Properties

Label 285.2.i.f.106.3
Level $285$
Weight $2$
Character 285.106
Analytic conductor $2.276$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} - 2x^{7} + 56x^{6} - 18x^{5} + 125x^{4} + x^{3} + 189x^{2} - 52x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.3
Root \(0.145349 + 0.251751i\) of defining polynomial
Character \(\chi\) \(=\) 285.106
Dual form 285.2.i.f.121.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.145349 - 0.251751i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.957748 + 1.65887i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(-0.145349 - 0.251751i) q^{6} -0.486575 q^{7} +1.13822 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.145349 + 0.251751i) q^{10} +5.34764 q^{11} +1.91550 q^{12} +(1.24329 + 2.15344i) q^{13} +(-0.0707229 + 0.122496i) q^{14} +(0.500000 + 0.866025i) q^{15} +(-1.75006 + 3.03119i) q^{16} +(1.70780 - 2.95800i) q^{17} -0.290697 q^{18} +(-2.46291 + 3.59640i) q^{19} -1.91550 q^{20} +(-0.243287 + 0.421386i) q^{21} +(0.777272 - 1.34627i) q^{22} +(-3.20619 - 5.55329i) q^{23} +(0.569112 - 0.985730i) q^{24} +(-0.500000 - 0.866025i) q^{25} +0.722840 q^{26} -1.00000 q^{27} +(-0.466016 - 0.807163i) q^{28} +(-1.38312 - 2.39564i) q^{29} +0.290697 q^{30} +4.83099 q^{31} +(1.64696 + 2.85262i) q^{32} +(2.67382 - 4.63119i) q^{33} +(-0.496454 - 0.859883i) q^{34} +(0.243287 - 0.421386i) q^{35} +(0.957748 - 1.65887i) q^{36} -6.31756 q^{37} +(0.547418 + 1.14277i) q^{38} +2.48657 q^{39} +(-0.569112 + 0.985730i) q^{40} +(-1.29070 + 2.23555i) q^{41} +(0.0707229 + 0.122496i) q^{42} +(1.24329 - 2.15344i) q^{43} +(5.12169 + 8.87102i) q^{44} +1.00000 q^{45} -1.86406 q^{46} +(-5.55533 - 9.62211i) q^{47} +(1.75006 + 3.03119i) q^{48} -6.76325 q^{49} -0.290697 q^{50} +(-1.70780 - 2.95800i) q^{51} +(-2.38151 + 4.12490i) q^{52} +(-1.49839 - 2.59529i) q^{53} +(-0.145349 + 0.251751i) q^{54} +(-2.67382 + 4.63119i) q^{55} -0.553831 q^{56} +(1.88312 + 3.93114i) q^{57} -0.804139 q^{58} +(-6.36659 + 11.0273i) q^{59} +(-0.957748 + 1.65887i) q^{60} +(-5.92742 - 10.2666i) q^{61} +(0.702178 - 1.21621i) q^{62} +(0.243287 + 0.421386i) q^{63} -6.04269 q^{64} -2.48657 q^{65} +(-0.777272 - 1.34627i) q^{66} +(7.58770 + 13.1423i) q^{67} +6.54258 q^{68} -6.41238 q^{69} +(-0.0707229 - 0.122496i) q^{70} +(4.96452 - 8.59879i) q^{71} +(-0.569112 - 0.985730i) q^{72} +(5.50642 - 9.53740i) q^{73} +(-0.918249 + 1.59045i) q^{74} -1.00000 q^{75} +(-8.32479 - 0.641189i) q^{76} -2.60202 q^{77} +(0.361420 - 0.625998i) q^{78} +(-4.06636 + 7.04314i) q^{79} +(-1.75006 - 3.03119i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(0.375202 + 0.649869i) q^{82} -5.86106 q^{83} -0.932031 q^{84} +(1.70780 + 2.95800i) q^{85} +(-0.361420 - 0.625998i) q^{86} -2.76624 q^{87} +6.08681 q^{88} +(3.25521 + 5.63820i) q^{89} +(0.145349 - 0.251751i) q^{90} +(-0.604952 - 1.04781i) q^{91} +(6.14145 - 10.6373i) q^{92} +(2.41550 - 4.18376i) q^{93} -3.22984 q^{94} +(-1.88312 - 3.93114i) q^{95} +3.29392 q^{96} +(-1.00000 + 1.73205i) q^{97} +(-0.983028 + 1.70265i) q^{98} +(-2.67382 - 4.63119i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + q^{2} + 5 q^{3} - 7 q^{4} - 5 q^{5} - q^{6} + 4 q^{7} - 12 q^{8} - 5 q^{9} + q^{10} + 10 q^{11} - 14 q^{12} + 8 q^{13} + 4 q^{14} + 5 q^{15} - 7 q^{16} - 10 q^{17} - 2 q^{18} + 5 q^{19} + 14 q^{20}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.145349 0.251751i 0.102777 0.178015i −0.810051 0.586360i \(-0.800561\pi\)
0.912828 + 0.408345i \(0.133894\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0.957748 + 1.65887i 0.478874 + 0.829434i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) −0.145349 0.251751i −0.0593383 0.102777i
\(7\) −0.486575 −0.183908 −0.0919539 0.995763i \(-0.529311\pi\)
−0.0919539 + 0.995763i \(0.529311\pi\)
\(8\) 1.13822 0.402423
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.145349 + 0.251751i 0.0459633 + 0.0796107i
\(11\) 5.34764 1.61237 0.806187 0.591661i \(-0.201528\pi\)
0.806187 + 0.591661i \(0.201528\pi\)
\(12\) 1.91550 0.552956
\(13\) 1.24329 + 2.15344i 0.344826 + 0.597256i 0.985322 0.170705i \(-0.0546046\pi\)
−0.640496 + 0.767961i \(0.721271\pi\)
\(14\) −0.0707229 + 0.122496i −0.0189015 + 0.0327384i
\(15\) 0.500000 + 0.866025i 0.129099 + 0.223607i
\(16\) −1.75006 + 3.03119i −0.437514 + 0.757796i
\(17\) 1.70780 2.95800i 0.414203 0.717421i −0.581141 0.813803i \(-0.697394\pi\)
0.995344 + 0.0963817i \(0.0307270\pi\)
\(18\) −0.290697 −0.0685180
\(19\) −2.46291 + 3.59640i −0.565029 + 0.825071i
\(20\) −1.91550 −0.428318
\(21\) −0.243287 + 0.421386i −0.0530896 + 0.0919539i
\(22\) 0.777272 1.34627i 0.165715 0.287027i
\(23\) −3.20619 5.55329i −0.668537 1.15794i −0.978313 0.207131i \(-0.933587\pi\)
0.309776 0.950810i \(-0.399746\pi\)
\(24\) 0.569112 0.985730i 0.116169 0.201211i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0.722840 0.141761
\(27\) −1.00000 −0.192450
\(28\) −0.466016 0.807163i −0.0880687 0.152539i
\(29\) −1.38312 2.39564i −0.256839 0.444859i 0.708554 0.705656i \(-0.249348\pi\)
−0.965393 + 0.260798i \(0.916014\pi\)
\(30\) 0.290697 0.0530738
\(31\) 4.83099 0.867671 0.433836 0.900992i \(-0.357160\pi\)
0.433836 + 0.900992i \(0.357160\pi\)
\(32\) 1.64696 + 2.85262i 0.291144 + 0.504276i
\(33\) 2.67382 4.63119i 0.465452 0.806187i
\(34\) −0.496454 0.859883i −0.0851411 0.147469i
\(35\) 0.243287 0.421386i 0.0411231 0.0712272i
\(36\) 0.957748 1.65887i 0.159625 0.276478i
\(37\) −6.31756 −1.03860 −0.519301 0.854592i \(-0.673808\pi\)
−0.519301 + 0.854592i \(0.673808\pi\)
\(38\) 0.547418 + 1.14277i 0.0888030 + 0.185382i
\(39\) 2.48657 0.398171
\(40\) −0.569112 + 0.985730i −0.0899845 + 0.155858i
\(41\) −1.29070 + 2.23555i −0.201573 + 0.349135i −0.949035 0.315169i \(-0.897939\pi\)
0.747462 + 0.664304i \(0.231272\pi\)
\(42\) 0.0707229 + 0.122496i 0.0109128 + 0.0189015i
\(43\) 1.24329 2.15344i 0.189600 0.328396i −0.755517 0.655129i \(-0.772614\pi\)
0.945117 + 0.326733i \(0.105948\pi\)
\(44\) 5.12169 + 8.87102i 0.772123 + 1.33736i
\(45\) 1.00000 0.149071
\(46\) −1.86406 −0.274841
\(47\) −5.55533 9.62211i −0.810328 1.40353i −0.912634 0.408777i \(-0.865956\pi\)
0.102306 0.994753i \(-0.467378\pi\)
\(48\) 1.75006 + 3.03119i 0.252599 + 0.437514i
\(49\) −6.76325 −0.966178
\(50\) −0.290697 −0.0411108
\(51\) −1.70780 2.95800i −0.239140 0.414203i
\(52\) −2.38151 + 4.12490i −0.330256 + 0.572020i
\(53\) −1.49839 2.59529i −0.205820 0.356490i 0.744574 0.667540i \(-0.232653\pi\)
−0.950394 + 0.311050i \(0.899319\pi\)
\(54\) −0.145349 + 0.251751i −0.0197794 + 0.0342590i
\(55\) −2.67382 + 4.63119i −0.360538 + 0.624470i
\(56\) −0.553831 −0.0740087
\(57\) 1.88312 + 3.93114i 0.249426 + 0.520692i
\(58\) −0.804139 −0.105589
\(59\) −6.36659 + 11.0273i −0.828859 + 1.43563i 0.0700752 + 0.997542i \(0.477676\pi\)
−0.898934 + 0.438084i \(0.855657\pi\)
\(60\) −0.957748 + 1.65887i −0.123645 + 0.214159i
\(61\) −5.92742 10.2666i −0.758929 1.31450i −0.943397 0.331664i \(-0.892390\pi\)
0.184469 0.982838i \(-0.440944\pi\)
\(62\) 0.702178 1.21621i 0.0891767 0.154458i
\(63\) 0.243287 + 0.421386i 0.0306513 + 0.0530896i
\(64\) −6.04269 −0.755336
\(65\) −2.48657 −0.308422
\(66\) −0.777272 1.34627i −0.0956755 0.165715i
\(67\) 7.58770 + 13.1423i 0.926985 + 1.60559i 0.788336 + 0.615244i \(0.210943\pi\)
