Properties

Label 285.2.i.f.106.1
Level $285$
Weight $2$
Character 285.106
Analytic conductor $2.276$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} - 2x^{7} + 56x^{6} - 18x^{5} + 125x^{4} + x^{3} + 189x^{2} - 52x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.1
Root \(-1.12375 - 1.94639i\) of defining polynomial
Character \(\chi\) \(=\) 285.106
Dual form 285.2.i.f.121.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.12375 + 1.94639i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-1.52562 - 2.64245i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(1.12375 + 1.94639i) q^{6} +3.16638 q^{7} +2.36264 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.12375 - 1.94639i) q^{10} +4.81770 q^{11} -3.05123 q^{12} +(-0.583191 - 1.01012i) q^{13} +(-3.55821 + 6.16301i) q^{14} +(0.500000 + 0.866025i) q^{15} +(0.396220 - 0.686273i) q^{16} +(-2.92184 + 5.06077i) q^{17} +2.24750 q^{18} +(3.21554 + 2.94284i) q^{19} +3.05123 q^{20} +(1.58319 - 2.74217i) q^{21} +(-5.41388 + 9.37711i) q^{22} +(4.29873 + 7.44562i) q^{23} +(1.18132 - 2.04611i) q^{24} +(-0.500000 - 0.866025i) q^{25} +2.62144 q^{26} -1.00000 q^{27} +(-4.83069 - 8.36699i) q^{28} +(-3.65634 - 6.33297i) q^{29} -2.24750 q^{30} -5.10247 q^{31} +(3.25314 + 5.63461i) q^{32} +(2.40885 - 4.17225i) q^{33} +(-6.56681 - 11.3741i) q^{34} +(-1.58319 + 2.74217i) q^{35} +(-1.52562 + 2.64245i) q^{36} +7.26885 q^{37} +(-9.34136 + 2.95167i) q^{38} -1.16638 q^{39} +(-1.18132 + 2.04611i) q^{40} +(1.24750 - 2.16072i) q^{41} +(3.55821 + 6.16301i) q^{42} +(-0.583191 + 1.01012i) q^{43} +(-7.34996 - 12.7305i) q^{44} +1.00000 q^{45} -19.3227 q^{46} +(-4.68830 - 8.12038i) q^{47} +(-0.396220 - 0.686273i) q^{48} +3.02597 q^{49} +2.24750 q^{50} +(2.92184 + 5.06077i) q^{51} +(-1.77945 + 3.08210i) q^{52} +(1.37689 + 2.38485i) q^{53} +(1.12375 - 1.94639i) q^{54} +(-2.40885 + 4.17225i) q^{55} +7.48103 q^{56} +(4.15634 - 1.31332i) q^{57} +16.4352 q^{58} +(5.05626 - 8.75770i) q^{59} +(1.52562 - 2.64245i) q^{60} +(2.55418 + 4.42398i) q^{61} +(5.73389 - 9.93138i) q^{62} +(-1.58319 - 2.74217i) q^{63} -13.0380 q^{64} +1.16638 q^{65} +(5.41388 + 9.37711i) q^{66} +(-0.519277 - 0.899414i) q^{67} +17.8304 q^{68} +8.59746 q^{69} +(-3.55821 - 6.16301i) q^{70} +(2.16135 - 3.74358i) q^{71} +(-1.18132 - 2.04611i) q^{72} +(-1.81673 + 3.14666i) q^{73} +(-8.16835 + 14.1480i) q^{74} -1.00000 q^{75} +(2.87062 - 12.9865i) q^{76} +15.2547 q^{77} +(1.31072 - 2.27023i) q^{78} +(7.53826 - 13.0567i) q^{79} +(0.396220 + 0.686273i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(2.80374 + 4.85622i) q^{82} -8.98408 q^{83} -9.66137 q^{84} +(-2.92184 - 5.06077i) q^{85} +(-1.31072 - 2.27023i) q^{86} -7.31269 q^{87} +11.3825 q^{88} +(-2.08614 - 3.61330i) q^{89} +(-1.12375 + 1.94639i) q^{90} +(-1.84661 - 3.19841i) q^{91} +(13.1164 - 22.7183i) q^{92} +(-2.55123 + 4.41887i) q^{93} +21.0739 q^{94} +(-4.15634 + 1.31332i) q^{95} +6.50629 q^{96} +(-1.00000 + 1.73205i) q^{97} +(-3.40043 + 5.88972i) q^{98} +(-2.40885 - 4.17225i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + q^{2} + 5 q^{3} - 7 q^{4} - 5 q^{5} - q^{6} + 4 q^{7} - 12 q^{8} - 5 q^{9} + q^{10} + 10 q^{11} - 14 q^{12} + 8 q^{13} + 4 q^{14} + 5 q^{15} - 7 q^{16} - 10 q^{17} - 2 q^{18} + 5 q^{19} + 14 q^{20}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12375 + 1.94639i −0.794609 + 1.37630i 0.128477 + 0.991712i \(0.458991\pi\)
−0.923087 + 0.384592i \(0.874342\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −1.52562 2.64245i −0.762808 1.32122i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 1.12375 + 1.94639i 0.458768 + 0.794609i
\(7\) 3.16638 1.19678 0.598390 0.801205i \(-0.295807\pi\)
0.598390 + 0.801205i \(0.295807\pi\)
\(8\) 2.36264 0.835320
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.12375 1.94639i −0.355360 0.615502i
\(11\) 4.81770 1.45259 0.726295 0.687383i \(-0.241240\pi\)
0.726295 + 0.687383i \(0.241240\pi\)
\(12\) −3.05123 −0.880815
\(13\) −0.583191 1.01012i −0.161748 0.280156i 0.773748 0.633494i \(-0.218380\pi\)
−0.935496 + 0.353338i \(0.885047\pi\)
\(14\) −3.55821 + 6.16301i −0.950973 + 1.64713i
\(15\) 0.500000 + 0.866025i 0.129099 + 0.223607i
\(16\) 0.396220 0.686273i 0.0990549 0.171568i
\(17\) −2.92184 + 5.06077i −0.708649 + 1.22742i 0.256709 + 0.966489i \(0.417362\pi\)
−0.965358 + 0.260928i \(0.915971\pi\)
\(18\) 2.24750 0.529740
\(19\) 3.21554 + 2.94284i 0.737695 + 0.675134i
\(20\) 3.05123 0.682277
\(21\) 1.58319 2.74217i 0.345481 0.598390i
\(22\) −5.41388 + 9.37711i −1.15424 + 1.99921i
\(23\) 4.29873 + 7.44562i 0.896347 + 1.55252i 0.832129 + 0.554583i \(0.187122\pi\)
0.0642183 + 0.997936i \(0.479545\pi\)
\(24\) 1.18132 2.04611i 0.241136 0.417660i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 2.62144 0.514106
