 2.78125 4.81726i 0.182206 0.315589i −0.760426 0.649425i \(-0.775010\pi\)
0.942631 + 0.333836i \(0.108343\pi\)
\(234\) 2.04170 + 3.53633i 0.133470 + 0.231177i
\(235\) −0.677330 −0.0441841
\(236\) −6.06799 −0.394993
\(237\) 6.06262 + 10.5008i 0.393810 + 0.682098i
\(238\) 28.1344 + 48.7302i 1.82368 + 3.15871i
\(239\) −6.84901 −0.443026 −0.221513 0.975157i \(-0.571099\pi\)
−0.221513 + 0.975157i \(0.571099\pi\)
\(240\) 4.91667 0.317370
\(241\) −7.42122 12.8539i −0.478043 0.827994i 0.521641 0.853165i \(-0.325320\pi\)
−0.999683 + 0.0251714i \(0.991987\pi\)
\(242\) 0.693873 1.20182i 0.0446039 0.0772561i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −2.91727 + 5.05286i −0.186759 + 0.323476i
\(245\) −6.53467 + 11.3184i −0.417484 + 0.723104i
\(246\) 8.71588 0.555704
\(247\) −0.476272 + 10.7991i −0.0303044 + 0.687127i
\(248\) −0.896847 −0.0569498
\(249\) −1.01927 + 1.76543i −0.0645938 + 0.111880i
\(250\) 0.823305 1.42601i 0.0520704 0.0901886i
\(251\) 2.40128 + 4.15913i 0.151567 + 0.262522i 0.931804 0.362962i \(-0.118235\pi\)
−0.780237 + 0.625484i \(0.784901\pi\)
\(252\) −1.59333 + 2.75973i −0.100370 + 0.173847i
\(253\) 6.65996 + 11.5354i 0.418708 + 0.725224i
\(254\) 7.53711 0.472920
\(255\) −7.62799 −0.477684
\(256\) −7.58417 13.1362i −0.474011 0.821010i
\(257\) −1.74862 3.02871i −0.109076 0.188926i 0.806320 0.591479i \(-0.201456\pi\)
−0.915396 + 0.402554i \(0.868123\pi\)
\(258\) 4.08340 0.254221
\(259\) 17.4829 1.08633
\(260\) −0.882003 1.52767i −0.0546995 0.0947423i
\(261\) 4.36728 7.56435i 0.270328 0.468221i
\(262\) −17.0200 29.4795i −1.05150 1.82125i
\(263\) 2.61621 4.53141i 0.161322 0.279419i −0.774021 0.633160i \(-0.781757\pi\)
0.935343 + 0.353741i \(0.115091\pi\)
\(264\) −3.65116 + 6.32399i −0.224713 + 0.389215i
\(265\) 11.4986 0.706351
\(266\) −28.5274 + 14.8344i −1.74913 + 0.909558i
\(267\) 3.14511 0.192477
\(268\) 3.42667 5.93516i 0.209317 0.362547i
\(269\) 7.94917 13.7684i 0.484670 0.839472i −0.515175 0.857085i \(-0.672273\pi\)
0.999845 + 0.0176124i \(0.00560650\pi\)
\(270\) −0.823305 1.42601i −0.0501048 0.0867840i
\(271\) −4.99789 + 8.65661i −0.303600 + 0.525851i −0.976949 0.213474i \(-0.931522\pi\)
0.673348 + 0.739325i \(0.264855\pi\)
\(272\) 18.7522 + 32.4797i 1.13702 + 1.96937i
\(273\) −11.1096 −0.672382
\(274\) −29.0264 −1.75355
\(275\) 1.72067 + 2.98028i 0.103760 + 0.179718i
\(276\) 1.37662 + 2.38437i 0.0828627 + 0.143522i
\(277\) 4.08619 0.245515 0.122758 0.992437i \(-0.460826\pi\)
0.122758 + 0.992437i \(0.460826\pi\)
\(278\) −19.3222 −1.15887
\(279\) 0.211327 + 0.366029i 0.0126518 + 0.0219136i
\(280\) −4.75303 + 8.23248i −0.284048 + 0.491985i
\(281\) 5.81920 + 10.0792i 0.347144 + 0.601272i 0.985741 0.168270i \(-0.0538180\pi\)
−0.638596 + 0.769542i \(0.720485\pi\)
\(282\) 0.557649 0.965877i 0.0332075 0.0575171i
\(283\) −2.17910 + 3.77432i −0.129534 + 0.224360i −0.923496 0.383607i \(-0.874682\pi\)
0.793962 + 0.607967i \(0.208015\pi\)
\(284\) −2.73995 −0.162586
\(285\) 0.192054 4.35467i 0.0113763 0.257948i
\(286\) 14.0523 0.830932
\(287\) −11.8565 + 20.5361i −0.699867 + 1.21221i
\(288\) −1.92598 + 3.33589i −0.113489 + 0.196569i
\(289\) −20.5932 35.6684i −1.21136 2.09814i
\(290\) −7.19121 + 12.4555i −0.422282 + 0.731414i
\(291\) 1.00000 + 1.73205i 0.0586210 + 0.101535i
\(292\) 11.9398 0.698722
\(293\) −7.20233 −0.420765 −0.210382 0.977619i \(-0.567471\pi\)
−0.210382 + 0.977619i \(0.567471\pi\)
\(294\) −10.7600 18.6370i −0.627539 1.08693i
\(295\) 4.26526 + 7.38765i 0.248333 + 0.430126i
\(296\) 8.28096 0.481321
\(297\) 3.44134 0.199687
\(298\) −17.7545 30.7517i −1.02849 1.78140i
\(299\) −4.79927 + 8.31258i −0.277549 + 0.480729i
\(300\) 0.355663 + 0.616027i 0.0205342 + 0.0355663i
\(301\) −5.55478 + 9.62117i −0.320172 + 0.554555i
\(302\) 15.0749 26.1105i 0.867463 1.50249i
\(303\) 2.01868 0.115970
\(304\) −19.0141 + 9.88746i −1.09053 + 0.567085i
\(305\) 8.20233 0.469664
\(306\) 6.28017 10.8776i 0.359013 0.621829i
\(307\) −8.14056 + 14.0999i −0.464606 + 0.804722i −0.999184 0.0403979i \(-0.987137\pi\)
0.534577 + 0.845120i \(0.320471\pi\)
\(308\) 5.48318 + 9.49715i 0.312433 + 0.541150i
\(309\) 3.24449 5.61962i 0.184573 0.319689i
\(310\) −0.347973 0.602707i −0.0197635 0.0342315i
\(311\) −4.07709 −0.231191 −0.115595 0.993296i \(-0.536878\pi\)
−0.115595 + 0.993296i \(0.536878\pi\)
\(312\) −5.26217 −0.297911
\(313\) 10.7777 + 18.6674i 0.609189 + 1.05515i 0.991374 + 0.131060i \(0.0418382\pi\)
−0.382186 + 0.924086i \(0.624828\pi\)
\(314\) −9.41083 16.3000i −0.531084 0.919864i
\(315\) 4.47988 0.252413
\(316\) 8.62501 0.485195
\(317\) 7.13339 + 12.3554i 0.400651 + 0.693948i 0.993805 0.111141i \(-0.0354506\pi\)
−0.593154 + 0.805089i \(0.702117\pi\)
\(318\) −9.46683 + 16.3970i −0.530873 + 0.919500i
\(319\) −15.0293 26.0315i −0.841478 1.45748i
\(320\) −1.74534 + 3.02301i −0.0975672 + 0.168991i
\(321\) 1.98073 3.43072i 0.110553 0.191484i
\(322\) −28.5517 −1.59112
\(323\) 29.4996 15.3400i 1.64140 0.853539i
\(324\) 0.711327 0.0395182
\(325\) −1.23994 + 2.14764i −0.0687795 + 0.119130i
\(326\) −6.75008 + 11.6915i −0.373853 + 0.647532i
\(327\) −1.48402 2.57039i −0.0820663 0.142143i