0.138649 + 0.990342i \(0.455724\pi\)
\(68\) 6.54258 0.793404
\(69\) −6.41238 −0.771960
\(70\) −0.0707229 0.122496i −0.00845301 0.0146410i
\(71\) 4.96452 8.59879i 0.589180 1.02049i −0.405160 0.914246i \(-0.632784\pi\)
0.994340 0.106244i \(-0.0338823\pi\)
\(72\) −0.569112 0.985730i −0.0670705 0.116169i
\(73\) 5.50642 9.53740i 0.644478 1.11627i −0.339944 0.940446i \(-0.610408\pi\)
0.984422 0.175823i \(-0.0562585\pi\)
\(74\) −0.918249 + 1.59045i −0.106744 + 0.184887i
\(75\) −1.00000 −0.115470
\(76\) −8.32479 0.641189i −0.954919 0.0735494i
\(77\) −2.60202 −0.296528
\(78\) 0.361420 0.625998i 0.0409228 0.0708803i
\(79\) −4.06636 + 7.04314i −0.457501 + 0.792415i −0.998828 0.0483971i \(-0.984589\pi\)
0.541327 + 0.840812i \(0.317922\pi\)
\(80\) −1.75006 3.03119i −0.195662 0.338897i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0.375202 + 0.649869i 0.0414341 + 0.0717660i
\(83\) −5.86106 −0.643335 −0.321668 0.946853i \(-0.604243\pi\)
−0.321668 + 0.946853i \(0.604243\pi\)
\(84\) −0.932031 −0.101693
\(85\) 1.70780 + 2.95800i 0.185237 + 0.320840i
\(86\) −0.361420 0.625998i −0.0389729 0.0675031i
\(87\) −2.76624 −0.296572
\(88\) 6.08681 0.648856
\(89\) 3.25521 + 5.63820i 0.345052 + 0.597647i 0.985363 0.170468i \(-0.0545280\pi\)
−0.640311 + 0.768116i \(0.721195\pi\)
\(90\) 0.145349 0.251751i 0.0153211 0.0265369i
\(91\) −0.604952 1.04781i −0.0634162 0.109840i
\(92\) 6.14145 10.6373i 0.640290 1.10901i
\(93\) 2.41550 4.18376i 0.250475 0.433836i
\(94\) −3.22984 −0.333132
\(95\) −1.88312 3.93114i −0.193204 0.403326i
\(96\) 3.29392 0.336184
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) −0.983028 + 1.70265i −0.0993008 + 0.171994i
\(99\) −2.67382 4.63119i −0.268729 0.465452i
\(100\) 0.957748 1.65887i 0.0957748 0.165887i
\(101\) −0.758324 1.31346i −0.0754561 0.130694i 0.825828 0.563921i \(-0.190708\pi\)
−0.901285 + 0.433228i \(0.857375\pi\)
\(102\) −0.992907 −0.0983125
\(103\) −9.15478 −0.902047 −0.451023 0.892512i \(-0.648941\pi\)
−0.451023 + 0.892512i \(0.648941\pi\)
\(104\) 1.41514 + 2.45109i 0.138766 + 0.240349i
\(105\) −0.243287 0.421386i −0.0237424 0.0411231i
\(106\) −0.871155 −0.0846140
\(107\) 0.138936 0.0134315 0.00671574 0.999977i \(-0.497862\pi\)
0.00671574 + 0.999977i \(0.497862\pi\)
\(108\) −0.957748 1.65887i −0.0921593 0.159625i
\(109\) 7.86497 13.6225i 0.753328 1.30480i −0.192873 0.981224i \(-0.561781\pi\)
0.946201 0.323579i \(-0.104886\pi\)
\(110\) 0.777272 + 1.34627i 0.0741099 + 0.128362i
\(111\) −3.15878 + 5.47117i −0.299818 + 0.519301i
\(112\) 0.851533 1.47490i 0.0804623 0.139365i
\(113\) 14.8011 1.39237 0.696187 0.717860i \(-0.254878\pi\)
0.696187 + 0.717860i \(0.254878\pi\)
\(114\) 1.26338 + 0.0973074i 0.118326 + 0.00911367i
\(115\) 6.41238 0.597958
\(116\) 2.64936 4.58883i 0.245987 0.426062i
\(117\) 1.24329 2.15344i 0.114942 0.199085i
\(118\) 1.85075 + 3.20559i 0.170375 + 0.295099i
\(119\) −0.830974 + 1.43929i −0.0761752 + 0.131939i
\(120\) 0.569112 + 0.985730i 0.0519526 + 0.0899845i
\(121\) 17.5972 1.59975
\(122\) −3.44617 −0.312002
\(123\) 1.29070 + 2.23555i 0.116378 + 0.201573i
\(124\) 4.62687 + 8.01397i 0.415505 + 0.719676i
\(125\) 1.00000 0.0894427
\(126\) 0.141446 0.0126010
\(127\) 4.91550 + 8.51389i 0.436180 + 0.755485i 0.997391 0.0721871i \(-0.0229979\pi\)
−0.561211 + 0.827672i \(0.689665\pi\)
\(128\) −4.17222 + 7.22649i −0.368775 + 0.638738i
\(129\) −1.24329 2.15344i −0.109465 0.189600i
\(130\) −0.361420 + 0.625998i −0.0316986 + 0.0549037i
\(131\) −7.11459 + 12.3228i −0.621605 + 1.07665i 0.367582 + 0.929991i \(0.380186\pi\)
−0.989187 + 0.146660i \(0.953148\pi\)
\(132\) 10.2434 0.891571
\(133\) 1.19839 1.74992i 0.103913 0.151737i
\(134\) 4.41145 0.381091
\(135\) 0.500000 0.866025i 0.0430331 0.0745356i
\(136\) 1.94386 3.36687i 0.166685 0.288707i
\(137\) −3.29220 5.70225i −0.281271 0.487176i 0.690427 0.723402i \(-0.257423\pi\)
−0.971698 + 0.236226i \(0.924089\pi\)
\(138\) −0.932031 + 1.61433i −0.0793398 + 0.137420i
\(139\) −0.116878 0.202439i −0.00991347 0.0171706i 0.861026 0.508561i \(-0.169822\pi\)
−0.870940 + 0.491390i \(0.836489\pi\)
\(140\) 0.932031 0.0787710
\(141\) −11.1107 −0.935686
\(142\) −1.44317 2.49965i −0.121108 0.209766i
\(143\) 6.64865 + 11.5158i 0.555988 + 0.963000i
\(144\) 3.50011 0.291676
\(145\) 2.76624 0.229724
\(146\) −1.60070 2.77250i −0.132475 0.229453i
\(147\) −3.38162 + 5.85714i −0.278912 + 0.483089i
\(148\) −6.05063 10.4800i −0.497359 0.861451i
\(149\) 1.33650 2.31488i 0.109490 0.189642i −0.806074 0.591815i \(-0.798412\pi\)
0.915564 + 0.402173i \(0.131745\pi\)
\(150\) −0.145349 + 0.251751i −0.0118677 + 0.0205554i
\(151\) 5.95266 0.484421 0.242210 0.970224i \(-0.422128\pi\)
0.242210 + 0.970224i \(0.422128\pi\)
\(152\) −2.80334 + 4.09351i −0.227381 + 0.332027i
\(153\) −3.41561 −0.276135
\(154\) −0.378201 + 0.655063i −0.0304763 + 0.0527865i
\(155\) −2.41550 + 4.18376i −0.194017 + 0.336048i
\(156\) 2.38151 + 4.12490i 0.190673 + 0.330256i
\(157\) 3.60424 6.24273i 0.287650 0.498224i −0.685599 0.727980i \(-0.740459\pi\)
0.973248 + 0.229756i \(0.0737928\pi\)
\(158\) 1.18208 + 2.04742i 0.0940411 + 0.162884i
\(159\) −2.99678 −0.237660
\(160\) −3.29392 −0.260407
\(161\) 1.56005 + 2.70209i 0.122949 + 0.212954i
\(162\) 0.145349 + 0.251751i 0.0114197 + 0.0197794i
\(163\) 14.1756 1.11032 0.555161 0.831743i \(-0.312657\pi\)
0.555161 + 0.831743i \(0.312657\pi\)
\(164\) −4.94465 −0.386112
\(165\) 2.67382 + 4.63119i 0.208157 + 0.360538i
\(166\) −0.851897 + 1.47553i −0.0661201 + 0.114523i
\(167\) −6.27817 10.8741i −0.485819 0.841464i 0.514048 0.857762i \(-0.328145\pi\)
−0.999867 + 0.0162977i \(0.994812\pi\)
\(168\) −0.276915 + 0.479631i −0.0213645 + 0.0370044i
\(169\) 3.40847 5.90365i 0.262190 0.454127i
\(170\) 0.992907 0.0761525
\(171\) 4.34603 + 0.334738i 0.332349 + 0.0255981i
\(172\) 4.76302 0.363177
\(173\) −1.09482 + 1.89628i −0.0832376 + 0.144172i −0.904639 0.426179i \(-0.859859\pi\)
0.821401 + 0.570351i \(0.193193\pi\)
\(174\) −0.402070 + 0.696405i −0.0304808 + 0.0527943i
\(175\) 0.243287 + 0.421386i 0.0183908 + 0.0318538i
\(176\) −9.35867 + 16.2097i −0.705436 + 1.22185i
\(177\) 6.36659 + 11.0273i 0.478542 + 0.828859i
\(178\) 1.89256 0.141854
\(179\) 7.50421 0.560891 0.280445 0.959870i \(-0.409518\pi\)
0.280445 + 0.959870i \(0.409518\pi\)
\(180\) 0.957748 + 1.65887i 0.0713863 + 0.123645i
\(181\) 6.33260 + 10.9684i 0.470699 + 0.815274i 0.999438 0.0335101i \(-0.0106686\pi\)
−0.528740 + 0.848784i \(0.677335\pi\)
\(182\) −0.351716 −0.0260709
\(183\) −11.8548 −0.876335
\(184\) −3.64936 6.32088i −0.269035 0.465982i
\(185\) 3.15878 5.47117i 0.232238 0.402249i
\(186\) −0.702178 1.21621i −0.0514862 0.0891767i
\(187\) 9.13272 15.8183i 0.667850 1.15675i
\(188\) 10.6412 18.4311i 0.776090 1.34423i
\(189\) 0.486575 0.0353931
\(190\) −1.26338 0.0973074i −0.0916551 0.00705942i
\(191\) 8.15777 0.590276 0.295138 0.955455i \(-0.404634\pi\)
0.295138 + 0.955455i \(0.404634\pi\)
\(192\) −3.02135 + 5.23312i −0.218047 + 0.377668i
\(193\) 1.68252 2.91422i 0.121111 0.209770i −0.799095 0.601204i \(-0.794688\pi\)
0.920206 + 0.391435i \(0.128021\pi\)
\(194\) 0.290697 + 0.503502i 0.0208708 + 0.0361494i
\(195\) −1.24329 + 2.15344i −0.0890336 + 0.154211i