\(27\) −1.00000 −0.192450
\(28\) −4.83069 8.36699i −0.912914 1.58121i
\(29\) −3.65634 6.33297i −0.678966 1.17600i −0.975293 0.220917i \(-0.929095\pi\)
0.296326 0.955087i \(-0.404238\pi\)
\(30\) −2.24750 −0.410335
\(31\) −5.10247 −0.916430 −0.458215 0.888841i \(-0.651511\pi\)
−0.458215 + 0.888841i \(0.651511\pi\)
\(32\) 3.25314 + 5.63461i 0.575080 + 0.996068i
\(33\) 2.40885 4.17225i 0.419327 0.726295i
\(34\) −6.56681 11.3741i −1.12620 1.95063i
\(35\) −1.58319 + 2.74217i −0.267608 + 0.463511i
\(36\) −1.52562 + 2.64245i −0.254269 + 0.440408i
\(37\) 7.26885 1.19499 0.597496 0.801872i \(-0.296162\pi\)
0.597496 + 0.801872i \(0.296162\pi\)
\(38\) −9.34136 + 2.95167i −1.51537 + 0.478825i
\(39\) −1.16638 −0.186771
\(40\) −1.18132 + 2.04611i −0.186783 + 0.323518i
\(41\) 1.24750 2.16072i 0.194826 0.337449i −0.752017 0.659143i \(-0.770919\pi\)
0.946843 + 0.321695i \(0.104252\pi\)
\(42\) 3.55821 + 6.16301i 0.549044 + 0.950973i
\(43\) −0.583191 + 1.01012i −0.0889358 + 0.154041i −0.907062 0.420998i \(-0.861680\pi\)
0.818126 + 0.575039i \(0.195013\pi\)
\(44\) −7.34996 12.7305i −1.10805 1.91920i
\(45\) 1.00000 0.149071
\(46\) −19.3227 −2.84898
\(47\) −4.68830 8.12038i −0.683859 1.18448i −0.973794 0.227432i \(-0.926967\pi\)
0.289935 0.957046i \(-0.406366\pi\)
\(48\) −0.396220 0.686273i −0.0571894 0.0990549i
\(49\) 3.02597 0.432282
\(50\) 2.24750 0.317844
\(51\) 2.92184 + 5.06077i 0.409139 + 0.708649i
\(52\) −1.77945 + 3.08210i −0.246766 + 0.427411i
\(53\) 1.37689 + 2.38485i 0.189131 + 0.327584i 0.944961 0.327184i \(-0.106100\pi\)
−0.755830 + 0.654768i \(0.772766\pi\)
\(54\) 1.12375 1.94639i 0.152923 0.264870i
\(55\) −2.40885 + 4.17225i −0.324809 + 0.562586i
\(56\) 7.48103 0.999695
\(57\) 4.15634 1.31332i 0.550521 0.173953i
\(58\) 16.4352 2.15805
\(59\) 5.05626 8.75770i 0.658269 1.14016i −0.322794 0.946469i \(-0.604622\pi\)
0.981063 0.193687i \(-0.0620445\pi\)
\(60\) 1.52562 2.64245i 0.196956 0.341138i
\(61\) 2.55418 + 4.42398i 0.327030 + 0.566432i 0.981921 0.189291i \(-0.0606189\pi\)
−0.654891 + 0.755723i \(0.727286\pi\)
\(62\) 5.73389 9.93138i 0.728204 1.26129i
\(63\) −1.58319 2.74217i −0.199463 0.345481i
\(64\) −13.0380 −1.62975
\(65\) 1.16638 0.144672
\(66\) 5.41388 + 9.37711i 0.666402 + 1.15424i
\(67\) −0.519277 0.899414i −0.0634398 0.109881i 0.832561 0.553933i \(-0.186874\pi\)
−0.896001 + 0.444052i \(0.853540\pi\)
\(68\) 17.8304 2.16226
\(69\) 8.59746 1.03501
\(70\) −3.55821 6.16301i −0.425288 0.736620i
\(71\) 2.16135 3.74358i 0.256506 0.444281i −0.708798 0.705412i \(-0.750762\pi\)
0.965303 + 0.261131i \(0.0840955\pi\)
\(72\) −1.18132 2.04611i −0.139220 0.241136i
\(73\) −1.81673 + 3.14666i −0.212632 + 0.368289i −0.952537 0.304422i \(-0.901537\pi\)
0.739906 + 0.672711i \(0.234870\pi\)
\(74\) −8.16835 + 14.1480i −0.949552 + 1.64467i
\(75\) −1.00000 −0.115470
\(76\) 2.87062 12.9865i 0.329283 1.48966i
\(77\) 15.2547 1.73843
\(78\) 1.31072 2.27023i 0.148410 0.257053i
\(79\) 7.53826 13.0567i 0.848121 1.46899i −0.0347620 0.999396i \(-0.511067\pi\)
0.882883 0.469593i \(-0.155599\pi\)
\(80\) 0.396220 + 0.686273i 0.0442987 + 0.0767276i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 2.80374 + 4.85622i 0.309621 + 0.536280i
\(83\) −8.98408 −0.986131 −0.493065 0.869992i \(-0.664124\pi\)
−0.493065 + 0.869992i \(0.664124\pi\)
\(84\) −9.66137 −1.05414
\(85\) −2.92184 5.06077i −0.316918 0.548918i
\(86\) −1.31072 2.27023i −0.141338 0.244805i
\(87\) −7.31269 −0.784003
\(88\) 11.3825 1.21338
\(89\) −2.08614 3.61330i −0.221130 0.383009i 0.734021 0.679127i \(-0.237641\pi\)
−0.955152 + 0.296118i \(0.904308\pi\)
\(90\) −1.12375 + 1.94639i −0.118453 + 0.205167i
\(91\) −1.84661 3.19841i −0.193577 0.335285i
\(92\) 13.1164 22.7183i 1.36748 2.36855i
\(93\) −2.55123 + 4.41887i −0.264551 + 0.458215i
\(94\) 21.0739 2.17360
\(95\) −4.15634 + 1.31332i −0.426432 + 0.134743i
\(96\) 6.50629 0.664045
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) −3.40043 + 5.88972i −0.343495 + 0.594952i
\(99\) −2.40885 4.17225i −0.242098 0.419327i
\(100\) −1.52562 + 2.64245i −0.152562 + 0.264245i
\(101\) −5.46008 9.45714i −0.543299 0.941021i −0.998712 0.0507406i \(-0.983842\pi\)
0.455413 0.890280i \(-0.349492\pi\)
\(102\) −13.1336 −1.30042
\(103\) −5.72113 −0.563720 −0.281860 0.959456i \(-0.590951\pi\)
−0.281860 + 0.959456i \(0.590951\pi\)
\(104\) −1.37787 2.38654i −0.135111 0.234020i
\(105\) 1.58319 + 2.74217i 0.154504 + 0.267608i
\(106\) −6.18912 −0.601140
\(107\) −2.98408 −0.288482 −0.144241 0.989543i \(-0.546074\pi\)
−0.144241 + 0.989543i \(0.546074\pi\)
\(108\) 1.52562 + 2.64245i 0.146803 + 0.254269i
\(109\) −6.43315 + 11.1425i −0.616184 + 1.06726i 0.373991 + 0.927432i \(0.377989\pi\)