\(328\) −5.61596 + 9.72712i −0.310089 + 0.537091i
\(329\) 1.51718 + 2.62783i 0.0836448 + 0.144877i
\(330\) −5.66654 −0.311933
\(331\) 23.9646 1.31722 0.658608 0.752486i \(-0.271146\pi\)
0.658608 + 0.752486i \(0.271146\pi\)
\(332\) 0.725036 + 1.25580i 0.0397915 + 0.0689209i
\(333\) −1.95127 3.37969i −0.106929 0.185206i
\(334\) 14.5628 0.796843
\(335\) −9.63457 −0.526393
\(336\) −11.0130 19.0751i −0.600811 1.04063i
\(337\) −16.3204 + 28.2678i −0.889029 + 1.53984i −0.0480033 + 0.998847i \(0.515286\pi\)
−0.841025 + 0.540996i \(0.818048\pi\)
\(338\) −5.63980 9.76842i −0.306765 0.531332i
\(339\) −4.35859 + 7.54931i −0.236726 + 0.410022i
\(340\) −2.71300 + 4.69905i −0.147133 + 0.254842i
\(341\) 1.45449 0.0787652
\(342\) 6.05166 + 3.85909i 0.327236 + 0.208676i
\(343\) 27.1899 1.46812
\(344\) −2.63108 + 4.55717i −0.141858 + 0.245706i
\(345\) 1.93528 3.35201i 0.104192 0.180466i
\(346\) 14.4459 + 25.0210i 0.776616 + 1.34514i
\(347\) −8.41457 + 14.5745i −0.451718 + 0.782398i −0.998493 0.0548811i \(-0.982522\pi\)
0.546775 + 0.837280i \(0.315855\pi\)
\(348\) −3.10656 5.38072i −0.166529 0.288437i
\(349\) 2.46947 0.132188 0.0660939 0.997813i \(-0.478946\pi\)
0.0660939 + 0.997813i \(0.478946\pi\)
\(350\) −7.37662 −0.394297
\(351\) 1.23994 + 2.14764i 0.0661831 + 0.114633i
\(352\) 6.62793 + 11.4799i 0.353270 + 0.611881i
\(353\) 27.7653 1.47780 0.738900 0.673815i \(-0.235346\pi\)
0.738900 + 0.673815i \(0.235346\pi\)
\(354\) −14.0465 −0.746561
\(355\) 1.92594 + 3.33583i 0.102218 + 0.177048i
\(356\) 1.11860 1.93747i 0.0592857 0.102686i
\(357\) 17.0863 + 29.5943i 0.904300 + 1.56629i
\(358\) 3.54754 6.14452i 0.187493 0.324748i
\(359\) 10.0245 17.3629i 0.529072 0.916379i −0.470354 0.882478i \(-0.655874\pi\)
0.999425 0.0339009i \(-0.0107931\pi\)
\(360\) 2.12194 0.111836
\(361\) 8.01455 + 17.2269i 0.421818 + 0.906680i
\(362\) −10.4459 −0.549023
\(363\) 0.421395 0.729877i 0.0221175 0.0383086i
\(364\) −3.95127 + 6.84380i −0.207103 + 0.358712i
\(365\) −8.39260 14.5364i −0.439289 0.760871i
\(366\) −6.75303 + 11.6966i −0.352986 + 0.611390i
\(367\) 3.33741 + 5.78056i 0.174211 + 0.301743i 0.939888 0.341483i \(-0.110929\pi\)
−0.765677 + 0.643225i \(0.777596\pi\)
\(368\) −19.0303 −0.992023
\(369\) 5.29322 0.275554
\(370\) 3.21298 + 5.56504i 0.167035 + 0.289313i
\(371\) −25.7561 44.6109i −1.33719 2.31608i
\(372\) 0.300645 0.0155877
\(373\) −12.4380 −0.644014 −0.322007 0.946737i \(-0.604357\pi\)
−0.322007 + 0.946737i \(0.604357\pi\)
\(374\) −21.6122 37.4334i −1.11754 1.93563i
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) 0.718628 + 1.24470i 0.0370604 + 0.0641905i
\(377\) 10.8303 18.7587i 0.557790 0.966121i
\(378\) −3.68831 + 6.38834i −0.189706 + 0.328581i
\(379\) 21.3994 1.09921 0.549607 0.835423i \(-0.314777\pi\)
0.549607 + 0.835423i \(0.314777\pi\)
\(380\) −2.61429 1.66711i −0.134110 0.0855207i
\(381\) 4.57735 0.234505
\(382\) 0.696349 1.20611i 0.0356283 0.0617100i
\(383\) −5.35405 + 9.27348i −0.273579 + 0.473853i −0.969776 0.243998i \(-0.921541\pi\)
0.696197 + 0.717851i \(0.254874\pi\)
\(384\) −6.72584 11.6495i −0.343227 0.594486i
\(385\) 7.70839 13.3513i 0.392856 0.680446i
\(386\) −10.8518 18.7959i −0.552342 0.956685i
\(387\) 2.47988 0.126059
\(388\) 1.42265 0.0722243
\(389\) 1.75466 + 3.03917i 0.0889650 + 0.154092i 0.907074 0.420971i \(-0.138311\pi\)
−0.818109 + 0.575063i \(0.804977\pi\)
\(390\) −2.04170 3.53633i −0.103385 0.179069i
\(391\) 29.5247 1.49313
\(392\) 27.7324 1.40070
\(393\) −10.3364 17.9031i −0.521401 0.903094i
\(394\) 5.69079 9.85673i 0.286698 0.496575i
\(395\) −6.06262 10.5008i −0.305044 0.528351i
\(396\) 1.22396 2.11996i 0.0615062 0.106532i
\(397\) −15.5995 + 27.0191i −0.782916 + 1.35605i 0.147321 + 0.989089i \(0.452935\pi\)
−0.930236 + 0.366961i \(0.880398\pi\)
\(398\) 22.0337 1.10445
\(399\) −17.3249 + 9.00908i −0.867332 + 0.451018i
\(400\) −4.91667 −0.245833
\(401\) 9.87661 17.1068i 0.493214 0.854272i −0.506755 0.862090i \(-0.669155\pi\)
0.999969 + 0.00781786i \(0.00248853\pi\)
\(402\) 7.93220 13.7390i 0.395622 0.685237i
\(403\) 0.524065 + 0.907708i 0.0261055 + 0.0452161i
\(404\) 0.717971 1.24356i 0.0357204 0.0618696i
\(405\) −0.500000 0.866025i −0.0248452 0.0430331i
\(406\) 64.4315 3.19768
\(407\) −13.4299 −0.665697
\(408\) 8.09309 + 14.0176i 0.400667 + 0.693976i
\(409\) 1.06951 + 1.85244i 0.0528838 + 0.0915974i 0.891255 0.453502i \(-0.149825\pi\)
−0.838372 + 0.545099i \(0.816492\pi\)
\(410\) −8.71588 −0.430446
\(411\) −17.6280 −0.869525
\(412\) −2.30789 3.99739i −0.113702 0.196937i
\(413\) 19.1079 33.0958i 0.940237 1.62854i
\(414\) 3.18666 + 5.51946i 0.156616 + 0.271266i
\(415\) 1.01927 1.76543i 0.0500341 0.0866616i
\(416\) −4.77619 + 8.27260i −0.234172 + 0.405598i
\(417\) −11.7346 −0.574644
\(418\) 21.9141 11.3955i 1.07185 0.557370i
\(419\) −5.70341 −0.278630 −0.139315 0.990248i \(-0.544490\pi\)
−0.139315 + 0.990248i \(0.544490\pi\)
\(420\) 1.59333 2.75973i 0.0777465 0.134661i
\(421\) −19.5265 + 33.8209i −0.951664 + 1.64833i −0.209841 + 0.977736i \(0.567295\pi\)
−0.741823 + 0.670595i \(0.766039\pi\)
\(422\) −12.1439 21.0339i −0.591158 1.02392i