\(196\) −6.47748 11.2193i −0.462677 0.801381i
\(197\) 3.83399 0.273160 0.136580 0.990629i \(-0.456389\pi\)
0.136580 + 0.990629i \(0.456389\pi\)
\(198\) −1.55454 −0.110477
\(199\) −6.34925 10.9972i −0.450086 0.779572i 0.548305 0.836279i \(-0.315273\pi\)
−0.998391 + 0.0567063i \(0.981940\pi\)
\(200\) −0.569112 0.985730i −0.0402423 0.0697017i
\(201\) 15.1754 1.07039
\(202\) −0.440885 −0.0310206
\(203\) 0.672992 + 1.16566i 0.0472348 + 0.0818130i
\(204\) 3.27129 5.66604i 0.229036 0.396702i
\(205\) −1.29070 2.23555i −0.0901462 0.156138i
\(206\) −1.33063 + 2.30473i −0.0927097 + 0.160578i
\(207\) −3.20619 + 5.55329i −0.222846 + 0.385980i
\(208\) −8.70329 −0.603465
\(209\) −13.1707 + 19.2323i −0.911038 + 1.33032i
\(210\) −0.141446 −0.00976069
\(211\) 4.57828 7.92982i 0.315182 0.545911i −0.664294 0.747471i \(-0.731268\pi\)
0.979476 + 0.201560i \(0.0646011\pi\)
\(212\) 2.87016 4.97126i 0.197123 0.341427i
\(213\) −4.96452 8.59879i −0.340163 0.589180i
\(214\) 0.0201942 0.0349774i 0.00138045 0.00239100i
\(215\) 1.24329 + 2.15344i 0.0847915 + 0.146863i
\(216\) −1.13822 −0.0774463
\(217\) −2.35064 −0.159572
\(218\) −2.28633 3.96003i −0.154850 0.268207i
\(219\) −5.50642 9.53740i −0.372089 0.644478i
\(220\) −10.2434 −0.690608
\(221\) 8.49316 0.571312
\(222\) 0.918249 + 1.59045i 0.0616288 + 0.106744i
\(223\) −5.44877 + 9.43754i −0.364876 + 0.631984i −0.988756 0.149536i \(-0.952222\pi\)
0.623880 + 0.781520i \(0.285555\pi\)
\(224\) −0.801369 1.38801i −0.0535437 0.0927404i
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) 2.15133 3.72620i 0.143104 0.247863i
\(227\) −24.6351 −1.63509 −0.817545 0.575864i \(-0.804666\pi\)
−0.817545 + 0.575864i \(0.804666\pi\)
\(228\) −4.71768 + 6.88889i −0.312436 + 0.456228i
\(229\) 17.1676 1.13447 0.567234 0.823557i \(-0.308013\pi\)
0.567234 + 0.823557i \(0.308013\pi\)
\(230\) 0.932031 1.61433i 0.0614563 0.106445i
\(231\) −1.30101 + 2.25342i −0.0856003 + 0.148264i
\(232\) −1.57430 2.72677i −0.103358 0.179021i
\(233\) −14.2316 + 24.6498i −0.932341 + 1.61486i −0.153032 + 0.988221i \(0.548904\pi\)
−0.779309 + 0.626640i \(0.784430\pi\)
\(234\) −0.361420 0.625998i −0.0236268 0.0409228i
\(235\) 11.1107 0.724780
\(236\) −24.3903 −1.58768
\(237\) 4.06636 + 7.04314i 0.264138 + 0.457501i
\(238\) 0.241562 + 0.418397i 0.0156581 + 0.0271207i
\(239\) 4.07741 0.263746 0.131873 0.991267i \(-0.457901\pi\)
0.131873 + 0.991267i \(0.457901\pi\)
\(240\) −3.50011 −0.225931
\(241\) 6.33421 + 10.9712i 0.408023 + 0.706716i 0.994668 0.103128i \(-0.0328852\pi\)
−0.586646 + 0.809844i \(0.699552\pi\)
\(242\) 2.55773 4.43012i 0.164417 0.284779i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 11.3539 19.6656i 0.726862 1.25896i
\(245\) 3.38162 5.85714i 0.216044 0.374199i
\(246\) 0.750404 0.0478440
\(247\) −10.8067 0.832351i −0.687615 0.0529612i
\(248\) 5.49875 0.349171
\(249\) −2.93053 + 5.07583i −0.185715 + 0.321668i
\(250\) 0.145349 0.251751i 0.00919265 0.0159221i
\(251\) 5.81204 + 10.0668i 0.366853 + 0.635408i 0.989072 0.147436i \(-0.0471019\pi\)
−0.622219 + 0.782843i \(0.713769\pi\)
\(252\) −0.466016 + 0.807163i −0.0293562 + 0.0508465i
\(253\) −17.1456 29.6970i −1.07793 1.86703i
\(254\) 2.85784 0.179317
\(255\) 3.41561 0.213894
\(256\) −4.82984 8.36553i −0.301865 0.522845i
\(257\) −5.27416 9.13512i −0.328993 0.569833i 0.653319 0.757083i \(-0.273376\pi\)
−0.982312 + 0.187250i \(0.940043\pi\)
\(258\) −0.722840 −0.0450021
\(259\) 3.07397 0.191007
\(260\) −2.38151 4.12490i −0.147695 0.255815i
\(261\) −1.38312 + 2.39564i −0.0856131 + 0.148286i
\(262\) 2.06819 + 3.58221i 0.127773 + 0.221310i
\(263\) −11.8967 + 20.6058i −0.733585 + 1.27061i 0.221757 + 0.975102i \(0.428821\pi\)
−0.955341 + 0.295504i \(0.904512\pi\)
\(264\) 3.04340 5.27133i 0.187309 0.324428i
\(265\) 2.99678 0.184091
\(266\) −0.266360 0.556043i −0.0163316 0.0340932i
\(267\) 6.51043 0.398432
\(268\) −14.5342 + 25.1740i −0.887818 + 1.53775i
\(269\) 2.11377 3.66115i 0.128879 0.223224i −0.794364 0.607442i \(-0.792196\pi\)
0.923242 + 0.384218i \(0.125529\pi\)
\(270\) −0.145349 0.251751i −0.00884563 0.0153211i
\(271\) −15.5736 + 26.9742i −0.946027 + 1.63857i −0.192344 + 0.981328i \(0.561609\pi\)
−0.753682 + 0.657239i \(0.771724\pi\)
\(272\) 5.97750 + 10.3533i 0.362439 + 0.627763i
\(273\) −1.20990 −0.0732267
\(274\) −1.91406 −0.115633
\(275\) −2.67382 4.63119i −0.161237 0.279271i
\(276\) −6.14145 10.6373i −0.369672 0.640290i
\(277\) 1.05393 0.0633243 0.0316621 0.999499i \(-0.489920\pi\)
0.0316621 + 0.999499i \(0.489920\pi\)
\(278\) −0.0679523 −0.00407551
\(279\) −2.41550 4.18376i −0.144612 0.250475i
\(280\) 0.276915 0.479631i 0.0165489 0.0286635i
\(281\) −12.8177 22.2009i −0.764638 1.32439i −0.940437 0.339967i \(-0.889584\pi\)
0.175799 0.984426i \(-0.443749\pi\)
\(282\) −1.61492 + 2.79712i −0.0961670 + 0.166566i
\(283\) −14.7056 + 25.4708i −0.874157 + 1.51408i −0.0164983 + 0.999864i \(0.505252\pi\)
−0.857658 + 0.514220i \(0.828082\pi\)
\(284\) 19.0190 1.12857
\(285\) −4.34603 0.334738i −0.257436 0.0198282i
\(286\) 3.86549 0.228571
\(287\) 0.628020 1.08776i 0.0370709 0.0642086i
\(288\) 1.64696 2.85262i 0.0970480 0.168092i
\(289\) 2.66681 + 4.61906i 0.156871 + 0.271709i
\(290\) 0.402070 0.696405i 0.0236103 0.0408943i
\(291\) 1.00000 + 1.73205i 0.0586210 + 0.101535i
\(292\) 21.0950 1.23449
\(293\) −10.8548 −0.634147 −0.317073 0.948401i \(-0.602700\pi\)
−0.317073 + 0.948401i \(0.602700\pi\)
\(294\) 0.983028 + 1.70265i 0.0573314 + 0.0993008i
\(295\) −6.36659 11.0273i −0.370677 0.642031i
\(296\) −7.19080 −0.417957
\(297\) −5.34764 −0.310301
\(298\) −0.388516 0.672929i −0.0225061 0.0389817i
\(299\) 7.97244 13.8087i 0.461058 0.798576i
\(300\) −0.957748 1.65887i −0.0552956 0.0957748i
\(301\) −0.604952 + 1.04781i −0.0348688 + 0.0603946i
\(302\) 0.865211 1.49859i 0.0497873 0.0862341i
\(303\) −1.51665 −0.0871291
\(304\) −6.59114 13.7594i −0.378028 0.789157i
\(305\) 11.8548 0.678806
\(306\) −0.496454 + 0.859883i −0.0283804 + 0.0491562i
\(307\) −16.8445 + 29.1756i −0.961368 + 1.66514i −0.242296 + 0.970202i \(0.577901\pi\)
−0.719072 + 0.694936i \(0.755433\pi\)
\(308\) −2.49208 4.31641i −0.142000 0.245950i
\(309\) −4.57739 + 7.92827i −0.260399 + 0.451023i
\(310\) 0.702178 + 1.21621i 0.0398810 + 0.0690759i
\(311\) −11.7221 −0.664701 −0.332350 0.943156i \(-0.607842\pi\)
−0.332350 + 0.943156i \(0.607842\pi\)
\(312\) 2.83028 0.160233
\(313\) −2.23928 3.87855i −0.126572 0.219229i 0.795775 0.605593i \(-0.207064\pi\)
−0.922346 + 0.386364i \(0.873731\pi\)
\(314\) −1.04774 1.81474i −0.0591275 0.102412i
\(315\) −0.486575 −0.0274154
\(316\) −15.5782 −0.876341
\(317\) −6.19367 10.7277i −0.347871 0.602530i 0.638000 0.770036i \(-0.279762\pi\)
−0.985871 + 0.167506i \(0.946429\pi\)
\(318\) −0.435577 + 0.754442i −0.0244260 + 0.0423070i
\(319\) −7.39644 12.8110i −0.414121 0.717278i
\(320\) 3.02135 5.23312i 0.168898 0.292541i
\(321\) 0.0694682 0.120322i 0.00387733 0.00671574i
\(322\) 0.907005 0.0505454
\(323\) 6.43200 + 13.4272i 0.357886 + 0.747111i
\(324\) −1.91550 −0.106416
\(325\) 1.24329 2.15344i 0.0689652 0.119451i
\(326\) 2.06041 3.56873i 0.114115 0.197654i
\(327\) −7.86497 13.6225i −0.434934 0.753328i
\(328\) −1.46910 + 2.54456i −0.0811176 + 0.140500i