−0.990175 + 0.139830i \(0.955344\pi\)
\(110\) −5.41388 9.37711i −0.516193 0.894072i
\(111\) 3.63442 6.29501i 0.344964 0.597496i
\(112\) 1.25458 2.17300i 0.118547 0.205329i
\(113\) −16.7739 −1.57796 −0.788978 0.614422i \(-0.789389\pi\)
−0.788978 + 0.614422i \(0.789389\pi\)
\(114\) −2.11446 + 9.56569i −0.198037 + 0.895909i
\(115\) −8.59746 −0.801717
\(116\) −11.1564 + 19.3234i −1.03584 + 1.79413i
\(117\) −0.583191 + 1.01012i −0.0539160 + 0.0933853i
\(118\) 11.3639 + 19.6829i 1.04613 + 1.81196i
\(119\) −9.25165 + 16.0243i −0.848097 + 1.46895i
\(120\) 1.18132 + 2.04611i 0.107839 + 0.186783i
\(121\) 12.2102 1.11002
\(122\) −11.4810 −1.03944
\(123\) −1.24750 2.16072i −0.112483 0.194826i
\(124\) 7.78441 + 13.4830i 0.699061 + 1.21081i
\(125\) 1.00000 0.0894427
\(126\) 7.11643 0.633982
\(127\) −0.0512339 0.0887398i −0.00454628 0.00787438i 0.863743 0.503932i \(-0.168114\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(128\) 8.14510 14.1077i 0.719932 1.24696i
\(129\) 0.583191 + 1.01012i 0.0513471 + 0.0889358i
\(130\) −1.31072 + 2.27023i −0.114958 + 0.199112i
\(131\) −6.78366 + 11.7497i −0.592691 + 1.02657i 0.401177 + 0.916001i \(0.368601\pi\)
−0.993868 + 0.110571i \(0.964732\pi\)
\(132\) −14.6999 −1.27946
\(133\) 10.1816 + 9.31816i 0.882859 + 0.807987i
\(134\) 2.33414 0.201639
\(135\) 0.500000 0.866025i 0.0430331 0.0745356i
\(136\) −6.90326 + 11.9568i −0.591949 + 1.02529i
\(137\) −7.92184 13.7210i −0.676808 1.17227i −0.975937 0.218053i \(-0.930029\pi\)
0.299129 0.954213i \(-0.403304\pi\)
\(138\) −9.66137 + 16.7340i −0.822431 + 1.42449i
\(139\) 2.15634 + 3.73490i 0.182899 + 0.316790i 0.942866 0.333171i \(-0.108119\pi\)
−0.759968 + 0.649961i \(0.774785\pi\)
\(140\) 9.66137 0.816535
\(141\) −9.37660 −0.789652
\(142\) 4.85763 + 8.41367i 0.407644 + 0.706059i
\(143\) −2.80964 4.86644i −0.234954 0.406952i
\(144\) −0.792439 −0.0660366
\(145\) 7.31269 0.607286
\(146\) −4.08308 7.07211i −0.337918 0.585292i
\(147\) 1.51299 2.62057i 0.124789 0.216141i
\(148\) −11.0895 19.2075i −0.911550 1.57885i
\(149\) −4.78869 + 8.29426i −0.392305 + 0.679492i −0.992753 0.120172i \(-0.961656\pi\)
0.600448 + 0.799664i \(0.294989\pi\)
\(150\) 1.12375 1.94639i 0.0917536 0.158922i
\(151\) 1.90169 0.154757 0.0773786 0.997002i \(-0.475345\pi\)
0.0773786 + 0.997002i \(0.475345\pi\)
\(152\) 7.59717 + 6.95288i 0.616212 + 0.563953i
\(153\) 5.84367 0.472433
\(154\) −17.1424 + 29.6915i −1.38137 + 2.39261i
\(155\) 2.55123 4.41887i 0.204920 0.354932i
\(156\) 1.77945 + 3.08210i 0.142470 + 0.246766i
\(157\) 9.19333 15.9233i 0.733708 1.27082i −0.221581 0.975142i \(-0.571122\pi\)
0.955288 0.295677i \(-0.0955451\pi\)
\(158\) 16.9422 + 29.3448i 1.34785 + 2.33454i
\(159\) 2.75378 0.218389
\(160\) −6.50629 −0.514367
\(161\) 13.6114 + 23.5757i 1.07273 + 1.85802i
\(162\) −1.12375 1.94639i −0.0882899 0.152923i
\(163\) −10.6234 −0.832091 −0.416046 0.909344i \(-0.636584\pi\)
−0.416046 + 0.909344i \(0.636584\pi\)
\(164\) −7.61280 −0.594460
\(165\) 2.40885 + 4.17225i 0.187529 + 0.324809i
\(166\) 10.0958 17.4865i 0.783589 1.35722i
\(167\) −7.30974 12.6608i −0.565645 0.979725i −0.996989 0.0775380i \(-0.975294\pi\)
0.431345 0.902187i \(-0.358039\pi\)
\(168\) 3.74052 6.47876i 0.288587 0.499847i
\(169\) 5.81978 10.0801i 0.447675 0.775396i
\(170\) 13.1336 1.00730
\(171\) 0.940806 4.25616i 0.0719453 0.325477i
\(172\) 3.55890 0.271364
\(173\) 0.328608 0.569166i 0.0249836 0.0432729i −0.853263 0.521480i \(-0.825380\pi\)
0.878247 + 0.478207i \(0.158713\pi\)
\(174\) 8.21762 14.2333i 0.622976 1.07903i
\(175\) −1.58319 2.74217i −0.119678 0.207288i
\(176\) 1.90887 3.30625i 0.143886 0.249218i
\(177\) −5.05626 8.75770i −0.380052 0.658269i
\(178\) 9.37718 0.702849
\(179\) −23.2647 −1.73889 −0.869444 0.494032i \(-0.835523\pi\)
−0.869444 + 0.494032i \(0.835523\pi\)
\(180\) −1.52562 2.64245i −0.113713 0.196956i
\(181\) −0.725576 1.25673i −0.0539316 0.0934123i 0.837799 0.545978i \(-0.183842\pi\)
−0.891731 + 0.452566i \(0.850509\pi\)
\(182\) 8.30047 0.615272
\(183\) 5.10837 0.377621
\(184\) 10.1564 + 17.5913i 0.748737 + 1.29685i
\(185\) −3.63442 + 6.29501i −0.267208 + 0.462818i
\(186\) −5.73389 9.93138i −0.420429 0.728204i
\(187\) −14.0765 + 24.3813i −1.02938 + 1.78293i
\(188\) −14.3051 + 24.7772i −1.04331 + 1.80706i
\(189\) −3.16638 −0.230320
\(190\) 2.11446 9.56569i 0.153399 0.693968i
\(191\) 19.0598 1.37912 0.689559 0.724229i \(-0.257804\pi\)
0.689559 + 0.724229i \(0.257804\pi\)
\(192\) −6.51899 + 11.2912i −0.470467 + 0.814873i
\(193\) −7.84789 + 13.5929i −0.564903 + 0.978441i 0.432156 + 0.901799i \(0.357753\pi\)
−0.997059 + 0.0766418i \(0.975580\pi\)
\(194\) −2.24750 3.89278i −0.161361 0.279485i
\(195\) 0.583191 1.01012i 0.0417632 0.0723359i