\(423\) 0.338665 0.586585i 0.0164665 0.0285207i
\(424\) −12.1996 21.1304i −0.592467 1.02618i
\(425\) 7.62799 0.370012
\(426\) −6.34256 −0.307298
\(427\) −18.3727 31.8225i −0.889119 1.54000i
\(428\) −1.40894 2.44036i −0.0681039 0.117959i
\(429\) 8.53410 0.412030
\(430\) −4.08340 −0.196919
\(431\) −0.868782 1.50477i −0.0418477 0.0724824i 0.844343 0.535803i \(-0.179991\pi\)
−0.886191 + 0.463321i \(0.846658\pi\)
\(432\) −2.45833 + 4.25796i −0.118277 + 0.204861i
\(433\) −11.8156 20.4652i −0.567821 0.983495i −0.996781 0.0801716i \(-0.974453\pi\)
0.428960 0.903324i \(-0.358880\pi\)
\(434\) −1.55888 + 2.70005i −0.0748285 + 0.129607i
\(435\) −4.36728 + 7.56435i −0.209395 + 0.362683i
\(436\) −2.11124 −0.101110
\(437\) −0.743359 + 16.8550i −0.0355597 + 0.806285i
\(438\) 27.6387 1.32063
\(439\) 1.58465 2.74469i 0.0756310 0.130997i −0.825730 0.564066i \(-0.809236\pi\)
0.901360 + 0.433070i \(0.142570\pi\)
\(440\) 3.65116 6.32399i 0.174062 0.301485i
\(441\) −6.53467 11.3184i −0.311175 0.538970i
\(442\) 15.5741 26.9751i 0.740783 1.28307i
\(443\) −11.5916 20.0773i −0.550736 0.953902i −0.998222 0.0596114i \(-0.981014\pi\)
0.447486 0.894291i \(-0.352319\pi\)
\(444\) −2.77598 −0.131742
\(445\) −3.14511 −0.149092
\(446\) −1.88400 3.26318i −0.0892100 0.154516i
\(447\) −10.7824 18.6757i −0.509992 0.883332i
\(448\) 15.6378 0.738816
\(449\) 13.2505 0.625328 0.312664 0.949864i \(-0.398779\pi\)
0.312664 + 0.949864i \(0.398779\pi\)
\(450\) 0.823305 + 1.42601i 0.0388110 + 0.0672226i
\(451\) 9.10788 15.7753i 0.428873 0.742830i
\(452\) 3.10038 + 5.37002i 0.145830 + 0.252585i
\(453\) 9.15510 15.8571i 0.430144 0.745032i
\(454\) −3.45371 + 5.98200i −0.162091 + 0.280749i
\(455\) 11.1096 0.520825
\(456\) −8.20614 + 4.26725i −0.384288 + 0.199832i
\(457\) 4.13077 0.193229 0.0966146 0.995322i \(-0.469199\pi\)
0.0966146 + 0.995322i \(0.469199\pi\)
\(458\) −21.6317 + 37.4672i −1.01078 + 1.75073i
\(459\) 3.81400 6.60604i 0.178022 0.308343i
\(460\) −1.37662 2.38437i −0.0641852 0.111172i
\(461\) −10.9292 + 18.9300i −0.509026 + 0.881658i 0.490920 + 0.871205i \(0.336661\pi\)
−0.999945 + 0.0104535i \(0.996673\pi\)
\(462\) 12.6927 + 21.9844i 0.590518 + 1.02281i
\(463\) 30.9461 1.43819 0.719094 0.694913i \(-0.244557\pi\)
0.719094 + 0.694913i \(0.244557\pi\)
\(464\) 42.9449 1.99367
\(465\) −0.211327 0.366029i −0.00980005 0.0169742i
\(466\) −4.57963 7.93216i −0.212147 0.367450i
\(467\) 0.394259 0.0182441 0.00912207 0.999958i \(-0.497096\pi\)
0.00912207 + 0.999958i \(0.497096\pi\)
\(468\) 1.76401 0.0815412
\(469\) 21.5809 + 37.3792i 0.996512 + 1.72601i
\(470\) −0.557649 + 0.965877i −0.0257224 + 0.0445526i
\(471\) −5.71527 9.89914i −0.263346 0.456128i
\(472\) 9.05065 15.6762i 0.416590 0.721555i
\(473\) 4.26705 7.39075i 0.196199 0.339827i
\(474\) 19.9656 0.917048
\(475\) −0.192054 + 4.35467i −0.00881205 + 0.199806i
\(476\) 24.3078 1.11415
\(477\) −5.74928 + 9.95805i −0.263242 + 0.455948i
\(478\) −5.63883 + 9.76674i −0.257914 + 0.446720i
\(479\) 3.52119 + 6.09888i 0.160887 + 0.278665i 0.935187 0.354154i \(-0.115231\pi\)
−0.774300 + 0.632819i \(0.781898\pi\)
\(480\) 1.92598 3.33589i 0.0879084 0.152262i
\(481\) −4.83891 8.38124i −0.220635 0.382152i
\(482\) −24.4397 −1.11320
\(483\) −17.3397 −0.788983
\(484\) −0.299749 0.519181i −0.0136250 0.0235991i
\(485\) −1.00000 1.73205i −0.0454077 0.0786484i
\(486\) 1.64661 0.0746918
\(487\) 0.689174 0.0312295 0.0156147 0.999878i \(-0.495029\pi\)
0.0156147 + 0.999878i \(0.495029\pi\)
\(488\) −8.70244 15.0731i −0.393941 0.682326i
\(489\) −4.09938 + 7.10034i −0.185380 + 0.321088i
\(490\) 10.7600 + 18.6370i 0.486089 + 0.841932i
\(491\) −4.54736 + 7.87626i −0.205219 + 0.355450i −0.950203 0.311633i \(-0.899124\pi\)
0.744983 + 0.667083i \(0.232457\pi\)
\(492\) 1.88261 3.26077i 0.0848744 0.147007i
\(493\) −66.6272 −3.00074
\(494\) 15.0074 + 9.57008i 0.675215 + 0.430578i
\(495\) −3.44134 −0.154677
\(496\) −1.03902 + 1.79964i −0.0466535 + 0.0808063i
\(497\) 8.62799 14.9441i 0.387018 0.670336i
\(498\) 1.67835 + 2.90698i 0.0752084 + 0.130265i
\(499\) 11.5404 19.9886i 0.516619 0.894811i −0.483195 0.875513i \(-0.660524\pi\)
0.999814 0.0192976i \(-0.00614300\pi\)
\(500\) −0.355663 0.616027i −0.0159058 0.0275496i
\(501\) 8.84413 0.395126
\(502\) 7.90793 0.352948
\(503\) 10.5982 + 18.3567i 0.472552 + 0.818483i 0.999507 0.0314099i \(-0.00999972\pi\)
−0.526955 + 0.849893i \(0.676666\pi\)
\(504\) −4.75303 8.23248i −0.211717 0.366704i
\(505\) −2.01868 −0.0898302
\(506\) 21.9327 0.975029
\(507\) −3.42510 5.93244i −0.152114 0.263469i
\(508\) 1.62799 2.81977i 0.0722306 0.125107i
\(509\) −9.12649 15.8075i −0.404525 0.700657i 0.589741 0.807592i \(-0.299230\pi\)
−0.994266 + 0.106935i \(0.965896\pi\)
\(510\) −6.28017 + 10.8776i −0.278091 + 0.481667i
\(511\) −37.5979 + 65.1214i −1.66323 + 2.88080i
\(512\) 1.92701 0.0851627
\(513\) 3.67522 + 2.34366i 0.162265 + 0.103475i
\(514\) −5.75861 −0.254001
\(515\) −3.24449 + 5.61962i −0.142969 + 0.247630i
\(516\) 0.882003 1.52767i 0.0388280 0.0672521i
\(517\) −1.16546 2.01864i −0.0512569 0.0887795i
\(518\) 14.3938 24.9307i 0.632425 1.09539i