\(329\) 2.70308 + 4.68188i 0.149026 + 0.258120i
\(330\) 1.55454 0.0855748
\(331\) 24.5058 1.34696 0.673480 0.739206i \(-0.264799\pi\)
0.673480 + 0.739206i \(0.264799\pi\)
\(332\) −5.61342 9.72273i −0.308076 0.533604i
\(333\) 3.15878 + 5.47117i 0.173100 + 0.299818i
\(334\) −3.65009 −0.199724
\(335\) −15.1754 −0.829121
\(336\) −0.851533 1.47490i −0.0464549 0.0804623i
\(337\) −5.25038 + 9.09392i −0.286006 + 0.495378i −0.972853 0.231425i \(-0.925661\pi\)
0.686846 + 0.726803i \(0.258995\pi\)
\(338\) −0.990834 1.71617i −0.0538942 0.0933476i
\(339\) 7.40057 12.8182i 0.401944 0.696187i
\(340\) −3.27129 + 5.66604i −0.177411 + 0.307284i
\(341\) 25.8344 1.39901
\(342\) 0.715960 1.04546i 0.0387147 0.0565322i
\(343\) 6.69684 0.361596
\(344\) 1.41514 2.45109i 0.0762992 0.132154i
\(345\) 3.20619 5.55329i 0.172616 0.298979i
\(346\) 0.318261 + 0.551244i 0.0171098 + 0.0296351i
\(347\) 0.727562 1.26017i 0.0390576 0.0676497i −0.845836 0.533443i \(-0.820898\pi\)
0.884893 + 0.465794i \(0.154231\pi\)
\(348\) −2.64936 4.58883i −0.142021 0.245987i
\(349\) 23.7332 1.27041 0.635204 0.772345i \(-0.280916\pi\)
0.635204 + 0.772345i \(0.280916\pi\)
\(350\) 0.141446 0.00756060
\(351\) −1.24329 2.15344i −0.0663618 0.114942i
\(352\) 8.80735 + 15.2548i 0.469433 + 0.813082i
\(353\) −7.39055 −0.393359 −0.196680 0.980468i \(-0.563016\pi\)
−0.196680 + 0.980468i \(0.563016\pi\)
\(354\) 3.70150 0.196732
\(355\) 4.96452 + 8.59879i 0.263489 + 0.456377i
\(356\) −6.23535 + 10.7999i −0.330473 + 0.572395i
\(357\) 0.830974 + 1.43929i 0.0439798 + 0.0761752i
\(358\) 1.09073 1.88919i 0.0576467 0.0998469i
\(359\) −1.17934 + 2.04268i −0.0622433 + 0.107808i −0.895468 0.445126i \(-0.853159\pi\)
0.833225 + 0.552935i \(0.186492\pi\)
\(360\) 1.13822 0.0599896
\(361\) −6.86820 17.7152i −0.361484 0.932378i
\(362\) 3.68174 0.193508
\(363\) 8.79862 15.2397i 0.461808 0.799874i
\(364\) 1.15878 2.00707i 0.0607367 0.105199i
\(365\) 5.50642 + 9.53740i 0.288219 + 0.499210i
\(366\) −1.72308 + 2.98447i −0.0900671 + 0.156001i
\(367\) 11.0743 + 19.1812i 0.578073 + 1.00125i 0.995700 + 0.0926329i \(0.0295283\pi\)
−0.417628 + 0.908618i \(0.637138\pi\)
\(368\) 22.4441 1.16998
\(369\) 2.58139 0.134382
\(370\) −0.918249 1.59045i −0.0477375 0.0826838i
\(371\) 0.729078 + 1.26280i 0.0378518 + 0.0655613i
\(372\) 9.25374 0.479784
\(373\) 31.1738 1.61412 0.807060 0.590469i \(-0.201057\pi\)
0.807060 + 0.590469i \(0.201057\pi\)
\(374\) −2.65485 4.59834i −0.137279 0.237775i
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) −6.32321 10.9521i −0.326094 0.564812i
\(377\) 3.43924 5.95693i 0.177130 0.306798i
\(378\) 0.0707229 0.122496i 0.00363759 0.00630050i
\(379\) −26.0349 −1.33732 −0.668662 0.743567i \(-0.733132\pi\)
−0.668662 + 0.743567i \(0.733132\pi\)
\(380\) 4.71768 6.88889i 0.242012 0.353393i
\(381\) 9.83099 0.503657
\(382\) 1.18572 2.05373i 0.0606668 0.105078i
\(383\) 1.06647 1.84718i 0.0544941 0.0943865i −0.837492 0.546450i \(-0.815979\pi\)
0.891986 + 0.452064i \(0.149312\pi\)
\(384\) 4.17222 + 7.22649i 0.212913 + 0.368775i
\(385\) 1.30101 2.25342i 0.0663057 0.114845i
\(386\) −0.489105 0.847154i −0.0248948 0.0431190i
\(387\) −2.48657 −0.126400
\(388\) −3.83099 −0.194489
\(389\) 6.52135 + 11.2953i 0.330645 + 0.572695i 0.982639 0.185530i \(-0.0594003\pi\)
−0.651993 + 0.758225i \(0.726067\pi\)
\(390\) 0.361420 + 0.625998i 0.0183012 + 0.0316986i
\(391\) −21.9022 −1.10764
\(392\) −7.69808 −0.388812
\(393\) 7.11459 + 12.3228i 0.358884 + 0.621605i
\(394\) 0.557265 0.965211i 0.0280746 0.0486266i
\(395\) −4.06636 7.04314i −0.204601 0.354379i
\(396\) 5.12169 8.87102i 0.257374 0.445786i
\(397\) −0.0143214 + 0.0248054i −0.000718770 + 0.00124495i −0.866385 0.499377i \(-0.833562\pi\)
0.865666 + 0.500622i \(0.166895\pi\)
\(398\) −3.69142 −0.185034
\(399\) −0.916279 1.91279i −0.0458713 0.0957594i
\(400\) 3.50011 0.175006
\(401\) 13.6596 23.6591i 0.682126 1.18148i −0.292204 0.956356i \(-0.594389\pi\)
0.974331 0.225122i \(-0.0722779\pi\)
\(402\) 2.20572 3.82043i 0.110012 0.190546i
\(403\) 6.00631 + 10.4032i 0.299196 + 0.518222i
\(404\) 1.45257 2.51592i 0.0722679 0.125172i
\(405\) −0.500000 0.866025i −0.0248452 0.0430331i
\(406\) 0.391274 0.0194186
\(407\) −33.7841 −1.67461
\(408\) −1.94386 3.36687i −0.0962355 0.166685i
\(409\) 3.36958 + 5.83629i 0.166615 + 0.288586i 0.937228 0.348718i \(-0.113383\pi\)
−0.770612 + 0.637304i \(0.780050\pi\)
\(410\) −0.750404 −0.0370598
\(411\) −6.58439 −0.324784
\(412\) −8.76796 15.1866i −0.431967 0.748188i
\(413\) 3.09782 5.36558i 0.152434 0.264023i
\(414\) 0.932031 + 1.61433i 0.0458068 + 0.0793398i
\(415\) 2.93053 5.07583i 0.143854 0.249163i
\(416\) −4.09529 + 7.09325i −0.200788 + 0.347775i
\(417\) −0.233756 −0.0114471
\(418\) 2.92739 + 6.11113i 0.143184 + 0.298905i
\(419\) 26.4076 1.29010 0.645048 0.764142i \(-0.276837\pi\)
0.645048 + 0.764142i \(0.276837\pi\)
\(420\) 0.466016 0.807163i 0.0227392 0.0393855i
\(421\) −18.9448 + 32.8133i −0.923311 + 1.59922i −0.129056 + 0.991637i \(0.541195\pi\)
−0.794255 + 0.607584i \(0.792139\pi\)
\(422\) −1.33089 2.30518i −0.0647869 0.112214i
\(423\) −5.55533 + 9.62211i −0.270109 + 0.467843i
\(424\) −1.70550 2.95401i −0.0828265 0.143460i
\(425\) −3.41561 −0.165681
\(426\) −2.88634 −0.139844
\(427\) 2.88413 + 4.99546i 0.139573 + 0.241747i
\(428\) 0.133066 + 0.230477i 0.00643198 + 0.0111405i
\(429\) 13.2973 0.642000
\(430\) 0.722840 0.0348585
\(431\) 9.60285 + 16.6326i 0.462553 + 0.801165i 0.999087 0.0427131i \(-0.0136001\pi\)
−0.536534 + 0.843879i \(0.680267\pi\)
\(432\) 1.75006 3.03119i 0.0841996 0.145838i
\(433\) −8.47562 14.6802i −0.407312 0.705485i 0.587275 0.809387i \(-0.300201\pi\)
−0.994588 + 0.103902i \(0.966867\pi\)
\(434\) −0.341662 + 0.591776i −0.0164003 + 0.0284061i
\(435\) 1.38312 2.39564i 0.0663156 0.114862i
\(436\) 30.1306 1.44300
\(437\) 27.8684 + 2.14647i 1.33313 + 0.102680i
\(438\) −3.20140 −0.152969
\(439\) −5.55143 + 9.61536i −0.264955 + 0.458916i −0.967552 0.252672i \(-0.918691\pi\)
0.702597 + 0.711588i \(0.252024\pi\)
\(440\) −3.04340 + 5.27133i −0.145089 + 0.251301i
\(441\) 3.38162 + 5.85714i 0.161030 + 0.278912i
\(442\) 1.23447 2.13816i 0.0587177 0.101702i
\(443\) 6.94708 + 12.0327i 0.330066 + 0.571691i 0.982524 0.186133i \(-0.0595957\pi\)
−0.652459 + 0.757824i \(0.726262\pi\)
\(444\) −12.1013 −0.574301
\(445\) −6.51043 −0.308624
\(446\) 1.58394 + 2.74347i 0.0750018 + 0.129907i
\(447\) −1.33650 2.31488i −0.0632141 0.109490i
\(448\) 2.94022 0.138912
\(449\) 27.8675 1.31515 0.657573 0.753391i \(-0.271583\pi\)
0.657573 + 0.753391i \(0.271583\pi\)
\(450\) 0.145349 + 0.251751i 0.00685180 + 0.0118677i
\(451\) −6.90218 + 11.9549i −0.325011 + 0.562936i
\(452\) 14.1758 + 24.5531i 0.666772 + 1.15488i
\(453\) 2.97633 5.15516i 0.139840 0.242210i
\(454\) −3.58068 + 6.20192i −0.168050 + 0.291071i
\(455\) 1.20990 0.0567212
\(456\) 2.14341 + 4.47451i 0.100375 + 0.209538i
\(457\) −36.5660 −1.71048 −0.855242 0.518229i \(-0.826591\pi\)
−0.855242 + 0.518229i \(0.826591\pi\)
\(458\) 2.49529 4.32197i 0.116597 0.201952i
\(459\) −1.70780 + 2.95800i −0.0797134 + 0.138068i
\(460\) 6.14145 + 10.6373i 0.286346 + 0.495966i
\(461\) −10.9590 + 18.9816i −0.510412 + 0.884059i 0.489515 + 0.871995i \(0.337174\pi\)