\(196\) −4.61648 7.99597i −0.329748 0.571141i
\(197\) 8.23620 0.586805 0.293402 0.955989i \(-0.405212\pi\)
0.293402 + 0.955989i \(0.405212\pi\)
\(198\) 10.8278 0.769495
\(199\) −8.69459 15.0595i −0.616343 1.06754i −0.990147 0.140030i \(-0.955280\pi\)
0.373804 0.927508i \(-0.378053\pi\)
\(200\) −1.18132 2.04611i −0.0835320 0.144682i
\(201\) −1.03855 −0.0732539
\(202\) 24.5430 1.72684
\(203\) −11.5774 20.0526i −0.812573 1.40742i
\(204\) 8.91521 15.4416i 0.624189 1.08113i
\(205\) 1.24750 + 2.16072i 0.0871288 + 0.150912i
\(206\) 6.42911 11.1355i 0.447937 0.775850i
\(207\) 4.29873 7.44562i 0.298782 0.517506i
\(208\) −0.924287 −0.0640878
\(209\) 15.4915 + 14.1777i 1.07157 + 0.980694i
\(210\) −7.11643 −0.491080
\(211\) −10.5412 + 18.2579i −0.725687 + 1.25693i 0.233003 + 0.972476i \(0.425145\pi\)
−0.958691 + 0.284451i \(0.908189\pi\)
\(212\) 4.20122 7.27673i 0.288541 0.499768i
\(213\) −2.16135 3.74358i −0.148094 0.256506i
\(214\) 3.35335 5.80818i 0.229231 0.397039i
\(215\) −0.583191 1.01012i −0.0397733 0.0688894i
\(216\) −2.36264 −0.160757
\(217\) −16.1564 −1.09677
\(218\) −14.4585 25.0428i −0.979252 1.69611i
\(219\) 1.81673 + 3.14666i 0.122763 + 0.212632i
\(220\) 14.6999 0.991069
\(221\) 6.81595 0.458491
\(222\) 8.16835 + 14.1480i 0.548224 + 0.949552i
\(223\) −0.464804 + 0.805064i −0.0311256 + 0.0539111i −0.881169 0.472802i \(-0.843243\pi\)
0.850043 + 0.526713i \(0.176576\pi\)
\(224\) 10.3007 + 17.8413i 0.688244 + 1.19207i
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) 18.8496 32.6485i 1.25386 2.17175i
\(227\) 2.53770 0.168433 0.0842165 0.996447i \(-0.473161\pi\)
0.0842165 + 0.996447i \(0.473161\pi\)
\(228\) −9.81136 8.97930i −0.649773 0.594669i
\(229\) −0.912322 −0.0602879 −0.0301440 0.999546i \(-0.509597\pi\)
−0.0301440 + 0.999546i \(0.509597\pi\)
\(230\) 9.66137 16.7340i 0.637052 1.10341i
\(231\) 7.62734 13.2109i 0.501842 0.869216i
\(232\) −8.63864 14.9626i −0.567154 0.982340i
\(233\) 11.4894 19.9003i 0.752697 1.30371i −0.193815 0.981038i \(-0.562086\pi\)
0.946511 0.322671i \(-0.104581\pi\)
\(234\) −1.31072 2.27023i −0.0856844 0.148410i
\(235\) 9.37660 0.611662
\(236\) −30.8557 −2.00853
\(237\) −7.53826 13.0567i −0.489663 0.848121i
\(238\) −20.7930 36.0146i −1.34781 2.33448i
\(239\) 21.1849 1.37033 0.685167 0.728386i \(-0.259729\pi\)
0.685167 + 0.728386i \(0.259729\pi\)
\(240\) 0.792439 0.0511517
\(241\) 2.15132 + 3.72619i 0.138578 + 0.240025i 0.926959 0.375163i \(-0.122413\pi\)
−0.788380 + 0.615188i \(0.789080\pi\)
\(242\) −13.7212 + 23.7658i −0.882032 + 1.52773i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 7.79341 13.4986i 0.498922 0.864158i
\(245\) −1.51299 + 2.62057i −0.0966612 + 0.167422i
\(246\) 5.60748 0.357520
\(247\) 1.09734 4.96431i 0.0698220 0.315871i
\(248\) −12.0553 −0.765513
\(249\) −4.49204 + 7.78044i −0.284671 + 0.493065i
\(250\) −1.12375 + 1.94639i −0.0710720 + 0.123100i
\(251\) 6.77149 + 11.7286i 0.427413 + 0.740301i 0.996642 0.0818779i \(-0.0260918\pi\)
−0.569230 + 0.822179i \(0.692758\pi\)
\(252\) −4.83069 + 8.36699i −0.304305 + 0.527071i
\(253\) 20.7100 + 35.8707i 1.30203 + 2.25517i
\(254\) 0.230296 0.0144501
\(255\) −5.84367 −0.365945
\(256\) 5.26810 + 9.12462i 0.329256 + 0.570289i
\(257\) 10.9601 + 18.9835i 0.683672 + 1.18416i 0.973852 + 0.227183i \(0.0729516\pi\)
−0.290180 + 0.956972i \(0.593715\pi\)
\(258\) −2.62144 −0.163204
\(259\) 23.0160 1.43014
\(260\) −1.77945 3.08210i −0.110357 0.191144i
\(261\) −3.65634 + 6.33297i −0.226322 + 0.392001i
\(262\) −15.2463 26.4073i −0.941917 1.63145i
\(263\) 9.58645 16.6042i 0.591126 1.02386i −0.402955 0.915220i \(-0.632017\pi\)
0.994081 0.108640i \(-0.0346496\pi\)
\(264\) 5.69125 9.85754i 0.350272 0.606689i
\(265\) −2.75378 −0.169164
\(266\) −29.5783 + 9.34612i −1.81356 + 0.573048i
\(267\) −4.17228 −0.255339
\(268\) −1.58444 + 2.74432i −0.0967848 + 0.167636i
\(269\) −10.2026 + 17.6714i −0.622062 + 1.07744i 0.367040 + 0.930205i \(0.380371\pi\)
−0.989101 + 0.147237i \(0.952962\pi\)
\(270\) 1.12375 + 1.94639i 0.0683891 + 0.118453i
\(271\) −8.16106 + 14.1354i −0.495749 + 0.858663i −0.999988 0.00490125i \(-0.998440\pi\)
0.504239 + 0.863564i \(0.331773\pi\)
\(272\) 2.31538 + 4.01035i 0.140390 + 0.243163i
\(273\) −3.69321 −0.223523
\(274\) 35.6086 2.15119
\(275\) −2.40885 4.17225i −0.145259 0.251596i
\(276\) −13.1164 22.7183i −0.789516 1.36748i
\(277\) 7.08065 0.425435 0.212717 0.977114i \(-0.431769\pi\)
0.212717 + 0.977114i \(0.431769\pi\)
\(278\) −9.69275 −0.581332
\(279\) 2.55123 + 4.41887i 0.152738 + 0.264551i
\(280\) −3.74052 + 6.47876i −0.223539 + 0.387180i
\(281\) 5.06129 + 8.76641i 0.301931 + 0.522960i 0.976573 0.215185i \(-0.0690354\pi\)
−0.674642 + 0.738145i \(0.735702\pi\)
\(282\) 10.5369 18.2505i 0.627465 1.08680i