\(519\) 8.77310 + 15.1955i 0.385096 + 0.667007i
\(520\) 5.26217 0.230761
\(521\) −34.4874 −1.51092 −0.755461 0.655194i \(-0.772587\pi\)
−0.755461 + 0.655194i \(0.772587\pi\)
\(522\) −7.19121 12.4555i −0.314751 0.545164i
\(523\) −8.06993 13.9775i −0.352874 0.611195i 0.633878 0.773433i \(-0.281462\pi\)
−0.986752 + 0.162238i \(0.948129\pi\)
\(524\) −14.7051 −0.642395
\(525\) −4.47988 −0.195518
\(526\) −4.30788 7.46147i −0.187833 0.325336i
\(527\) 1.61200 2.79207i 0.0702198 0.121624i
\(528\) 8.45995 + 14.6531i 0.368172 + 0.637693i
\(529\) 4.00935 6.94440i 0.174320 0.301931i
\(530\) 9.46683 16.3970i 0.411213 0.712241i
\(531\) −8.53053 −0.370193
\(532\) −0.612011 + 13.8768i −0.0265341 + 0.601637i
\(533\) 13.1266 0.568574
\(534\) 2.58938 4.48494i 0.112054 0.194083i
\(535\) −1.98073 + 3.43072i −0.0856343 + 0.148323i
\(536\) 10.2220 + 17.7050i 0.441523 + 0.764741i
\(537\) 2.15445 3.73161i 0.0929713 0.161031i
\(538\) −13.0892 22.6711i −0.564315 0.977423i
\(539\) −44.9759 −1.93725
\(540\) −0.711327 −0.0306106
\(541\) −8.46634 14.6641i −0.363996 0.630460i 0.624618 0.780930i \(-0.285255\pi\)
−0.988615 + 0.150470i \(0.951921\pi\)
\(542\) 8.22959 + 14.2541i 0.353491 + 0.612264i
\(543\) −6.34387 −0.272242
\(544\) 29.3827 1.25977
\(545\) 1.48402 + 2.57039i 0.0635683 + 0.110104i
\(546\) −9.14657 + 15.8423i −0.391437 + 0.677989i
\(547\) 14.6871 + 25.4389i 0.627977 + 1.08769i 0.987957 + 0.154728i \(0.0494500\pi\)
−0.359981 + 0.932960i \(0.617217\pi\)
\(548\) −6.26963 + 10.8593i −0.267825 + 0.463887i
\(549\) −4.10117 + 7.10343i −0.175034 + 0.303167i
\(550\) 5.66654 0.241622
\(551\) 1.67751 38.0361i 0.0714643 1.62039i
\(552\) −8.21312 −0.349574
\(553\) −27.1598 + 47.0422i −1.15495 + 2.00044i
\(554\) 3.36418 5.82693i 0.142930 0.247563i
\(555\) 1.95127 + 3.37969i 0.0828267 + 0.143460i
\(556\) −4.17355 + 7.22880i −0.176998 + 0.306570i
\(557\) −4.29322 7.43608i −0.181910 0.315077i 0.760621 0.649196i \(-0.224895\pi\)
−0.942531 + 0.334119i \(0.891561\pi\)
\(558\) 0.695946 0.0294617
\(559\) 6.14981 0.260109
\(560\) 11.0130 + 19.0751i 0.465386 + 0.806072i
\(561\) −13.1252 22.7336i −0.554148 0.959813i
\(562\) 19.1639 0.808381
\(563\) 2.59685 0.109444 0.0547221 0.998502i \(-0.482573\pi\)
0.0547221 + 0.998502i \(0.482573\pi\)
\(564\) −0.240901 0.417254i −0.0101438 0.0175695i
\(565\) 4.35859 7.54931i 0.183367 0.317602i
\(566\) 3.58814 + 6.21483i 0.150821 + 0.261229i
\(567\) −2.23994 + 3.87969i −0.0940687 + 0.162932i
\(568\) 4.08674 7.07844i 0.171476 0.297005i
\(569\) −33.8768 −1.42019 −0.710094 0.704107i \(-0.751348\pi\)
−0.710094 + 0.704107i \(0.751348\pi\)
\(570\) −6.05166 3.85909i −0.253476 0.161640i
\(571\) −10.6731 −0.446657 −0.223329 0.974743i \(-0.571692\pi\)
−0.223329 + 0.974743i \(0.571692\pi\)
\(572\) 3.03527 5.25724i 0.126911 0.219816i
\(573\) 0.422898 0.732481i 0.0176668 0.0305998i
\(574\) 19.5230 + 33.8149i 0.814876 + 1.41141i
\(575\) −1.93528 + 3.35201i −0.0807069 + 0.139788i
\(576\) −1.74534 3.02301i −0.0727223 0.125959i
\(577\) −11.6607 −0.485440 −0.242720 0.970096i \(-0.578040\pi\)
−0.242720 + 0.970096i \(0.578040\pi\)
\(578\) −67.8178 −2.82085
\(579\) −6.59039 11.4149i −0.273887 0.474387i
\(580\) 3.10656 + 5.38072i 0.128993 + 0.223422i
\(581\) −9.13244 −0.378877
\(582\) 3.29322 0.136508
\(583\) 19.7852 + 34.2690i 0.819419 + 1.41928i
\(584\) −17.8086 + 30.8454i −0.736926 + 1.27639i
\(585\) −1.23994 2.14764i −0.0512652 0.0887940i
\(586\) −5.92972 + 10.2706i −0.244954 + 0.424274i
\(587\) −20.1362 + 34.8770i −0.831112 + 1.43953i 0.0660456 + 0.997817i \(0.478962\pi\)
−0.897157 + 0.441711i \(0.854372\pi\)
\(588\) −9.29656 −0.383384
\(589\) 1.55335 + 0.990555i 0.0640045 + 0.0408151i
\(590\) 14.0465 0.578284
\(591\) 3.45606 5.98607i 0.142163 0.246234i
\(592\) 9.59373 16.6168i 0.394300 0.682948i
\(593\) 7.05130 + 12.2132i 0.289562 + 0.501537i 0.973705 0.227811i \(-0.0731569\pi\)
−0.684143 + 0.729348i \(0.739824\pi\)
\(594\) 2.83327 4.90737i 0.116250 0.201352i
\(595\) −17.0863 29.5943i −0.700468 1.21325i
\(596\) −15.3397 −0.628338
\(597\) 13.3812 0.547657
\(598\) 7.90253 + 13.6876i 0.323159 + 0.559727i
\(599\) 5.24355 + 9.08209i 0.214246 + 0.371084i 0.953039 0.302848i \(-0.0979374\pi\)
−0.738793 + 0.673932i \(0.764604\pi\)
\(600\) −2.12194 −0.0866280
\(601\) 21.0718 0.859539 0.429769 0.902939i \(-0.358595\pi\)
0.429769 + 0.902939i \(0.358595\pi\)
\(602\) 9.14657 + 15.8423i 0.372786 + 0.645685i
\(603\) 4.81729 8.34379i 0.196175 0.339785i
\(604\) −6.51227 11.2796i −0.264981 0.458960i
\(605\) −0.421395 + 0.729877i −0.0171321 + 0.0296737i
\(606\) 1.66199 2.87865i 0.0675138 0.116937i
\(607\) −22.2759 −0.904149 −0.452074 0.891980i \(-0.649316\pi\)
−0.452074 + 0.891980i \(0.649316\pi\)
\(608\) −0.739784 + 16.7740i −0.0300022 + 0.680274i
\(609\) 39.1298 1.58562
\(610\) 6.75303 11.6966i 0.273422 0.473581i
\(611\) 0.839849 1.45466i 0.0339766 0.0588493i
\(612\) −2.71300 4.69905i −0.109666 0.189948i
\(613\) 8.94766 15.4978i 0.361393 0.625950i −0.626798 0.779182i \(-0.715635\pi\)
0.988190 + 0.153232i \(0.0489681\pi\)
\(614\) 13.4043 + 23.2170i 0.540955 + 0.936961i
\(615\) −5.29322 −0.213443