−0.999927 + 0.0120646i \(0.996160\pi\)
\(462\) 0.378201 + 0.655063i 0.0175955 + 0.0304763i
\(463\) −14.0255 −0.651821 −0.325910 0.945401i \(-0.605671\pi\)
−0.325910 + 0.945401i \(0.605671\pi\)
\(464\) 9.68216 0.449483
\(465\) 2.41550 + 4.18376i 0.112016 + 0.194017i
\(466\) 4.13707 + 7.16562i 0.191646 + 0.331941i
\(467\) 33.9294 1.57007 0.785033 0.619453i \(-0.212646\pi\)
0.785033 + 0.619453i \(0.212646\pi\)
\(468\) 4.76302 0.220171
\(469\) −3.69198 6.39470i −0.170480 0.295280i
\(470\) 1.61492 2.79712i 0.0744906 0.129022i
\(471\) −3.60424 6.24273i −0.166075 0.287650i
\(472\) −7.24660 + 12.5515i −0.333552 + 0.577728i
\(473\) 6.64865 11.5158i 0.305705 0.529497i
\(474\) 2.36416 0.108589
\(475\) 4.34603 + 0.334738i 0.199409 + 0.0153588i
\(476\) −3.18345 −0.145913
\(477\) −1.49839 + 2.59529i −0.0686065 + 0.118830i
\(478\) 0.592646 1.02649i 0.0271070 0.0469507i
\(479\) −15.9748 27.6692i −0.729909 1.26424i −0.956921 0.290348i \(-0.906229\pi\)
0.227012 0.973892i \(-0.427104\pi\)
\(480\) −1.64696 + 2.85262i −0.0751731 + 0.130204i
\(481\) −7.85455 13.6045i −0.358137 0.620311i
\(482\) 3.68268 0.167741
\(483\) 3.12010 0.141970
\(484\) 16.8537 + 29.1915i 0.766078 + 1.32689i
\(485\) −1.00000 1.73205i −0.0454077 0.0786484i
\(486\) 0.290697 0.0131863
\(487\) 37.6229 1.70486 0.852428 0.522844i \(-0.175129\pi\)
0.852428 + 0.522844i \(0.175129\pi\)
\(488\) −6.74673 11.6857i −0.305410 0.528986i
\(489\) 7.08781 12.2765i 0.320522 0.555161i
\(490\) −0.983028 1.70265i −0.0444087 0.0769181i
\(491\) 20.0421 34.7139i 0.904487 1.56662i 0.0828838 0.996559i \(-0.473587\pi\)
0.821604 0.570059i \(-0.193080\pi\)
\(492\) −2.47232 + 4.28219i −0.111461 + 0.193056i
\(493\) −9.44840 −0.425535
\(494\) −1.78029 + 2.59962i −0.0800989 + 0.116963i
\(495\) 5.34764 0.240358
\(496\) −8.45450 + 14.6436i −0.379618 + 0.657518i
\(497\) −2.41561 + 4.18395i −0.108355 + 0.187676i
\(498\) 0.851897 + 1.47553i 0.0381744 + 0.0661201i
\(499\) 15.1533 26.2464i 0.678357 1.17495i −0.297118 0.954841i \(-0.596026\pi\)
0.975475 0.220108i \(-0.0706410\pi\)
\(500\) 0.957748 + 1.65887i 0.0428318 + 0.0741868i
\(501\) −12.5563 −0.560976
\(502\) 3.37909 0.150816
\(503\) 8.64393 + 14.9717i 0.385414 + 0.667556i 0.991827 0.127594i \(-0.0407254\pi\)
−0.606413 + 0.795150i \(0.707392\pi\)
\(504\) 0.276915 + 0.479631i 0.0123348 + 0.0213645i
\(505\) 1.51665 0.0674899
\(506\) −9.96833 −0.443146
\(507\) −3.40847 5.90365i −0.151376 0.262190i
\(508\) −9.41561 + 16.3083i −0.417750 + 0.723564i
\(509\) −2.80412 4.85688i −0.124291 0.215278i 0.797165 0.603762i \(-0.206332\pi\)
−0.921455 + 0.388484i \(0.872999\pi\)
\(510\) 0.496454 0.859883i 0.0219833 0.0380763i
\(511\) −2.67928 + 4.64066i −0.118525 + 0.205291i
\(512\) −19.4969 −0.861650
\(513\) 2.46291 3.59640i 0.108740 0.158785i
\(514\) −3.06637 −0.135252
\(515\) 4.57739 7.92827i 0.201704 0.349361i
\(516\) 2.38151 4.12490i 0.104840 0.181588i
\(517\) −29.7079 51.4556i −1.30655 2.26301i
\(518\) 0.446797 0.773874i 0.0196311 0.0340021i
\(519\) 1.09482 + 1.89628i 0.0480573 + 0.0832376i
\(520\) −2.83028 −0.124116
\(521\) 13.7128 0.600767 0.300384 0.953818i \(-0.402885\pi\)
0.300384 + 0.953818i \(0.402885\pi\)
\(522\) 0.402070 + 0.696405i 0.0175981 + 0.0304808i
\(523\) 17.6171 + 30.5137i 0.770341 + 1.33427i 0.937376 + 0.348319i \(0.113247\pi\)
−0.167035 + 0.985951i \(0.553419\pi\)
\(524\) −27.2559 −1.19068
\(525\) 0.486575 0.0212359
\(526\) 3.45835 + 5.99004i 0.150791 + 0.261178i
\(527\) 8.25038 14.2901i 0.359392 0.622486i
\(528\) 9.35867 + 16.2097i 0.407284 + 0.705436i
\(529\) −9.05934 + 15.6912i −0.393884 + 0.682228i
\(530\) 0.435577 0.754442i 0.0189203 0.0327709i
\(531\) 12.7332 0.552573
\(532\) 4.05063 + 0.311986i 0.175617 + 0.0135263i
\(533\) −6.41883 −0.278030
\(534\) 0.946281 1.63901i 0.0409496 0.0709268i
\(535\) −0.0694682 + 0.120322i −0.00300337 + 0.00520199i
\(536\) 8.63650 + 14.9589i 0.373040 + 0.646124i
\(537\) 3.75210 6.49883i 0.161915 0.280445i
\(538\) −0.614466 1.06429i −0.0264915 0.0458847i
\(539\) −36.1674 −1.55784
\(540\) 1.91550 0.0824298
\(541\) −15.1179 26.1849i −0.649968 1.12578i −0.983130 0.182908i \(-0.941449\pi\)
0.333162 0.942869i \(-0.391884\pi\)
\(542\) 4.52719 + 7.84133i 0.194460 + 0.336814i
\(543\) 12.6652 0.543516
\(544\) 11.2507 0.482371
\(545\) 7.86497 + 13.6225i 0.336899 + 0.583525i
\(546\) −0.175858 + 0.304595i −0.00752602 + 0.0130354i
\(547\) −17.4766 30.2703i −0.747244 1.29426i −0.949139 0.314858i \(-0.898043\pi\)
0.201895 0.979407i \(-0.435290\pi\)
\(548\) 6.30619 10.9226i 0.269387 0.466592i
\(549\) −5.92742 + 10.2666i −0.252976 + 0.438168i
\(550\) −1.55454 −0.0662860
\(551\) 12.0222 + 0.925967i 0.512162 + 0.0394475i
\(552\) −7.29873 −0.310654
\(553\) 1.97859 3.42701i 0.0841380 0.145731i
\(554\) 0.153187 0.265327i 0.00650828 0.0112727i
\(555\) −3.15878 5.47117i −0.134083 0.232238i
\(556\) 0.223879 0.387771i 0.00949460 0.0164451i
\(557\) −1.58139 2.73906i −0.0670058 0.116058i 0.830576 0.556905i \(-0.188011\pi\)
−0.897582 + 0.440848i \(0.854678\pi\)
\(558\) −1.40436 −0.0594511
\(559\) 6.18305 0.261515
\(560\) 0.851533 + 1.47490i 0.0359838 + 0.0623258i
\(561\) −9.13272 15.8183i −0.385584 0.667850i
\(562\) −7.45213 −0.314349
\(563\) −29.0570 −1.22460 −0.612302 0.790624i \(-0.709756\pi\)
−0.612302 + 0.790624i \(0.709756\pi\)
\(564\) −10.6412 18.4311i −0.448076 0.776090i
\(565\) −7.40057 + 12.8182i −0.311344 + 0.539264i
\(566\) 4.27487 + 7.40430i 0.179686 + 0.311226i
\(567\) 0.243287 0.421386i 0.0102171 0.0176965i
\(568\) 5.65073 9.78735i 0.237099 0.410668i
\(569\) −31.3398 −1.31383 −0.656916 0.753964i \(-0.728139\pi\)
−0.656916 + 0.753964i \(0.728139\pi\)
\(570\) −0.715960 + 1.04546i −0.0299882 + 0.0437897i
\(571\) 2.56556 0.107365 0.0536827 0.998558i \(-0.482904\pi\)
0.0536827 + 0.998558i \(0.482904\pi\)
\(572\) −12.7355 + 22.0585i −0.532496 + 0.922311i
\(573\) 4.07889 7.06484i 0.170398 0.295138i
\(574\) −0.182564 0.316210i −0.00762006 0.0131983i
\(575\) −3.20619 + 5.55329i −0.133707 + 0.231588i
\(576\) 3.02135 + 5.23312i 0.125889 + 0.218047i
\(577\) 3.12153 0.129951 0.0649755 0.997887i \(-0.479303\pi\)
0.0649755 + 0.997887i \(0.479303\pi\)
\(578\) 1.55047 0.0644911
\(579\) −1.68252 2.91422i −0.0699233 0.121111i
\(580\) 2.64936 + 4.58883i 0.110009 + 0.190541i
\(581\) 2.85184 0.118314
\(582\) 0.581394 0.0240996
\(583\) −8.01284 13.8786i −0.331858 0.574795i
\(584\) 6.26754 10.8557i 0.259353 0.449212i
\(585\) 1.24329 + 2.15344i 0.0514036 + 0.0890336i
\(586\) −1.57774 + 2.73272i −0.0651757 + 0.112888i
\(587\) 4.63985 8.03646i 0.191507 0.331700i −0.754243 0.656596i \(-0.771996\pi\)
0.945750 + 0.324896i \(0.105329\pi\)
\(588\) −12.9550 −0.534254
\(589\) −11.8983 + 17.3742i −0.490260 + 0.715891i
\(590\) −3.70150 −0.152388
\(591\) 1.91699 3.32033i 0.0788546 0.136580i
\(592\) 11.0561 19.1497i 0.454403 0.787048i
\(593\) −17.0224 29.4836i −0.699025 1.21075i −0.968805 0.247825i \(-0.920284\pi\)
0.269780 0.962922i \(-0.413049\pi\)
\(594\) −0.777272 + 1.34627i −0.0318918 + 0.0552383i
\(595\) −0.830974 1.43929i −0.0340666 0.0590051i
\(596\) 5.12010 0.209728
\(597\) −12.6985 −0.519715
\(598\) −2.31756 4.01414i −0.0947723 0.164150i
\(599\) −12.5366 21.7140i −0.512231 0.887210i −0.999899 0.0141810i \(-0.995486\pi\)