\(283\) −7.25556 + 12.5670i −0.431298 + 0.747030i −0.996985 0.0775897i \(-0.975278\pi\)
0.565687 + 0.824620i \(0.308611\pi\)
\(284\) −13.1896 −0.782658
\(285\) −0.940806 + 4.25616i −0.0557286 + 0.252113i
\(286\) 12.6293 0.746786
\(287\) 3.95005 6.84168i 0.233164 0.403852i
\(288\) 3.25314 5.63461i 0.191693 0.332023i
\(289\) −8.57426 14.8511i −0.504368 0.873591i
\(290\) −8.21762 + 14.2333i −0.482555 + 0.835810i
\(291\) 1.00000 + 1.73205i 0.0586210 + 0.101535i
\(292\) 11.0865 0.648789
\(293\) 6.10837 0.356855 0.178427 0.983953i \(-0.442899\pi\)
0.178427 + 0.983953i \(0.442899\pi\)
\(294\) 3.40043 + 5.88972i 0.198317 + 0.343495i
\(295\) 5.05626 + 8.75770i 0.294387 + 0.509893i
\(296\) 17.1737 0.998201
\(297\) −4.81770 −0.279551
\(298\) −10.7626 18.6413i −0.623458 1.07986i
\(299\) 5.01396 8.68443i 0.289965 0.502234i
\(300\) 1.52562 + 2.64245i 0.0880815 + 0.152562i
\(301\) −1.84661 + 3.19841i −0.106437 + 0.184354i
\(302\) −2.13702 + 3.70142i −0.122972 + 0.212993i
\(303\) −10.9202 −0.627347
\(304\) 3.29365 1.04072i 0.188904 0.0596896i
\(305\) −5.10837 −0.292504
\(306\) −6.56681 + 11.3741i −0.375400 + 0.650211i
\(307\) −6.27147 + 10.8625i −0.357932 + 0.619956i −0.987615 0.156896i \(-0.949851\pi\)
0.629683 + 0.776852i \(0.283185\pi\)
\(308\) −23.2728 40.3097i −1.32609 2.29686i
\(309\) −2.86057 + 4.95464i −0.162732 + 0.281860i
\(310\) 5.73389 + 9.93138i 0.325663 + 0.564065i
\(311\) −17.9682 −1.01888 −0.509440 0.860506i \(-0.670148\pi\)
−0.509440 + 0.860506i \(0.670148\pi\)
\(312\) −2.75574 −0.156013
\(313\) −3.77236 6.53393i −0.213227 0.369319i 0.739496 0.673161i \(-0.235064\pi\)
−0.952723 + 0.303842i \(0.901731\pi\)
\(314\) 20.6620 + 35.7876i 1.16602 + 2.01961i
\(315\) 3.16638 0.178405
\(316\) −46.0020 −2.58782
\(317\) −2.25851 3.91185i −0.126850 0.219711i 0.795604 0.605817i \(-0.207153\pi\)
−0.922455 + 0.386105i \(0.873820\pi\)
\(318\) −3.09456 + 5.35993i −0.173534 + 0.300570i
\(319\) −17.6152 30.5104i −0.986260 1.70825i
\(320\) 6.51899 11.2912i 0.364422 0.631198i
\(321\) −1.49204 + 2.58429i −0.0832776 + 0.144241i
\(322\) −61.1832 −3.40961
\(323\) −24.2883 + 7.67459i −1.35144 + 0.427026i
\(324\) 3.05123 0.169513
\(325\) −0.583191 + 1.01012i −0.0323496 + 0.0560312i
\(326\) 11.9381 20.6773i 0.661188 1.14521i
\(327\) 6.43315 + 11.1425i 0.355754 + 0.616184i
\(328\) 2.94739 5.10502i 0.162742 0.281878i
\(329\) −14.8450 25.7122i −0.818429 1.41756i
\(330\) −10.8278 −0.596048
\(331\) 16.7674 0.921619 0.460809 0.887499i \(-0.347559\pi\)
0.460809 + 0.887499i \(0.347559\pi\)
\(332\) 13.7063 + 23.7399i 0.752229 + 1.30290i
\(333\) −3.63442 6.29501i −0.199165 0.344964i
\(334\) 32.8572 1.79787
\(335\) 1.03855 0.0567423
\(336\) −1.25458 2.17300i −0.0684431 0.118547i
\(337\) 8.71682 15.0980i 0.474835 0.822439i −0.524749 0.851257i \(-0.675841\pi\)
0.999585 + 0.0288179i \(0.00917429\pi\)
\(338\) 13.0799 + 22.6551i 0.711454 + 1.23227i
\(339\) −8.38695 + 14.5266i −0.455516 + 0.788978i
\(340\) −8.91521 + 15.4416i −0.483495 + 0.837438i
\(341\) −24.5822 −1.33120
\(342\) 7.22691 + 6.61402i 0.390786 + 0.357645i
\(343\) −12.5833 −0.679433
\(344\) −1.37787 + 2.38654i −0.0742899 + 0.128674i
\(345\) −4.29873 + 7.44562i −0.231436 + 0.400859i
\(346\) 0.738545 + 1.27920i 0.0397044 + 0.0687701i
\(347\) 15.5446 26.9240i 0.834475 1.44535i −0.0599815 0.998199i \(-0.519104\pi\)
0.894457 0.447154i \(-0.147563\pi\)
\(348\) 11.1564 + 19.3234i 0.598044 + 1.03584i
\(349\) 0.887477 0.0475055 0.0237528 0.999718i \(-0.492439\pi\)
0.0237528 + 0.999718i \(0.492439\pi\)
\(350\) 7.11643 0.380389
\(351\) 0.583191 + 1.01012i 0.0311284 + 0.0539160i
\(352\) 15.6727 + 27.1459i 0.835356 + 1.44688i
\(353\) −5.27079 −0.280536 −0.140268 0.990114i \(-0.544796\pi\)
−0.140268 + 0.990114i \(0.544796\pi\)
\(354\) 22.7278 1.20797
\(355\) 2.16135 + 3.74358i 0.114713 + 0.198688i
\(356\) −6.36530 + 11.0250i −0.337360 + 0.584325i
\(357\) 9.25165 + 16.0243i 0.489649 + 0.848097i
\(358\) 26.1437 45.2822i 1.38174 2.39324i
\(359\) 13.6315 23.6104i 0.719443 1.24611i −0.241778 0.970332i \(-0.577731\pi\)
0.961221 0.275780i \(-0.0889360\pi\)
\(360\) 2.36264 0.124522
\(361\) 1.67937 + 18.9256i 0.0883879 + 0.996086i
\(362\) 3.26145 0.171418
\(363\) 6.10511 10.5744i 0.320435 0.555010i
\(364\) −5.63442 + 9.75911i −0.295324 + 0.511516i
\(365\) −1.81673 3.14666i −0.0950918 0.164704i
\(366\) −5.74052 + 9.94286i −0.300062 + 0.519722i
\(367\) −0.685659 1.18760i −0.0357911 0.0619920i 0.847575 0.530676i \(-0.178062\pi\)
−0.883366 + 0.468684i \(0.844728\pi\)
\(368\) 6.81296 0.355150
\(369\) −2.49499 −0.129884
\(370\) −8.16835 14.1480i −0.424652 0.735520i
\(371\) 4.35977 + 7.55134i 0.226348 + 0.392046i
\(372\) 15.5688 0.807206
\(373\) 33.1801 1.71800 0.859001 0.511974i \(-0.171086\pi\)