\(616\) −32.7135 −1.31806
\(617\) −8.81560 15.2691i −0.354903 0.614710i 0.632198 0.774806i \(-0.282153\pi\)
−0.987101 + 0.160097i \(0.948819\pi\)
\(618\) −5.34241 9.25332i −0.214903 0.372223i
\(619\) −49.2003 −1.97753 −0.988763 0.149490i \(-0.952237\pi\)
−0.988763 + 0.149490i \(0.952237\pi\)
\(620\) −0.300645 −0.0120742
\(621\) 1.93528 + 3.35201i 0.0776603 + 0.134512i
\(622\) −3.35669 + 5.81396i −0.134591 + 0.233118i
\(623\) 7.04485 + 12.2020i 0.282246 + 0.488865i
\(624\) −6.09637 + 10.5592i −0.244050 + 0.422708i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 35.4932 1.41859
\(627\) 13.3086 6.92056i 0.531494 0.276380i
\(628\) −8.13085 −0.324456
\(629\) −14.8843 + 25.7803i −0.593474 + 1.02793i
\(630\) 3.68831 6.38834i 0.146946 0.254518i
\(631\) 16.6592 + 28.8547i 0.663194 + 1.14869i 0.979772 + 0.200119i \(0.0641329\pi\)
−0.316578 + 0.948567i \(0.602534\pi\)
\(632\) −12.8645 + 22.2820i −0.511724 + 0.886332i
\(633\) −7.37512 12.7741i −0.293135 0.507724i
\(634\) 23.4918 0.932980
\(635\) −4.57735 −0.181646
\(636\) 4.08962 + 7.08343i 0.162164 + 0.280876i
\(637\) −16.2052 28.0682i −0.642073 1.11210i
\(638\) −49.4947 −1.95951
\(639\) −3.85189 −0.152378
\(640\) 6.72584 + 11.6495i 0.265862 + 0.460487i
\(641\) −6.61110 + 11.4508i −0.261123 + 0.452278i −0.966541 0.256514i \(-0.917426\pi\)
0.705418 + 0.708792i \(0.250759\pi\)
\(642\) −3.26149 5.64906i −0.128721 0.222951i
\(643\) 0.951267 1.64764i 0.0375143 0.0649767i −0.846659 0.532136i \(-0.821389\pi\)
0.884173 + 0.467160i \(0.154723\pi\)
\(644\) −6.16709 + 10.6817i −0.243017 + 0.420918i
\(645\) −2.47988 −0.0976452
\(646\) 2.41227 54.6961i 0.0949093 2.15199i
\(647\) 27.2141 1.06989 0.534947 0.844885i \(-0.320331\pi\)
0.534947 + 0.844885i \(0.320331\pi\)
\(648\) −1.06097 + 1.83766i −0.0416789 + 0.0721900i
\(649\) −14.6782 + 25.4234i −0.576170 + 0.997956i
\(650\) 2.04170 + 3.53633i 0.0800820 + 0.138706i
\(651\) −0.946719 + 1.63977i −0.0371048 + 0.0642675i
\(652\) 2.91600 + 5.05066i 0.114199 + 0.197799i
\(653\) −43.6980 −1.71004 −0.855018 0.518599i \(-0.826454\pi\)
−0.855018 + 0.518599i \(0.826454\pi\)
\(654\) −4.88720 −0.191104
\(655\) 10.3364 + 17.9031i 0.403876 + 0.699533i
\(656\) 13.0125 + 22.5383i 0.508053 + 0.879974i
\(657\) 16.7852 0.654853
\(658\) 4.99640 0.194780
\(659\) 3.43672 + 5.95258i 0.133876 + 0.231879i 0.925167 0.379559i \(-0.123924\pi\)
−0.791292 + 0.611439i \(0.790591\pi\)
\(660\) −1.22396 + 2.11996i −0.0476425 + 0.0825192i
\(661\) −18.6491 32.3012i −0.725367 1.25637i −0.958823 0.284005i \(-0.908337\pi\)
0.233456 0.972367i \(-0.424996\pi\)
\(662\) 19.7302 34.1737i 0.766837 1.32820i
\(663\) 9.45826 16.3822i 0.367328 0.636231i
\(664\) −4.32568 −0.167869
\(665\) 17.3249 9.00908i 0.671833 0.349357i
\(666\) −6.42595 −0.249001
\(667\) 16.9038 29.2783i 0.654520 1.13366i
\(668\) 3.14553 5.44822i 0.121704 0.210798i
\(669\) −1.14417 1.98176i −0.0442361 0.0766192i
\(670\) −7.93220 + 13.7390i −0.306447 + 0.530783i
\(671\) 14.1135 + 24.4453i 0.544845 + 0.943700i
\(672\) −17.2563 −0.665676
\(673\) 50.6185 1.95120 0.975601 0.219553i \(-0.0704597\pi\)
0.975601 + 0.219553i \(0.0704597\pi\)
\(674\) 26.8733 + 46.5460i 1.03512 + 1.79288i
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) −4.87273 −0.187413
\(677\) 33.8725 1.30182 0.650912 0.759153i \(-0.274387\pi\)
0.650912 + 0.759153i \(0.274387\pi\)
\(678\) 7.17691 + 12.4308i 0.275627 + 0.477401i
\(679\) −4.47988 + 7.75938i −0.171922 + 0.297778i
\(680\) −8.09309 14.0176i −0.310356 0.537552i
\(681\) −2.09747 + 3.63292i −0.0803751 + 0.139214i
\(682\) 1.19749 2.07412i 0.0458543 0.0794220i
\(683\) 47.0846 1.80164 0.900822 0.434190i \(-0.142965\pi\)
0.900822 + 0.434190i \(0.142965\pi\)
\(684\) 2.75090 1.43048i 0.105183 0.0546959i
\(685\) 17.6280 0.673531
\(686\) 22.3856 38.7729i 0.854685 1.48036i
\(687\) −13.1371 + 22.7541i −0.501211 + 0.868123i
\(688\) 6.09637 + 10.5592i 0.232422 + 0.402567i
\(689\) −14.2575 + 24.6948i −0.543169 + 0.940796i
\(690\) −3.18666 5.51946i −0.121314 0.210122i
\(691\) 3.91269 0.148846 0.0744228 0.997227i \(-0.476289\pi\)
0.0744228 + 0.997227i \(0.476289\pi\)
\(692\) 12.4811 0.474460
\(693\) 7.70839 + 13.3513i 0.292817 + 0.507175i
\(694\) 13.8555 + 23.9985i 0.525949 + 0.910970i
\(695\) 11.7346 0.445117
\(696\) 18.5342 0.702538
\(697\) −20.1883 34.9672i −0.764688 1.32448i
\(698\) 2.03313 3.52148i 0.0769551 0.133290i
\(699\) −2.78125 4.81726i −0.105196 0.182206i
\(700\) −1.59333 + 2.75973i −0.0602222 + 0.104308i
\(701\) −6.60352 + 11.4376i −0.249411 + 0.431993i −0.963363 0.268202i \(-0.913570\pi\)
0.713951 + 0.700195i \(0.246904\pi\)
\(702\) 4.08340 0.154118
\(703\) −14.3427 9.14620i −0.540945 0.344955i
\(704\) −12.0126 −0.452741
\(705\) −0.338665 + 0.586585i −0.0127549 + 0.0220921i
\(706\) 22.8594 39.5936i 0.860323 1.49012i
\(707\) 4.52173 + 7.83186i 0.170057 + 0.294547i
\(708\) −3.03400 + 5.25504i −0.114025 + 0.197496i
\(709\) 8.99856 + 15.5860i 0.337948 + 0.585343i 0.984047 0.177911i \(-0.0569338\pi\)
−0.646099 + 0.763254i \(0.723600\pi\)
\(710\) 6.34256 0.238032
\(711\) 12.1252 0.454732
\(712\) 3.33687 + 5.77963i 0.125054 + 0.216601i