0.487669 0.873029i \(-0.337847\pi\)
\(600\) −1.13822 −0.0464678
\(601\) −26.0225 −1.06148 −0.530739 0.847535i \(-0.678086\pi\)
−0.530739 + 0.847535i \(0.678086\pi\)
\(602\) 0.175858 + 0.304595i 0.00716743 + 0.0124144i
\(603\) 7.58770 13.1423i 0.308995 0.535195i
\(604\) 5.70115 + 9.87468i 0.231976 + 0.401795i
\(605\) −8.79862 + 15.2397i −0.357715 + 0.619580i
\(606\) −0.220443 + 0.381818i −0.00895487 + 0.0155103i
\(607\) −7.54650 −0.306303 −0.153151 0.988203i \(-0.548942\pi\)
−0.153151 + 0.988203i \(0.548942\pi\)
\(608\) −14.3155 1.10260i −0.580569 0.0447163i
\(609\) 1.34598 0.0545420
\(610\) 1.72308 2.98447i 0.0697657 0.120838i
\(611\) 13.8137 23.9261i 0.558844 0.967946i
\(612\) −3.27129 5.66604i −0.132234 0.229036i
\(613\) 19.1345 33.1419i 0.772836 1.33859i −0.163167 0.986598i \(-0.552171\pi\)
0.936003 0.351992i \(-0.114496\pi\)
\(614\) 4.89666 + 8.48126i 0.197613 + 0.342276i
\(615\) −2.58139 −0.104092
\(616\) −2.96169 −0.119330
\(617\) 5.82540 + 10.0899i 0.234522 + 0.406203i 0.959134 0.282954i \(-0.0913143\pi\)
−0.724612 + 0.689157i \(0.757981\pi\)
\(618\) 1.33063 + 2.30473i 0.0535259 + 0.0927097i
\(619\) −2.47710 −0.0995630 −0.0497815 0.998760i \(-0.515852\pi\)
−0.0497815 + 0.998760i \(0.515852\pi\)
\(620\) −9.25374 −0.371639
\(621\) 3.20619 + 5.55329i 0.128660 + 0.222846i
\(622\) −1.70379 + 2.95106i −0.0683159 + 0.118327i
\(623\) −1.58390 2.74340i −0.0634578 0.109912i
\(624\) −4.35164 + 7.53727i −0.174205 + 0.301732i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −1.30191 −0.0520346
\(627\) 10.0703 + 21.0223i 0.402167 + 0.839550i
\(628\) 13.8078 0.550991
\(629\) −10.7892 + 18.6874i −0.430192 + 0.745114i
\(630\) −0.0707229 + 0.122496i −0.00281767 + 0.00488035i
\(631\) 21.8279 + 37.8070i 0.868954 + 1.50507i 0.863067 + 0.505090i \(0.168541\pi\)
0.00588756 + 0.999983i \(0.498126\pi\)
\(632\) −4.62842 + 8.01666i −0.184109 + 0.318886i
\(633\) −4.57828 7.92982i −0.181970 0.315182i
\(634\) −3.60096 −0.143012
\(635\) −9.83099 −0.390131
\(636\) −2.87016 4.97126i −0.113809 0.197123i
\(637\) −8.40866 14.5642i −0.333163 0.577055i
\(638\) −4.30025 −0.170248
\(639\) −9.92903 −0.392786
\(640\) −4.17222 7.22649i −0.164921 0.285652i
\(641\) −12.1163 + 20.9860i −0.478564 + 0.828897i −0.999698 0.0245776i \(-0.992176\pi\)
0.521134 + 0.853475i \(0.325509\pi\)
\(642\) −0.0201942 0.0349774i −0.000797002 0.00138045i
\(643\) −4.15878 + 7.20322i −0.164006 + 0.284067i −0.936302 0.351196i \(-0.885775\pi\)
0.772296 + 0.635263i \(0.219108\pi\)
\(644\) −2.98827 + 5.17584i −0.117754 + 0.203957i
\(645\) 2.48657 0.0979088
\(646\) 4.31520 + 0.332364i 0.169779 + 0.0130767i
\(647\) −10.9164 −0.429170 −0.214585 0.976705i \(-0.568840\pi\)
−0.214585 + 0.976705i \(0.568840\pi\)
\(648\) −0.569112 + 0.985730i −0.0223568 + 0.0387231i
\(649\) −34.0462 + 58.9697i −1.33643 + 2.31476i
\(650\) −0.361420 0.625998i −0.0141761 0.0245537i
\(651\) −1.17532 + 2.03571i −0.0460644 + 0.0797858i
\(652\) 13.5767 + 23.5155i 0.531704 + 0.920938i
\(653\) −21.8452 −0.854868 −0.427434 0.904047i \(-0.640582\pi\)
−0.427434 + 0.904047i \(0.640582\pi\)
\(654\) −4.57265 −0.178805
\(655\) −7.11459 12.3228i −0.277990 0.481493i
\(656\) −4.51758 7.82469i −0.176382 0.305503i
\(657\) −11.0128 −0.429652
\(658\) 1.57156 0.0612657
\(659\) 13.2094 + 22.8794i 0.514566 + 0.891254i 0.999857 + 0.0169015i \(0.00538018\pi\)
−0.485291 + 0.874352i \(0.661286\pi\)
\(660\) −5.12169 + 8.87102i −0.199361 + 0.345304i
\(661\) −9.30721 16.1206i −0.362008 0.627017i 0.626283 0.779596i \(-0.284576\pi\)
−0.988291 + 0.152579i \(0.951242\pi\)
\(662\) 3.56188 6.16936i 0.138436 0.239779i
\(663\) 4.24658 7.35529i 0.164924 0.285656i
\(664\) −6.67120 −0.258893
\(665\) 0.916279 + 1.91279i 0.0355318 + 0.0741749i
\(666\) 1.83650 0.0711629
\(667\) −8.86911 + 15.3617i −0.343413 + 0.594809i
\(668\) 12.0258 20.8293i 0.465292 0.805910i
\(669\) 5.44877 + 9.43754i 0.210661 + 0.364876i
\(670\) −2.20572 + 3.82043i −0.0852146 + 0.147596i
\(671\) −31.6977 54.9020i −1.22368 2.11947i
\(672\) −1.60274 −0.0618269
\(673\) 5.98693 0.230779 0.115390 0.993320i \(-0.463188\pi\)
0.115390 + 0.993320i \(0.463188\pi\)
\(674\) 1.52627 + 2.64358i 0.0587898 + 0.101827i
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) 13.0578 0.502224
\(677\) 33.7287 1.29630 0.648150 0.761512i \(-0.275543\pi\)
0.648150 + 0.761512i \(0.275543\pi\)
\(678\) −2.15133 3.72620i −0.0826211 0.143104i
\(679\) 0.486575 0.842772i 0.0186730 0.0323426i
\(680\) 1.94386 + 3.36687i 0.0745437 + 0.129113i
\(681\) −12.3176 + 21.3346i −0.472010 + 0.817545i
\(682\) 3.75499 6.50384i 0.143786 0.249045i
\(683\) 11.4959 0.439880 0.219940 0.975513i \(-0.429414\pi\)
0.219940 + 0.975513i \(0.429414\pi\)
\(684\) 3.60711 + 7.53008i 0.137921 + 0.287920i
\(685\) 6.58439 0.251577
\(686\) 0.973377 1.68594i 0.0371637 0.0643694i
\(687\) 8.58381 14.8676i 0.327493 0.567234i
\(688\) 4.35164 + 7.53727i 0.165905 + 0.287356i
\(689\) 3.72586 6.45337i 0.141944 0.245854i
\(690\) −0.932031 1.61433i −0.0354818 0.0614563i
\(691\) 36.3039 1.38107 0.690533 0.723301i \(-0.257376\pi\)
0.690533 + 0.723301i \(0.257376\pi\)
\(692\) −4.19424 −0.159441
\(693\) 1.30101 + 2.25342i 0.0494214 + 0.0856003i
\(694\) −0.211500 0.366329i −0.00802844 0.0139057i
\(695\) 0.233756 0.00886688
\(696\) −3.14860 −0.119348
\(697\) 4.40851 + 7.63577i 0.166984 + 0.289225i
\(698\) 3.44958 5.97485i 0.130569 0.226152i
\(699\) 14.2316 + 24.6498i 0.538287 + 0.932341i
\(700\) −0.466016 + 0.807163i −0.0176137 + 0.0305079i
\(701\) −6.76373 + 11.7151i −0.255463 + 0.442474i −0.965021 0.262172i \(-0.915561\pi\)
0.709558 + 0.704647i \(0.248894\pi\)
\(702\) −0.722840 −0.0272818
\(703\) 15.5596 22.7205i 0.586840 0.856920i
\(704\) −32.3141 −1.21788
\(705\) 5.55533 9.62211i 0.209226 0.362390i
\(706\) −1.07421 + 1.86058i −0.0404283 + 0.0700239i
\(707\) 0.368981 + 0.639094i 0.0138770 + 0.0240356i
\(708\) −12.1952 + 21.1226i −0.458322 + 0.793838i
\(709\) 0.496778 + 0.860444i 0.0186569 + 0.0323147i 0.875203 0.483756i \(-0.160728\pi\)
−0.856546 + 0.516070i \(0.827394\pi\)
\(710\) 2.88634 0.108322
\(711\) 8.13272 0.305001
\(712\) 3.70516 + 6.41753i 0.138857 + 0.240507i
\(713\) −15.4891 26.8279i −0.580071 1.00471i
\(714\) 0.483123 0.0180804
\(715\) −13.2973 −0.497291
\(716\) 7.18714 + 12.4485i 0.268596 + 0.465222i
\(717\) 2.03871 3.53114i 0.0761369 0.131873i
\(718\) 0.342831 + 0.593801i 0.0127943 + 0.0221605i
\(719\) 0.700670 1.21360i 0.0261306 0.0452595i −0.852664 0.522459i \(-0.825015\pi\)
0.878795 + 0.477200i \(0.158348\pi\)
\(720\) −1.75006 + 3.03119i −0.0652207 + 0.112966i
\(721\) 4.45448 0.165894
\(722\) −5.45810 0.845801i −0.203130 0.0314775i
\(723\) 12.6684 0.471144
\(724\) −12.1301 + 21.0099i −0.450810 + 0.780827i
\(725\) −1.38312 + 2.39564i −0.0513679 + 0.0889717i
\(726\) −2.55773 4.43012i −0.0949264 0.164417i
\(727\) 23.4834 40.6745i 0.870953 1.50853i 0.00993990 0.999951i \(-0.496836\pi\)
0.861013 0.508584i \(-0.169831\pi\)
\(728\) −0.688570 1.19264i −0.0255201 0.0442021i
\(729\) 1.00000 0.0370370
\(730\) 3.20140 0.118489
\(731\) −4.24658 7.35529i −0.157065 0.272045i
\(732\) −11.3539 19.6656i −0.419654 0.726862i
\(733\) −21.6068 −0.798066 −0.399033 0.916937i \(-0.630654\pi\)
−0.399033 + 0.916937i \(0.630654\pi\)