0.859001 + 0.511974i \(0.171086\pi\)
\(374\) −31.6369 54.7968i −1.63591 2.83347i
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) −11.0768 19.1856i −0.571241 0.989419i
\(377\) −4.26469 + 7.38667i −0.219643 + 0.380433i
\(378\) 3.55821 6.16301i 0.183015 0.316991i
\(379\) −31.1642 −1.60080 −0.800399 0.599468i \(-0.795379\pi\)
−0.800399 + 0.599468i \(0.795379\pi\)
\(380\) 9.81136 + 8.97930i 0.503312 + 0.460628i
\(381\) −0.102468 −0.00524959
\(382\) −21.4184 + 37.0977i −1.09586 + 1.89809i
\(383\) −14.8307 + 25.6875i −0.757814 + 1.31257i 0.186150 + 0.982521i \(0.440399\pi\)
−0.943963 + 0.330050i \(0.892934\pi\)
\(384\) −8.14510 14.1077i −0.415653 0.719932i
\(385\) −7.62734 + 13.2109i −0.388725 + 0.673292i
\(386\) −17.6381 30.5501i −0.897755 1.55496i
\(387\) 1.16638 0.0592905
\(388\) 6.10247 0.309806
\(389\) 10.0190 + 17.3534i 0.507983 + 0.879852i 0.999957 + 0.00924244i \(0.00294200\pi\)
−0.491974 + 0.870610i \(0.663725\pi\)
\(390\) 1.31072 + 2.27023i 0.0663708 + 0.114958i
\(391\) −50.2407 −2.54078
\(392\) 7.14930 0.361094
\(393\) 6.78366 + 11.7497i 0.342191 + 0.592691i
\(394\) −9.25540 + 16.0308i −0.466281 + 0.807622i
\(395\) 7.53826 + 13.0567i 0.379291 + 0.656952i
\(396\) −7.34996 + 12.7305i −0.369350 + 0.639732i
\(397\) 9.73540 16.8622i 0.488606 0.846290i −0.511309 0.859397i \(-0.670839\pi\)
0.999914 + 0.0131075i \(0.00417238\pi\)
\(398\) 39.0821 1.95901
\(399\) 13.1606 4.15846i 0.658853 0.208184i
\(400\) −0.792439 −0.0396220
\(401\) 18.3816 31.8379i 0.917935 1.58991i 0.115388 0.993320i \(-0.463189\pi\)
0.802547 0.596589i \(-0.203478\pi\)
\(402\) 1.16707 2.02143i 0.0582083 0.100820i
\(403\) 2.97571 + 5.15409i 0.148231 + 0.256743i
\(404\) −16.6600 + 28.8560i −0.828866 + 1.43564i
\(405\) −0.500000 0.866025i −0.0248452 0.0430331i
\(406\) 52.0402 2.58271
\(407\) 35.0191 1.73583
\(408\) 6.90326 + 11.9568i 0.341762 + 0.591949i
\(409\) 6.28240 + 10.8814i 0.310645 + 0.538053i 0.978502 0.206237i \(-0.0661217\pi\)
−0.667857 + 0.744289i \(0.732788\pi\)
\(410\) −5.60748 −0.276934
\(411\) −15.8437 −0.781511
\(412\) 8.72825 + 15.1178i 0.430010 + 0.744799i
\(413\) 16.0101 27.7302i 0.787803 1.36452i
\(414\) 9.66137 + 16.7340i 0.474831 + 0.822431i
\(415\) 4.49204 7.78044i 0.220506 0.381927i
\(416\) 3.79441 6.57211i 0.186036 0.322224i
\(417\) 4.31269 0.211193
\(418\) −45.0039 + 14.2203i −2.20121 + 0.695536i
\(419\) 23.8674 1.16600 0.583000 0.812472i \(-0.301879\pi\)
0.583000 + 0.812472i \(0.301879\pi\)
\(420\) 4.83069 8.36699i 0.235713 0.408267i
\(421\) 3.30504 5.72449i 0.161078 0.278995i −0.774178 0.632968i \(-0.781836\pi\)
0.935255 + 0.353974i \(0.115170\pi\)
\(422\) −23.6913 41.0346i −1.15328 1.99753i
\(423\) −4.68830 + 8.12038i −0.227953 + 0.394826i
\(424\) 3.25311 + 5.63454i 0.157985 + 0.273638i
\(425\) 5.84367 0.283460
\(426\) 9.71527 0.470706
\(427\) 8.08752 + 14.0080i 0.391383 + 0.677895i
\(428\) 4.55256 + 7.88527i 0.220056 + 0.381149i
\(429\) −5.61928 −0.271301
\(430\) 2.62144 0.126417
\(431\) 3.73156 + 6.46325i 0.179743 + 0.311324i 0.941792 0.336195i \(-0.109140\pi\)
−0.762050 + 0.647519i \(0.775807\pi\)
\(432\) −0.396220 + 0.686273i −0.0190631 + 0.0330183i
\(433\) −10.7976 18.7019i −0.518898 0.898758i −0.999759 0.0219608i \(-0.993009\pi\)
0.480861 0.876797i \(-0.340324\pi\)
\(434\) 18.1557 31.4465i 0.871500 1.50948i
\(435\) 3.65634 6.33297i 0.175308 0.303643i
\(436\) 39.2581 1.88012
\(437\) −8.08854 + 36.5921i −0.386928 + 1.75044i
\(438\) −8.16617 −0.390195
\(439\) 16.8740 29.2266i 0.805351 1.39491i −0.110703 0.993854i \(-0.535310\pi\)
0.916054 0.401055i \(-0.131356\pi\)
\(440\) −5.69125 + 9.85754i −0.271320 + 0.469940i
\(441\) −1.51299 2.62057i −0.0720470 0.124789i
\(442\) −7.65941 + 13.2665i −0.364321 + 0.631023i
\(443\) 3.85053 + 6.66931i 0.182944 + 0.316868i 0.942882 0.333127i \(-0.108104\pi\)
−0.759938 + 0.649996i \(0.774771\pi\)
\(444\) −22.1790 −1.05257
\(445\) 4.17228 0.197785
\(446\) −1.04464 1.80938i −0.0494653 0.0856765i
\(447\) 4.78869 + 8.29426i 0.226497 + 0.392305i
\(448\) −41.2832 −1.95045
\(449\) 4.84306 0.228558 0.114279 0.993449i \(-0.463544\pi\)
0.114279 + 0.993449i \(0.463544\pi\)
\(450\) −1.12375 1.94639i −0.0529740 0.0917536i
\(451\) 6.01006 10.4097i 0.283002 0.490175i
\(452\) 25.5905 + 44.3241i 1.20368 + 2.08483i
\(453\) 0.950844 1.64691i 0.0446745 0.0773786i
\(454\) −2.85173 + 4.93935i −0.133838 + 0.231815i
\(455\) 3.69321 0.173140
\(456\) 9.81996 3.10290i 0.459862 0.145307i
\(457\) −18.2322 −0.852868 −0.426434 0.904519i \(-0.640230\pi\)
−0.426434 + 0.904519i \(0.640230\pi\)
\(458\) 1.02522 1.77573i 0.0479054 0.0829745i
\(459\) 2.92184 5.06077i 0.136380 0.236216i
\(460\) 13.1164 + 22.7183i 0.611557 + 1.05925i