\(713\) 0.817955 + 1.41674i 0.0306326 + 0.0530573i
\(714\) 56.2688 2.10581
\(715\) −8.53410 −0.319157
\(716\) −1.53252 2.65440i −0.0572728 0.0991995i
\(717\) −3.42451 + 5.93142i −0.127890 + 0.221513i
\(718\) −16.5064 28.5899i −0.616014 1.06697i
\(719\) 6.23909 10.8064i 0.232679 0.403012i −0.725917 0.687783i \(-0.758584\pi\)
0.958596 + 0.284771i \(0.0919175\pi\)
\(720\) 2.45833 4.25796i 0.0916167 0.158685i
\(721\) 29.0698 1.08262
\(722\) 31.1641 + 2.75423i 1.15981 + 0.102502i
\(723\) −14.8424 −0.551996
\(724\) −2.25628 + 3.90800i −0.0838541 + 0.145240i
\(725\) 4.36728 7.56435i 0.162197 0.280933i
\(726\) −0.693873 1.20182i −0.0257520 0.0446039i
\(727\) 21.7065 37.5968i 0.805051 1.39439i −0.111206 0.993797i \(-0.535471\pi\)
0.916257 0.400592i \(-0.131195\pi\)
\(728\) −11.7869 20.4156i −0.436853 0.756651i
\(729\) 1.00000 0.0370370
\(730\) −27.6387 −1.02295
\(731\) −9.45826 16.3822i −0.349826 0.605917i
\(732\) 2.91727 + 5.05286i 0.107825 + 0.186759i
\(733\) −28.5740 −1.05540 −0.527702 0.849430i \(-0.676946\pi\)
−0.527702 + 0.849430i \(0.676946\pi\)
\(734\) 10.9908 0.405678
\(735\) 6.53467 + 11.3184i 0.241035 + 0.417484i
\(736\) −7.45462 + 12.9118i −0.274781 + 0.475935i
\(737\) −16.5779 28.7138i −0.610655 1.05769i
\(738\) 4.35794 7.54817i 0.160418 0.277852i
\(739\) 4.61769 7.99807i 0.169864 0.294214i −0.768508 0.639841i \(-0.779000\pi\)
0.938372 + 0.345627i \(0.112334\pi\)
\(740\) 2.77598 0.102047
\(741\) 9.11412 + 5.81199i 0.334815 + 0.213509i
\(742\) −84.8205 −3.11386
\(743\) 2.51875 4.36259i 0.0924038 0.160048i −0.816118 0.577885i \(-0.803878\pi\)
0.908522 + 0.417837i \(0.137212\pi\)
\(744\) −0.448423 + 0.776692i −0.0164400 + 0.0284749i
\(745\) 10.7824 + 18.6757i 0.395038 + 0.684226i
\(746\) −10.2402 + 17.7366i −0.374922 + 0.649384i
\(747\) 1.01927 + 1.76543i 0.0372932 + 0.0645938i
\(748\) −18.6727 −0.682741
\(749\) 17.7468 0.648456
\(750\) −0.823305 1.42601i −0.0300629 0.0520704i
\(751\) −6.41366 11.1088i −0.234038 0.405365i 0.724955 0.688796i \(-0.241861\pi\)
−0.958993 + 0.283431i \(0.908527\pi\)
\(752\) 3.33021 0.121440
\(753\) 4.80255 0.175015
\(754\) −17.8333 30.8882i −0.649452 1.12488i
\(755\) −9.15510 + 15.8571i −0.333188 + 0.577099i
\(756\) 1.59333 + 2.75973i 0.0579488 + 0.100370i
\(757\) −12.9425 + 22.4171i −0.470404 + 0.814764i −0.999427 0.0338435i \(-0.989225\pi\)
0.529023 + 0.848608i \(0.322559\pi\)
\(758\) 17.6183 30.5157i 0.639924 1.10838i
\(759\) 13.3199 0.483483
\(760\) 8.20614 4.26725i 0.297668 0.154789i
\(761\) −28.9722 −1.05024 −0.525121 0.851028i \(-0.675980\pi\)
−0.525121 + 0.851028i \(0.675980\pi\)
\(762\) 3.76855 6.52733i 0.136520 0.236460i
\(763\) 6.64822 11.5151i 0.240682 0.416873i
\(764\) −0.300819 0.521033i −0.0108832 0.0188503i
\(765\) −3.81400 + 6.60604i −0.137895 + 0.238842i
\(766\) 8.81603 + 15.2698i 0.318536 + 0.551721i
\(767\) −21.1547 −0.763852
\(768\) −15.1683 −0.547340
\(769\) −2.72690 4.72313i −0.0983345 0.170320i 0.812661 0.582737i \(-0.198018\pi\)
−0.910995 + 0.412417i \(0.864685\pi\)
\(770\) −12.6927 21.9844i −0.457414 0.792263i
\(771\) −3.49725 −0.125950
\(772\) −9.37584 −0.337444
\(773\) 23.5060 + 40.7135i 0.845451 + 1.46436i 0.885229 + 0.465155i \(0.154001\pi\)
−0.0397783 + 0.999209i \(0.512665\pi\)
\(774\) 2.04170 3.53633i 0.0733874 0.127111i
\(775\) 0.211327 + 0.366029i 0.00759108 + 0.0131481i
\(776\) −2.12194 + 3.67531i −0.0761733 + 0.131936i
\(777\) 8.74144 15.1406i 0.313598 0.543167i
\(778\) 5.77850 0.207169
\(779\) 20.4704 10.6447i 0.733427 0.381387i
\(780\) −1.76401 −0.0631615
\(781\) −6.62782 + 11.4797i −0.237162 + 0.410776i
\(782\) 24.3078 42.1024i 0.869246 1.50558i
\(783\) −4.36728 7.56435i −0.156074 0.270328i
\(784\) 32.1288 55.6487i 1.14746 1.98745i
\(785\) 5.71527 + 9.89914i 0.203987 + 0.353316i
\(786\) −34.0400 −1.21417
\(787\) 3.86923 0.137923 0.0689616 0.997619i \(-0.478031\pi\)
0.0689616 + 0.997619i \(0.478031\pi\)
\(788\) −2.45839 4.25805i −0.0875764 0.151687i
\(789\) −2.61621 4.53141i −0.0931396 0.161322i
\(790\) −19.9656 −0.710343
\(791\) −39.0520 −1.38853
\(792\) 3.65116 + 6.32399i 0.129738 + 0.224713i
\(793\) −10.1704 + 17.6157i −0.361162 + 0.625550i
\(794\) 25.6863 + 44.4899i 0.911572 + 1.57889i
\(795\) 5.74928 9.95805i 0.203906 0.353176i
\(796\) 4.75921 8.24320i 0.168686 0.292173i
\(797\) −12.6814 −0.449198 −0.224599 0.974451i \(-0.572107\pi\)
−0.224599 + 0.974451i \(0.572107\pi\)
\(798\) −1.41671 + 32.1227i −0.0501510 + 1.13713i
\(799\) −5.16667 −0.182784
\(800\) −1.92598 + 3.33589i −0.0680935 + 0.117941i
\(801\) 1.57255 2.72374i 0.0555635 0.0962387i
\(802\) −16.2629 28.1682i −0.574264 0.994654i
\(803\) 28.8818 50.0247i 1.01922 1.76533i
\(804\) −3.42667 5.93516i −0.120849 0.209317i
\(805\) 17.3397 0.611143
\(806\) 1.72586 0.0607909
\(807\) −7.94917 13.7684i −0.279824 0.484670i
\(808\) 2.14176 + 3.70964i 0.0753470 + 0.130505i
\(809\) 33.2439 1.16879 0.584397 0.811468i \(-0.301331\pi\)
0.584397 + 0.811468i \(0.301331\pi\)
\(810\) −1.64661 −0.0578560
\(811\) 1.43265 + 2.48142i 0.0503072 + 0.0871346i 0.890082 0.455800i \(-0.150647\pi\)
−0.839775 + 0.542934i \(0.817313\pi\)