\(734\) 6.43852 0.237650
\(735\) −3.38162 5.85714i −0.124733 0.216044i
\(736\) 10.5609 18.2921i 0.389281 0.674255i
\(737\) 40.5763 + 70.2802i 1.49465 + 2.58880i
\(738\) 0.375202 0.649869i 0.0138114 0.0239220i
\(739\) 15.4063 26.6845i 0.566729 0.981603i −0.430158 0.902754i \(-0.641542\pi\)
0.996887 0.0788496i \(-0.0251247\pi\)
\(740\) 12.1013 0.444851
\(741\) −6.12420 + 8.94272i −0.224978 + 0.328519i
\(742\) 0.423882 0.0155612
\(743\) −22.2143 + 38.4763i −0.814964 + 1.41156i 0.0943897 + 0.995535i \(0.469910\pi\)
−0.909354 + 0.416024i \(0.863423\pi\)
\(744\) 2.74937 4.76205i 0.100797 0.174585i
\(745\) 1.33650 + 2.31488i 0.0489654 + 0.0848106i
\(746\) 4.53107 7.84805i 0.165894 0.287338i
\(747\) 2.93053 + 5.07583i 0.107223 + 0.185715i
\(748\) 34.9873 1.27926
\(749\) −0.0676029 −0.00247016
\(750\) −0.145349 0.251751i −0.00530738 0.00919265i
\(751\) −7.43935 12.8853i −0.271466 0.470192i 0.697772 0.716320i \(-0.254175\pi\)
−0.969237 + 0.246128i \(0.920842\pi\)
\(752\) 38.8886 1.41812
\(753\) 11.6241 0.423605
\(754\) −0.999776 1.73166i −0.0364097 0.0630634i
\(755\) −2.97633 + 5.15516i −0.108320 + 0.187615i
\(756\) 0.466016 + 0.807163i 0.0169488 + 0.0293562i
\(757\) −11.7204 + 20.3004i −0.425986 + 0.737829i −0.996512 0.0834503i \(-0.973406\pi\)
0.570526 + 0.821279i \(0.306739\pi\)
\(758\) −3.78414 + 6.55432i −0.137446 + 0.238063i
\(759\) −34.2911 −1.24469
\(760\) −2.14341 4.47451i −0.0777498 0.162308i
\(761\) 36.3224 1.31669 0.658344 0.752717i \(-0.271257\pi\)
0.658344 + 0.752717i \(0.271257\pi\)
\(762\) 1.42892 2.47496i 0.0517643 0.0896585i
\(763\) −3.82690 + 6.62838i −0.138543 + 0.239963i
\(764\) 7.81309 + 13.5327i 0.282668 + 0.489595i
\(765\) 1.70780 2.95800i 0.0617458 0.106947i
\(766\) −0.310020 0.536970i −0.0112015 0.0194015i
\(767\) −31.6620 −1.14325
\(768\) −9.65968 −0.348564
\(769\) −10.4052 18.0223i −0.375220 0.649901i 0.615140 0.788418i \(-0.289100\pi\)
−0.990360 + 0.138517i \(0.955766\pi\)
\(770\) −0.378201 0.655063i −0.0136294 0.0236068i
\(771\) −10.5483 −0.379889
\(772\) 6.44573 0.231987
\(773\) −1.78351 3.08913i −0.0641484 0.111108i 0.832168 0.554524i \(-0.187100\pi\)
−0.896316 + 0.443416i \(0.853766\pi\)
\(774\) −0.361420 + 0.625998i −0.0129910 + 0.0225010i
\(775\) −2.41550 4.18376i −0.0867671 0.150285i
\(776\) −1.13822 + 1.97146i −0.0408598 + 0.0707713i
\(777\) 1.53698 2.66213i 0.0551390 0.0955035i
\(778\) 3.79147 0.135931
\(779\) −4.86108 10.1478i −0.174166 0.363583i
\(780\) −4.76302 −0.170544
\(781\) 26.5484 45.9832i 0.949978 1.64541i
\(782\) −3.18345 + 5.51390i −0.113840 + 0.197177i
\(783\) 1.38312 + 2.39564i 0.0494287 + 0.0856131i
\(784\) 11.8361 20.5007i 0.422716 0.732166i
\(785\) 3.60424 + 6.24273i 0.128641 + 0.222812i
\(786\) 4.13639 0.147540
\(787\) 44.5660 1.58860 0.794302 0.607523i \(-0.207837\pi\)
0.794302 + 0.607523i \(0.207837\pi\)
\(788\) 3.67199 + 6.36008i 0.130809 + 0.226568i
\(789\) 11.8967 + 20.6058i 0.423535 + 0.733585i
\(790\) −2.36416 −0.0841129
\(791\) −7.20186 −0.256069
\(792\) −3.04340 5.27133i −0.108143 0.187309i
\(793\) 14.7390 25.5287i 0.523396 0.906549i
\(794\) 0.00416319 + 0.00721085i 0.000147746 + 0.000255904i
\(795\) 1.49839 2.59529i 0.0531424 0.0920453i
\(796\) 12.1620 21.0651i 0.431069 0.746634i
\(797\) −44.7396 −1.58476 −0.792378 0.610030i \(-0.791157\pi\)
−0.792378 + 0.610030i \(0.791157\pi\)
\(798\) −0.614727 0.0473473i −0.0217611 0.00167608i
\(799\) −37.9496 −1.34256
\(800\) 1.64696 2.85262i 0.0582288 0.100855i
\(801\) 3.25521 5.63820i 0.115017 0.199216i
\(802\) −3.97080 6.87762i −0.140214 0.242857i
\(803\) 29.4463 51.0026i 1.03914 1.79984i
\(804\) 14.5342 + 25.1740i 0.512582 + 0.887818i
\(805\) −3.12010 −0.109969
\(806\) 3.49203 0.123002
\(807\) −2.11377 3.66115i −0.0744081 0.128879i
\(808\) −0.863142 1.49501i −0.0303652 0.0525941i
\(809\) 8.67442 0.304976 0.152488 0.988305i \(-0.451271\pi\)
0.152488 + 0.988305i \(0.451271\pi\)
\(810\) −0.290697 −0.0102141
\(811\) −13.3651 23.1490i −0.469312 0.812872i 0.530073 0.847952i \(-0.322165\pi\)
−0.999384 + 0.0350805i \(0.988831\pi\)
\(812\) −1.28911 + 2.23281i −0.0452390 + 0.0783562i
\(813\) 15.5736 + 26.9742i 0.546189 + 0.946027i
\(814\) −4.91046 + 8.50517i −0.172112 + 0.298106i
\(815\) −7.08781 + 12.2765i −0.248275 + 0.430025i
\(816\) 11.9550 0.418509
\(817\) 4.68252 + 9.77507i 0.163821 + 0.341986i
\(818\) 1.95906 0.0684968
\(819\) −0.604952 + 1.04781i −0.0211387 + 0.0366134i
\(820\) 2.47232 4.28219i 0.0863373 0.149541i
\(821\) 4.72432 + 8.18275i 0.164880 + 0.285580i 0.936613 0.350367i \(-0.113943\pi\)
−0.771733 + 0.635947i \(0.780610\pi\)
\(822\) −0.957032 + 1.65763i −0.0333803 + 0.0578164i
\(823\) 9.73340 + 16.8587i 0.339285 + 0.587659i 0.984298 0.176513i \(-0.0564816\pi\)
−0.645014 + 0.764171i \(0.723148\pi\)
\(824\) −10.4202 −0.363004
\(825\) −5.34764 −0.186181
\(826\) −0.900527 1.55976i −0.0313333 0.0542709i
\(827\) 18.5009 + 32.0445i 0.643340 + 1.11430i 0.984682 + 0.174358i \(0.0557851\pi\)
−0.341342 + 0.939939i \(0.610882\pi\)
\(828\) −12.2829 −0.426860
\(829\) 20.5418 0.713448 0.356724 0.934210i \(-0.383894\pi\)
0.356724 + 0.934210i \(0.383894\pi\)
\(830\) −0.851897 1.47553i −0.0295698 0.0512164i
\(831\) 0.526963 0.912727i 0.0182801 0.0316621i
\(832\) −7.51280 13.0126i −0.260459 0.451129i
\(833\) −11.5503 + 20.0057i −0.400194 + 0.693156i
\(834\) −0.0339761 + 0.0588484i −0.00117650 + 0.00203775i
\(835\) 12.5563 0.434530
\(836\) −44.5180 3.42885i −1.53969 0.118589i
\(837\) −4.83099 −0.166983
\(838\) 3.83831 6.64814i 0.132592 0.229656i
\(839\) 23.8946 41.3866i 0.824932 1.42882i −0.0770401 0.997028i \(-0.524547\pi\)
0.901972 0.431795i \(-0.142120\pi\)
\(840\) −0.276915 0.479631i −0.00955448 0.0165489i
\(841\) 10.6739 18.4878i 0.368067 0.637511i
\(842\) 5.50719 + 9.53873i 0.189790 + 0.328726i
\(843\) −25.6354 −0.882928
\(844\) 17.5394 0.603730
\(845\) 3.40847 + 5.90365i 0.117255 + 0.203092i
\(846\) 1.61492 + 2.79712i 0.0555221 + 0.0961670i
\(847\) −8.56237 −0.294206
\(848\) 10.4891 0.360196
\(849\) 14.7056 + 25.4708i 0.504695 + 0.874157i
\(850\) −0.496454 + 0.859883i −0.0170282 + 0.0294937i
\(851\) 20.2553 + 35.0833i 0.694344 + 1.20264i
\(852\) 9.50951 16.4709i 0.325790 0.564285i
\(853\) −5.71632 + 9.90096i −0.195723 + 0.339003i −0.947137 0.320828i \(-0.896039\pi\)
0.751414 + 0.659831i \(0.229372\pi\)
\(854\) 1.67682 0.0573795
\(855\) −2.46291 + 3.59640i −0.0842296 + 0.122994i
\(856\) 0.158141 0.00540513
\(857\) −2.78522 + 4.82414i −0.0951412 + 0.164789i −0.909668 0.415337i \(-0.863664\pi\)
0.814526 + 0.580127i \(0.196997\pi\)
\(858\) 1.93274 3.34761i 0.0659828 0.114286i
\(859\) 8.50709 + 14.7347i 0.290258 + 0.502742i 0.973871 0.227103i \(-0.0729255\pi\)
−0.683612 + 0.729845i \(0.739592\pi\)
\(860\) −2.38151 + 4.12490i −0.0812088 + 0.140658i
\(861\) −0.628020 1.08776i −0.0214029 0.0370709i
\(862\) 5.58304 0.190159
\(863\) 46.8850 1.59598 0.797992 0.602668i \(-0.205896\pi\)
0.797992 + 0.602668i \(0.205896\pi\)
\(864\) −1.64696 2.85262i −0.0560307 0.0970480i
\(865\) −1.09482 1.89628i −0.0372250 0.0644756i
\(866\) −4.92768 −0.167449
\(867\) 5.33363 0.181140
\(868\) −2.25132 3.89939i −0.0764147 0.132354i
\(869\) −21.7454 + 37.6642i −0.737662 + 1.27767i
\(870\) −0.402070 0.696405i −0.0136314 0.0236103i