\(461\) 16.2778 28.1940i 0.758134 1.31313i −0.185668 0.982613i \(-0.559445\pi\)
0.943801 0.330513i \(-0.107222\pi\)
\(462\) 17.1424 + 29.6915i 0.797537 + 1.38137i
\(463\) −30.9666 −1.43914 −0.719569 0.694421i \(-0.755661\pi\)
−0.719569 + 0.694421i \(0.755661\pi\)
\(464\) −5.79486 −0.269020
\(465\) −2.55123 4.41887i −0.118311 0.204920i
\(466\) 25.8224 + 44.7257i 1.19620 + 2.07188i
\(467\) −26.4956 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(468\) 3.55890 0.164510
\(469\) −1.64423 2.84789i −0.0759234 0.131503i
\(470\) −10.5369 + 18.2505i −0.486033 + 0.841833i
\(471\) −9.19333 15.9233i −0.423606 0.733708i
\(472\) 11.9461 20.6913i 0.549866 0.952395i
\(473\) −2.80964 + 4.86644i −0.129187 + 0.223759i
\(474\) 33.8844 1.55636
\(475\) 0.940806 4.25616i 0.0431672 0.195286i
\(476\) 56.4579 2.58774
\(477\) 1.37689 2.38485i 0.0630436 0.109195i
\(478\) −23.8064 + 41.2340i −1.08888 + 1.88600i
\(479\) 11.5726 + 20.0443i 0.528766 + 0.915849i 0.999437 + 0.0335408i \(0.0106784\pi\)
−0.470671 + 0.882309i \(0.655988\pi\)
\(480\) −3.25314 + 5.63461i −0.148485 + 0.257184i
\(481\) −4.23913 7.34238i −0.193288 0.334784i
\(482\) −9.67015 −0.440463
\(483\) 27.2228 1.23868
\(484\) −18.6281 32.2649i −0.846733 1.46658i
\(485\) −1.00000 1.73205i −0.0454077 0.0786484i
\(486\) −2.24750 −0.101948
\(487\) −38.3075 −1.73588 −0.867939 0.496671i \(-0.834555\pi\)
−0.867939 + 0.496671i \(0.834555\pi\)
\(488\) 6.03462 + 10.4523i 0.273175 + 0.473152i
\(489\) −5.31172 + 9.20016i −0.240204 + 0.416046i
\(490\) −3.40043 5.88972i −0.153616 0.266070i
\(491\) −11.8873 + 20.5893i −0.536464 + 0.929183i 0.462627 + 0.886553i \(0.346907\pi\)
−0.999091 + 0.0426302i \(0.986426\pi\)
\(492\) −3.80640 + 6.59288i −0.171606 + 0.297230i
\(493\) 42.7330 1.92460
\(494\) 8.42933 + 7.71448i 0.379254 + 0.347091i
\(495\) 4.81770 0.216539
\(496\) −2.02170 + 3.50168i −0.0907769 + 0.157230i
\(497\) 6.84367 11.8536i 0.306981 0.531706i
\(498\) −10.0958 17.4865i −0.452405 0.783589i
\(499\) −0.210818 + 0.365147i −0.00943749 + 0.0163462i −0.870706 0.491805i \(-0.836337\pi\)
0.861268 + 0.508151i \(0.169671\pi\)
\(500\) −1.52562 2.64245i −0.0682277 0.118174i
\(501\) −14.6195 −0.653150
\(502\) −30.4378 −1.35851
\(503\) −13.7328 23.7858i −0.612313 1.06056i −0.990850 0.134971i \(-0.956906\pi\)
0.378536 0.925586i \(-0.376428\pi\)
\(504\) −3.74052 6.47876i −0.166616 0.288587i
\(505\) 10.9202 0.485941
\(506\) −93.0912 −4.13841
\(507\) −5.81978 10.0801i −0.258465 0.447675i
\(508\) −0.156327 + 0.270766i −0.00693588 + 0.0120133i
\(509\) −3.91889 6.78771i −0.173702 0.300860i 0.766010 0.642829i \(-0.222239\pi\)
−0.939711 + 0.341969i \(0.888906\pi\)
\(510\) 6.56681 11.3741i 0.290783 0.503652i
\(511\) −5.75245 + 9.96353i −0.254473 + 0.440761i
\(512\) 8.90034 0.393343
\(513\) −3.21554 2.94284i −0.141969 0.129930i
\(514\) −49.2655 −2.17301
\(515\) 2.86057 4.95464i 0.126052 0.218328i
\(516\) 1.77945 3.08210i 0.0783360 0.135682i
\(517\) −22.5868 39.1215i −0.993367 1.72056i
\(518\) −25.8641 + 44.7980i −1.13640 + 1.96831i
\(519\) −0.328608 0.569166i −0.0144243 0.0249836i
\(520\) 2.75574 0.120847
\(521\) −4.93772 −0.216325 −0.108163 0.994133i \(-0.534497\pi\)
−0.108163 + 0.994133i \(0.534497\pi\)
\(522\) −8.21762 14.2333i −0.359675 0.622976i
\(523\) 8.55988 + 14.8261i 0.374297 + 0.648302i 0.990222 0.139503i \(-0.0445506\pi\)
−0.615924 + 0.787805i \(0.711217\pi\)
\(524\) 41.3971 1.80844
\(525\) −3.16638 −0.138192
\(526\) 21.5455 + 37.3179i 0.939428 + 1.62714i
\(527\) 14.9086 25.8224i 0.649428 1.12484i
\(528\) −1.90887 3.30625i −0.0830728 0.143886i
\(529\) −25.4581 + 44.0948i −1.10688 + 1.91716i
\(530\) 3.09456 5.35993i 0.134419 0.232821i
\(531\) −10.1125 −0.438846
\(532\) 9.08948 41.1203i 0.394079 1.78279i
\(533\) −2.91011 −0.126051
\(534\) 4.68859 8.12088i 0.202895 0.351425i
\(535\) 1.49204 2.58429i 0.0645065 0.111729i
\(536\) −1.22687 2.12499i −0.0529925 0.0917858i
\(537\) −11.6324 + 20.1478i −0.501974 + 0.869444i
\(538\) −22.9302 39.7163i −0.988592 1.71229i
\(539\) 14.5782 0.627929
\(540\) −3.05123 −0.131304
\(541\) 3.04946 + 5.28183i 0.131107 + 0.227083i 0.924103 0.382142i \(-0.124814\pi\)
−0.792997 + 0.609226i \(0.791480\pi\)
\(542\) −18.3420 31.7692i −0.787854 1.36460i
\(543\) −1.45115 −0.0622749
\(544\) −38.0206 −1.63012
\(545\) −6.43315 11.1425i −0.275566 0.477294i
\(546\) 4.15024 7.18842i 0.177614 0.307636i
\(547\) 11.4882 + 19.8981i 0.491198 + 0.850780i 0.999949 0.0101341i \(-0.00322583\pi\)
−0.508751 + 0.860914i \(0.669892\pi\)
\(548\) −24.1714 + 41.8661i −1.03255 + 1.78843i
\(549\) 2.55418 4.42398i 0.109010 0.188811i
\(550\) 10.8278 0.461697
\(551\) 6.87982 31.1240i 0.293090 1.32593i
\(552\) 20.3127 0.864567
\(553\) 23.8690 41.3424i 1.01501 1.75806i
\(554\) −7.95686 + 13.7817i −0.338055 + 0.585528i