\(812\) 13.9170 24.1050i 0.488392 0.845920i
\(813\) 4.99789 + 8.65661i 0.175284 + 0.303600i
\(814\) −11.0569 + 19.1512i −0.387545 + 0.671248i
\(815\) 4.09938 7.10034i 0.143595 0.248714i
\(816\) 37.5043 1.31291
\(817\) 9.59039 4.98706i 0.335525 0.174475i
\(818\) 3.52213 0.123148
\(819\) −5.55478 + 9.62117i −0.194100 + 0.336191i
\(820\) −1.88261 + 3.26077i −0.0657434 + 0.113871i
\(821\) 7.18851 + 12.4509i 0.250881 + 0.434538i 0.963769 0.266740i \(-0.0859465\pi\)
−0.712888 + 0.701278i \(0.752613\pi\)
\(822\) −14.5132 + 25.1376i −0.506207 + 0.876776i
\(823\) −28.3639 49.1277i −0.988702 1.71248i −0.624163 0.781294i \(-0.714560\pi\)
−0.364540 0.931188i \(-0.618774\pi\)
\(824\) 13.7692 0.479674
\(825\) 3.44134 0.119812
\(826\) −31.4632 54.4959i −1.09475 1.89616i
\(827\) −10.0977 17.4897i −0.351131 0.608177i 0.635317 0.772252i \(-0.280870\pi\)
−0.986448 + 0.164074i \(0.947536\pi\)
\(828\) 2.75324 0.0956817
\(829\) 38.0954 1.32311 0.661554 0.749898i \(-0.269897\pi\)
0.661554 + 0.749898i \(0.269897\pi\)
\(830\) −1.67835 2.90698i −0.0582562 0.100903i
\(831\) 2.04309 3.53874i 0.0708741 0.122758i
\(832\) −4.32822 7.49670i −0.150054 0.259901i
\(833\) −49.8464 + 86.3365i −1.72708 + 2.99138i
\(834\) −9.66112 + 16.7336i −0.334537 + 0.579436i
\(835\) −8.84413 −0.306064
\(836\) 0.470132 10.6598i 0.0162599 0.368679i
\(837\) 0.422654 0.0146090
\(838\) −4.69565 + 8.13311i −0.162209 + 0.280954i
\(839\) −19.1320 + 33.1376i −0.660511 + 1.14404i 0.319971 + 0.947427i \(0.396327\pi\)
−0.980482 + 0.196611i \(0.937007\pi\)
\(840\) 4.75303 + 8.23248i 0.163995 + 0.284048i
\(841\) −23.6462 + 40.9565i −0.815388 + 1.41229i
\(842\) 32.1526 + 55.6899i 1.10805 + 1.91920i
\(843\) 11.6384 0.400848
\(844\) −10.4922 −0.361158
\(845\) 3.42510 + 5.93244i 0.117827 + 0.204082i
\(846\) −0.557649 0.965877i −0.0191724 0.0332075i
\(847\) 3.77560 0.129731
\(848\) −56.5346 −1.94141
\(849\) 2.17910 + 3.77432i 0.0747867 + 0.129534i
\(850\) 6.28017 10.8776i 0.215408 0.373098i
\(851\) −7.55251 13.0813i −0.258897 0.448422i
\(852\) −1.36997 + 2.37287i −0.0469346 + 0.0812931i
\(853\) −1.71697 + 2.97387i −0.0587878 + 0.101823i −0.893922 0.448224i \(-0.852057\pi\)
0.835134 + 0.550047i \(0.185390\pi\)
\(854\) −60.5055 −2.07046
\(855\) −3.67522 2.34366i −0.125690 0.0801514i
\(856\) 8.40598 0.287311
\(857\) 13.6630 23.6650i 0.466719 0.808382i −0.532558 0.846394i \(-0.678769\pi\)
0.999277 + 0.0380118i \(0.0121024\pi\)
\(858\) 7.02617 12.1697i 0.239870 0.415466i
\(859\) 22.0603 + 38.2096i 0.752689 + 1.30370i 0.946515 + 0.322660i \(0.104577\pi\)
−0.193826 + 0.981036i \(0.562090\pi\)
\(860\) −0.882003 + 1.52767i −0.0300760 + 0.0520932i
\(861\) 11.8565 + 20.5361i 0.404068 + 0.699867i
\(862\) −2.86109 −0.0974491
\(863\) −41.3721 −1.40832 −0.704161 0.710040i \(-0.748677\pi\)
−0.704161 + 0.710040i \(0.748677\pi\)
\(864\) 1.92598 + 3.33589i 0.0655230 + 0.113489i
\(865\) −8.77310 15.1955i −0.298294 0.516661i
\(866\) −38.9114 −1.32226
\(867\) −41.1863 −1.39876
\(868\) 0.673427 + 1.16641i 0.0228576 + 0.0395905i
\(869\) 20.8635 36.1367i 0.707746 1.22585i
\(870\) 7.19121 + 12.4555i 0.243805 + 0.422282i
\(871\) 11.9463 20.6916i 0.404785 0.701108i
\(872\) 3.14900 5.45423i 0.106639 0.184703i
\(873\) 2.00000 0.0676897
\(874\) 23.4234 + 14.9369i 0.792307 + 0.505247i
\(875\) 4.47988 0.151448
\(876\) 5.96988 10.3401i 0.201704 0.349361i
\(877\) −28.3151 + 49.0432i −0.956134 + 1.65607i −0.224383 + 0.974501i \(0.572037\pi\)
−0.731751 + 0.681572i \(0.761297\pi\)
\(878\) −2.60929 4.51943i −0.0880594 0.152523i
\(879\) −3.60117 + 6.23740i −0.121464 + 0.210382i
\(880\) −8.45995 14.6531i −0.285185 0.493955i
\(881\) −1.34253 −0.0452311 −0.0226156 0.999744i \(-0.507199\pi\)
−0.0226156 + 0.999744i \(0.507199\pi\)
\(882\) −21.5201 −0.724619
\(883\) −13.3420 23.1089i −0.448993 0.777678i 0.549328 0.835607i \(-0.314884\pi\)
−0.998321 + 0.0579288i \(0.981550\pi\)
\(884\) −6.72791 11.6531i −0.226284 0.391936i
\(885\) 8.53053 0.286751
\(886\) −38.1739 −1.28248
\(887\) −13.8879 24.0545i −0.466309 0.807671i 0.532950 0.846147i \(-0.321083\pi\)
−0.999260 + 0.0384753i \(0.987750\pi\)
\(888\) 4.14048 7.17152i 0.138945 0.240660i
\(889\) 10.2530 + 17.7587i 0.343874 + 0.595607i
\(890\) −2.58938 + 4.48494i −0.0867963 + 0.150336i
\(891\) 1.72067 2.98028i 0.0576445 0.0998433i
\(892\) −1.62776 −0.0545013
\(893\) 0.130084 2.94955i 0.00435310 0.0987028i
\(894\) −35.5090 −1.18760
\(895\) −2.15445 + 3.73161i −0.0720153 + 0.124734i
\(896\) 30.1310 52.1884i 1.00660 1.74349i
\(897\) 4.79927 + 8.31258i 0.160243 + 0.277549i
\(898\) 10.9092 18.8953i 0.364044 0.630543i
\(899\) −1.84585 3.19710i −0.0615624 0.106629i
\(900\) 0.711327 0.0237109
\(901\) 87.7110 2.92208
\(902\) −14.9971 25.9758i −0.499350 0.864899i
\(903\) 5.55478 + 9.62117i 0.184852 + 0.320172i
\(904\) −18.4974 −0.615214
\(905\) 6.34387 0.210877
\(906\) −15.0749 26.1105i −0.500830 0.867463i
\(907\) −3.69599 + 6.40164i −0.122723 + 0.212563i −0.920841 0.389939i \(-0.872496\pi\)
0.798117 + 0.602502i \(0.205829\pi\)
\(908\) 1.49198 + 2.58419i 0.0495132 + 0.0857594i
\(909\) 1.00934 1.74823i 0.0334777 0.0579851i
\(910\) 9.14657 15.8423i 0.303206 0.525168i