\(871\) −18.8674 + 32.6793i −0.639297 + 1.10730i
\(872\) 8.95210 15.5055i 0.303156 0.525082i
\(873\) 2.00000 0.0676897
\(874\) 4.59101 6.70391i 0.155293 0.226763i
\(875\) −0.486575 −0.0164492
\(876\) 10.5475 18.2688i 0.356368 0.617247i
\(877\) 14.8922 25.7940i 0.502873 0.871002i −0.497121 0.867681i \(-0.665610\pi\)
0.999994 0.00332078i \(-0.00105704\pi\)
\(878\) 1.61379 + 2.79516i 0.0544626 + 0.0943321i
\(879\) −5.42742 + 9.40057i −0.183062 + 0.317073i
\(880\) −9.35867 16.2097i −0.315481 0.546428i
\(881\) −20.4884 −0.690271 −0.345135 0.938553i \(-0.612167\pi\)
−0.345135 + 0.938553i \(0.612167\pi\)
\(882\) 1.96606 0.0662006
\(883\) −15.7402 27.2628i −0.529699 0.917466i −0.999400 0.0346401i \(-0.988972\pi\)
0.469701 0.882826i \(-0.344362\pi\)
\(884\) 8.13430 + 14.0890i 0.273586 + 0.473865i
\(885\) −12.7332 −0.428021
\(886\) 4.03900 0.135693
\(887\) 16.8051 + 29.1074i 0.564262 + 0.977330i 0.997118 + 0.0758670i \(0.0241724\pi\)
−0.432856 + 0.901463i \(0.642494\pi\)
\(888\) −3.59540 + 6.22742i −0.120654 + 0.208978i
\(889\) −2.39175 4.14264i −0.0802169 0.138940i
\(890\) −0.946281 + 1.63901i −0.0317194 + 0.0549397i
\(891\) −2.67382 + 4.63119i −0.0895763 + 0.155151i
\(892\) −20.8742 −0.698919
\(893\) 48.2872 + 3.71916i 1.61587 + 0.124457i
\(894\) −0.777031 −0.0259878
\(895\) −3.75210 + 6.49883i −0.125419 + 0.217232i
\(896\) 2.03009 3.51623i 0.0678207 0.117469i
\(897\) −7.97244 13.8087i −0.266192 0.461058i
\(898\) 4.05050 7.01567i 0.135167 0.234116i
\(899\) −6.68185 11.5733i −0.222852 0.385991i
\(900\) −1.91550 −0.0638498
\(901\) −10.2358 −0.341004
\(902\) 2.00644 + 3.47526i 0.0668073 + 0.115714i
\(903\) 0.604952 + 1.04781i 0.0201315 + 0.0348688i
\(904\) 16.8470 0.560323
\(905\) −12.6652 −0.421006
\(906\) −0.865211 1.49859i −0.0287447 0.0497873i
\(907\) −10.9747 + 19.0088i −0.364410 + 0.631176i −0.988681 0.150031i \(-0.952063\pi\)
0.624272 + 0.781207i \(0.285396\pi\)
\(908\) −23.5942 40.8664i −0.783002 1.35620i
\(909\) −0.758324 + 1.31346i −0.0251520 + 0.0435646i
\(910\) 0.175858 0.304595i 0.00582963 0.0100972i
\(911\) 21.2865 0.705253 0.352626 0.935764i \(-0.385289\pi\)
0.352626 + 0.935764i \(0.385289\pi\)
\(912\) −15.2116 1.17162i −0.503706 0.0387962i
\(913\) −31.3428 −1.03730
\(914\) −5.31481 + 9.20552i −0.175798 + 0.304492i
\(915\) 5.92742 10.2666i 0.195955 0.339403i
\(916\) 16.4422 + 28.4788i 0.543267 + 0.940966i
\(917\) 3.46178 5.99598i 0.114318 0.198005i
\(918\) 0.496454 + 0.859883i 0.0163854 + 0.0283804i
\(919\) −2.61948 −0.0864087 −0.0432043 0.999066i \(-0.513757\pi\)
−0.0432043 + 0.999066i \(0.513757\pi\)
\(920\) 7.29873 0.240632
\(921\) 16.8445 + 29.1756i 0.555046 + 0.961368i
\(922\) 3.18575 + 5.51789i 0.104917 + 0.181722i
\(923\) 24.6893 0.812658
\(924\) −4.98417 −0.163967
\(925\) 3.15878 + 5.47117i 0.103860 + 0.179891i
\(926\) −2.03859 + 3.53094i −0.0669921 + 0.116034i
\(927\) 4.57739 + 7.92827i 0.150341 + 0.260399i
\(928\) 4.55589 7.89104i 0.149554 0.259036i
\(929\) −1.91237 + 3.31232i −0.0627428 + 0.108674i −0.895691 0.444678i \(-0.853318\pi\)
0.832948 + 0.553352i \(0.186651\pi\)
\(930\) 1.40436 0.0460506
\(931\) 16.6572 24.3233i 0.545919 0.797165i
\(932\) −54.5210 −1.78589
\(933\) −5.86106 + 10.1517i −0.191883 + 0.332350i
\(934\) 4.93160 8.54177i 0.161367 0.279495i
\(935\) 9.13272 + 15.8183i 0.298672 + 0.517315i
\(936\) 1.41514 2.45109i 0.0462553 0.0801165i
\(937\) 3.69584 + 6.40138i 0.120738 + 0.209124i 0.920059 0.391780i \(-0.128141\pi\)
−0.799321 + 0.600904i \(0.794807\pi\)
\(938\) −2.14650 −0.0700856
\(939\) −4.47856 −0.146152
\(940\) 10.6412 + 18.4311i 0.347078 + 0.601157i
\(941\) −24.3057 42.0988i −0.792344 1.37238i −0.924512 0.381153i \(-0.875527\pi\)
0.132168 0.991227i \(-0.457806\pi\)
\(942\) −2.09548 −0.0682746
\(943\) 16.5529 0.539036
\(944\) −22.2838 38.5966i −0.725275 1.25621i
\(945\) −0.243287 + 0.421386i −0.00791413 + 0.0137077i
\(946\) −1.93274 3.34761i −0.0628389 0.108840i
\(947\) 18.0103 31.1948i 0.585257 1.01370i −0.409586 0.912271i \(-0.634327\pi\)
0.994843 0.101424i \(-0.0323398\pi\)
\(948\) −7.78909 + 13.4911i −0.252978 + 0.438170i
\(949\) 27.3843 0.888930
\(950\) 0.715960 1.04546i 0.0232288 0.0339193i
\(951\) −12.3873 −0.401687
\(952\) −0.945834 + 1.63823i −0.0306546 + 0.0530954i
\(953\) −5.60605 + 9.70996i −0.181598 + 0.314537i −0.942425 0.334418i \(-0.891460\pi\)
0.760827 + 0.648955i \(0.224794\pi\)
\(954\) 0.435577 + 0.754442i 0.0141023 + 0.0244260i
\(955\) −4.07889 + 7.06484i −0.131990 + 0.228613i
\(956\) 3.90513 + 6.76389i 0.126301 + 0.218760i
\(957\) −14.7929 −0.478186
\(958\) −9.28769 −0.300072
\(959\) 1.60190 + 2.77457i 0.0517280 + 0.0895955i
\(960\) −3.02135 5.23312i −0.0975135 0.168898i
\(961\) −7.66153 −0.247146
\(962\) −4.56659 −0.147233
\(963\) −0.0694682 0.120322i −0.00223858 0.00387733i
\(964\) −12.1332 + 21.0152i −0.390783 + 0.676855i
\(965\) 1.68252 + 2.91422i 0.0541623 + 0.0938119i
\(966\) 0.453503 0.785490i 0.0145912 0.0252727i
\(967\) 5.02307 8.70021i 0.161531 0.279780i −0.773887 0.633324i \(-0.781690\pi\)
0.935418 + 0.353544i \(0.115023\pi\)
\(968\) 20.0296 0.643775
\(969\) 14.8443 + 1.14333i 0.476868 + 0.0367292i
\(970\) −0.581394 −0.0186674
\(971\) 18.9495 32.8214i 0.608117 1.05329i −0.383434 0.923568i \(-0.625258\pi\)
0.991551 0.129721i \(-0.0414082\pi\)
\(972\) −0.957748 + 1.65887i −0.0307198 + 0.0532082i
\(973\) 0.0568699 + 0.0985016i 0.00182317 + 0.00315782i
\(974\) 5.46844 9.47161i 0.175220 0.303490i
\(975\) −1.24329 2.15344i −0.0398171 0.0689652i
\(976\) 41.4933 1.32817
\(977\) 44.6435 1.42827 0.714135 0.700008i \(-0.246820\pi\)
0.714135 + 0.700008i \(0.246820\pi\)
\(978\) −2.06041 3.56873i −0.0658846 0.114115i
\(979\) 17.4077 + 30.1510i 0.556353 + 0.963631i
\(980\) 12.9550 0.413831
\(981\) −15.7299 −0.502219
\(982\) −5.82618 10.0912i −0.185921 0.322025i
\(983\) 6.25454 10.8332i 0.199489 0.345525i −0.748874 0.662712i \(-0.769405\pi\)
0.948363 + 0.317188i \(0.102738\pi\)
\(984\) 1.46910 + 2.54456i 0.0468333 + 0.0811176i
\(985\) −1.91699 + 3.32033i −0.0610805 + 0.105795i
\(986\) −1.37331 + 2.37865i −0.0437352 + 0.0757515i
\(987\) 5.40616 0.172080
\(988\) −8.96935 18.7241i −0.285353 0.595693i
\(989\) −15.9449 −0.507017
\(990\) 0.777272 1.34627i 0.0247033 0.0427874i
\(991\) −25.1503 + 43.5617i −0.798927 + 1.38378i 0.121388 + 0.992605i \(0.461265\pi\)
−0.920315 + 0.391177i \(0.872068\pi\)
\(992\) 7.95645 + 13.7810i 0.252617 + 0.437546i
\(993\) 12.2529 21.2226i 0.388834 0.673480i
\(994\) 0.702210 + 1.21626i 0.0222728 + 0.0385775i
\(995\) 12.6985 0.402569
\(996\) −11.2268 −0.355736
\(997\) −6.46875 11.2042i −0.204867 0.354841i 0.745223 0.666815i \(-0.232343\pi\)
−0.950090 + 0.311975i \(0.899010\pi\)
\(998\) −4.40504 7.62975i −0.139439 0.241515i
\(999\) 6.31756 0.199879
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.2.i.f.106.3 10
3.2 odd 2 855.2.k.i.676.3 10
19.7 even 3 inner 285.2.i.f.121.3 yes 10
19.8 odd 6 5415.2.a.z.1.3 5
19.11 even 3 5415.2.a.y.1.3 5
57.26 odd 6 855.2.k.i.406.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.f.106.3 10 1.1 even 1 trivial
285.2.i.f.121.3 yes 10 19.7 even 3 inner
855.2.k.i.406.3 10 57.26 odd 6
855.2.k.i.676.3 10 3.2 odd 2
5415.2.a.y.1.3 5 19.11 even 3
5415.2.a.z.1.3 5 19.8 odd 6