\(911\) 13.3084 0.440926 0.220463 0.975395i \(-0.429243\pi\)
0.220463 + 0.975395i \(0.429243\pi\)
\(912\) −0.944267 + 21.4104i −0.0312678 + 0.708971i
\(913\) 7.01532 0.232173
\(914\) 3.40088 5.89050i 0.112491 0.194841i
\(915\) 4.10117 7.10343i 0.135580 0.234832i
\(916\) 9.34477 + 16.1856i 0.308760 + 0.534788i
\(917\) 46.3058 80.2039i 1.52915 2.64857i
\(918\) −6.28017 10.8776i −0.207276 0.359013i
\(919\) −27.8298 −0.918022 −0.459011 0.888431i \(-0.651796\pi\)
−0.459011 + 0.888431i \(0.651796\pi\)
\(920\) 8.21312 0.270779
\(921\) 8.14056 + 14.0999i 0.268241 + 0.464606i
\(922\) 17.9962 + 31.1704i 0.592674 + 1.02654i
\(923\) −9.55222 −0.314415
\(924\) 10.9664 0.360767
\(925\) −1.95127 3.37969i −0.0641573 0.111124i
\(926\) 25.4781 44.1294i 0.837262 1.45018i
\(927\) −3.24449 5.61962i −0.106563 0.184573i
\(928\) 16.8225 29.1375i 0.552227 0.956485i
\(929\) −3.17108 + 5.49247i −0.104040 + 0.180202i −0.913345 0.407186i \(-0.866510\pi\)
0.809306 + 0.587388i \(0.199844\pi\)
\(930\) −0.695946 −0.0228210
\(931\) −48.0327 30.6300i −1.57421 1.00386i
\(932\) −3.95675 −0.129608
\(933\) −2.03855 + 3.53086i −0.0667390 + 0.115595i
\(934\) 0.324596 0.562216i 0.0106211 0.0183963i
\(935\) 13.1252 + 22.7336i 0.429241 + 0.743468i
\(936\) −2.63108 + 4.55717i −0.0859996 + 0.148956i
\(937\) 21.9869 + 38.0825i 0.718282 + 1.24410i 0.961680 + 0.274174i \(0.0884045\pi\)
−0.243398 + 0.969926i \(0.578262\pi\)
\(938\) 71.0706 2.32054
\(939\) 21.5553 0.703431
\(940\) 0.240901 + 0.417254i 0.00785734 + 0.0136093i
\(941\) −7.97283 13.8093i −0.259907 0.450172i 0.706310 0.707903i \(-0.250358\pi\)
−0.966217 + 0.257731i \(0.917025\pi\)
\(942\) −18.8217 −0.613243
\(943\) 20.4878 0.667174
\(944\) −20.9709 36.3226i −0.682544 1.18220i
\(945\) 2.23994 3.87969i 0.0728653 0.126206i
\(946\) −7.02617 12.1697i −0.228441 0.395671i
\(947\) 1.55287 2.68965i 0.0504615 0.0874018i −0.839691 0.543064i \(-0.817264\pi\)
0.890153 + 0.455662i \(0.150597\pi\)
\(948\) 4.31251 7.46948i 0.140064 0.242597i
\(949\) 41.6253 1.35121
\(950\) 6.05166 + 3.85909i 0.196342 + 0.125205i
\(951\) 14.2668 0.462632
\(952\) −36.2561 + 62.7973i −1.17507 + 2.03527i
\(953\) 10.2628 17.7757i 0.332445 0.575812i −0.650545 0.759467i \(-0.725460\pi\)
0.982991 + 0.183655i \(0.0587929\pi\)
\(954\) 9.46683 + 16.3970i 0.306500 + 0.530873i
\(955\) −0.422898 + 0.732481i −0.0136847 + 0.0237025i
\(956\) 2.43594 + 4.21918i 0.0787840 + 0.136458i
\(957\) −30.0585 −0.971655
\(958\) 11.5961 0.374651
\(959\) −39.4857 68.3912i −1.27506 2.20847i
\(960\) 1.74534 + 3.02301i 0.0563305 + 0.0975672i
\(961\) −30.8214 −0.994238
\(962\) −15.9356 −0.513784
\(963\) −1.98073 3.43072i −0.0638280 0.110553i
\(964\) −5.27891 + 9.14334i −0.170022 + 0.294487i
\(965\) 6.59039 + 11.4149i 0.212152 + 0.367458i
\(966\) −14.2759 + 24.7265i −0.459318 + 0.795562i
\(967\) −12.4113 + 21.4970i −0.399120 + 0.691296i −0.993618 0.112801i \(-0.964018\pi\)
0.594498 + 0.804097i \(0.297351\pi\)
\(968\) 1.78835 0.0574798
\(969\) 1.46499 33.2174i 0.0470622 1.06710i
\(970\) −3.29322 −0.105739
\(971\) 18.2999 31.6963i 0.587271 1.01718i −0.407318 0.913287i \(-0.633536\pi\)
0.994588 0.103896i \(-0.0331309\pi\)
\(972\) 0.355663 0.616027i 0.0114079 0.0197591i
\(973\) −26.2847 45.5264i −0.842649 1.45951i
\(974\) 0.567401 0.982767i 0.0181807 0.0314899i
\(975\) 1.23994 + 2.14764i 0.0397099 + 0.0687795i
\(976\) −40.3282 −1.29087
\(977\) 31.6228 1.01170 0.505851 0.862621i \(-0.331178\pi\)
0.505851 + 0.862621i \(0.331178\pi\)
\(978\) 6.75008 + 11.6915i 0.215844 + 0.373853i
\(979\) −5.41168 9.37331i −0.172958 0.299572i
\(980\) 9.29656 0.296968
\(981\) −2.96803 −0.0947620
\(982\) 7.48773 + 12.9691i 0.238943 + 0.413862i
\(983\) −22.8804 + 39.6300i −0.729771 + 1.26400i 0.227209 + 0.973846i \(0.427040\pi\)
−0.956980 + 0.290154i \(0.906293\pi\)
\(984\) 5.61596 + 9.72712i 0.179030 + 0.310089i
\(985\) −3.45606 + 5.98607i −0.110119 + 0.190732i
\(986\) −54.8545 + 95.0108i −1.74692 + 3.02576i
\(987\) 3.03436 0.0965846
\(988\) 6.82190 3.54743i 0.217034 0.112859i
\(989\) 9.59855 0.305216
\(990\) −2.83327 + 4.90737i −0.0900472 + 0.155966i
\(991\) −13.2056 + 22.8728i −0.419490 + 0.726579i −0.995888 0.0905905i \(-0.971125\pi\)
0.576398 + 0.817169i \(0.304458\pi\)
\(992\) 0.814021 + 1.40993i 0.0258452 + 0.0447652i
\(993\) 11.9823 20.7540i 0.380248 0.658608i
\(994\) −14.2069 24.6072i −0.450617 0.780492i
\(995\) −13.3812 −0.424214
\(996\) 1.45007 0.0459473
\(997\) 20.5781 + 35.6423i 0.651714 + 1.12880i 0.982707 + 0.185169i \(0.0592832\pi\)
−0.330992 + 0.943633i \(0.607383\pi\)
\(998\) −19.0025 32.9134i −0.601515 1.04185i
\(999\) −3.90253 −0.123471
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.2.i.f.106.4 10
3.2 odd 2 855.2.k.i.676.2 10
19.7 even 3 inner 285.2.i.f.121.4 yes 10
19.8 odd 6 5415.2.a.z.1.4 5
19.11 even 3 5415.2.a.y.1.2 5
57.26 odd 6 855.2.k.i.406.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.f.106.4 10 1.1 even 1 trivial
285.2.i.f.121.4 yes 10 19.7 even 3 inner
855.2.k.i.406.2 10 57.26 odd 6
855.2.k.i.676.2 10 3.2 odd 2
5415.2.a.y.1.2 5 19.11 even 3
5415.2.a.z.1.4 5 19.8 odd 6