\(555\) 3.63442 + 6.29501i 0.154273 + 0.267208i
\(556\) 6.57951 11.3960i 0.279033 0.483300i
\(557\) 3.49499 + 6.05350i 0.148087 + 0.256495i 0.930521 0.366240i \(-0.119355\pi\)
−0.782433 + 0.622735i \(0.786022\pi\)
\(558\) −11.4678 −0.485469
\(559\) 1.36045 0.0575408
\(560\) 1.25458 + 2.17300i 0.0530158 + 0.0918261i
\(561\) 14.0765 + 24.3813i 0.594312 + 1.02938i
\(562\) −22.7504 −0.959670
\(563\) −12.7111 −0.535708 −0.267854 0.963460i \(-0.586314\pi\)
−0.267854 + 0.963460i \(0.586314\pi\)
\(564\) 14.3051 + 24.7772i 0.602354 + 1.04331i
\(565\) 8.38695 14.5266i 0.352842 0.611139i
\(566\) −16.3068 28.2442i −0.685427 1.18719i
\(567\) −1.58319 + 2.74217i −0.0664878 + 0.115160i
\(568\) 5.10651 8.84473i 0.214264 0.371117i
\(569\) −28.0036 −1.17397 −0.586986 0.809597i \(-0.699685\pi\)
−0.586986 + 0.809597i \(0.699685\pi\)
\(570\) −7.22691 6.61402i −0.302702 0.277031i
\(571\) 39.0506 1.63422 0.817108 0.576484i \(-0.195576\pi\)
0.817108 + 0.576484i \(0.195576\pi\)
\(572\) −8.57286 + 14.8486i −0.358449 + 0.620853i
\(573\) 9.52990 16.5063i 0.398117 0.689559i
\(574\) 8.87771 + 15.3766i 0.370548 + 0.641809i
\(575\) 4.29873 7.44562i 0.179269 0.310504i
\(576\) 6.51899 + 11.2912i 0.271624 + 0.470467i
\(577\) 18.5294 0.771389 0.385694 0.922627i \(-0.373962\pi\)
0.385694 + 0.922627i \(0.373962\pi\)
\(578\) 38.5412 1.60310
\(579\) 7.84789 + 13.5929i 0.326147 + 0.564903i
\(580\) −11.1564 19.3234i −0.463243 0.802360i
\(581\) −28.4470 −1.18018
\(582\) −4.49499 −0.186323
\(583\) 6.63345 + 11.4895i 0.274730 + 0.475845i
\(584\) −4.29228 + 7.43444i −0.177616 + 0.307639i
\(585\) −0.583191 1.01012i −0.0241120 0.0417632i
\(586\) −6.86426 + 11.8893i −0.283560 + 0.491140i
\(587\) −9.61458 + 16.6529i −0.396836 + 0.687341i −0.993334 0.115274i \(-0.963225\pi\)
0.596497 + 0.802615i \(0.296559\pi\)
\(588\) −9.23296 −0.380761
\(589\) −16.4072 15.0158i −0.676046 0.618713i
\(590\) −22.7278 −0.935691
\(591\) 4.11810 7.13275i 0.169396 0.293402i
\(592\) 2.88006 4.98841i 0.118370 0.205022i
\(593\) 15.5293 + 26.8976i 0.637714 + 1.10455i 0.985933 + 0.167140i \(0.0534531\pi\)
−0.348219 + 0.937413i \(0.613214\pi\)
\(594\) 5.41388 9.37711i 0.222134 0.384747i
\(595\) −9.25165 16.0243i −0.379281 0.656933i
\(596\) 29.2228 1.19701
\(597\) −17.3892 −0.711692
\(598\) 11.2688 + 19.5182i 0.460818 + 0.798159i
\(599\) 4.84691 + 8.39510i 0.198039 + 0.343014i 0.947893 0.318590i \(-0.103209\pi\)
−0.749853 + 0.661604i \(0.769876\pi\)
\(600\) −2.36264 −0.0964545
\(601\) 9.02069 0.367962 0.183981 0.982930i \(-0.441102\pi\)
0.183981 + 0.982930i \(0.441102\pi\)
\(602\) −4.15024 7.18842i −0.169151 0.292978i
\(603\) −0.519277 + 0.899414i −0.0211466 + 0.0366270i
\(604\) −2.90125 5.02511i −0.118050 0.204469i
\(605\) −6.10511 + 10.5744i −0.248208 + 0.429909i
\(606\) 12.2715 21.2549i 0.498496 0.863420i
\(607\) −38.5916 −1.56638 −0.783192 0.621780i \(-0.786410\pi\)
−0.783192 + 0.621780i \(0.786410\pi\)
\(608\) −6.12116 + 27.6918i −0.248246 + 1.12305i
\(609\) −23.1548 −0.938278
\(610\) 5.74052 9.94286i 0.232427 0.402575i
\(611\) −5.46835 + 9.47146i −0.221226 + 0.383174i
\(612\) −8.91521 15.4416i −0.360376 0.624189i
\(613\) 10.3707 17.9626i 0.418869 0.725502i −0.576957 0.816774i \(-0.695760\pi\)
0.995826 + 0.0912724i \(0.0290934\pi\)
\(614\) −14.0951 24.4134i −0.568832 0.985246i
\(615\) 2.49499 0.100608
\(616\) 36.0413 1.45215
\(617\) 15.2005 + 26.3280i 0.611949 + 1.05993i 0.990912 + 0.134514i \(0.0429474\pi\)
−0.378963 + 0.925412i \(0.623719\pi\)
\(618\) −6.42911 11.1355i −0.258617 0.447937i
\(619\) −9.69562 −0.389700 −0.194850 0.980833i \(-0.562422\pi\)
−0.194850 + 0.980833i \(0.562422\pi\)
\(620\) −15.5688 −0.625259
\(621\) −4.29873 7.44562i −0.172502 0.298782i
\(622\) 20.1917 34.9730i 0.809612 1.40229i
\(623\) −6.60552 11.4411i −0.264645 0.458378i
\(624\) −0.462143 + 0.800456i −0.0185005 + 0.0320439i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 16.9567 0.677728
\(627\) 20.0240 6.32717i 0.799682 0.252683i
\(628\) −56.1020 −2.23871
\(629\) −21.2384 + 36.7860i −0.846830 + 1.46675i
\(630\) −3.55821 + 6.16301i −0.141763 + 0.245540i
\(631\) 1.85131 + 3.20656i 0.0736994 + 0.127651i 0.900520 0.434815i \(-0.143186\pi\)
−0.826821 + 0.562466i \(0.809853\pi\)
\(632\) 17.8102 30.8482i 0.708453 1.22708i
\(633\) 10.5412 + 18.2579i 0.418976 + 0.725687i
\(634\) 10.1520 0.403186
\(635\) 0.102468 0.00406631
\(636\) −4.20122 7.27673i −0.166589 0.288541i
\(637\) −1.76472 3.05659i −0.0699208 0.121106i
\(638\) 79.1800 3.13477
\(639\) −4.32271 −0.171004
\(640\) 8.14510 + 14.1077i 0.321963 + 0.557657i
\(641\) −9.89794 + 17.1437i −0.390945 + 0.677137i −0.992574 0.121639i \(-0.961185\pi\)
0.601629 + 0.798775i \(0.294518\pi\)
\(642\) −3.35335 5.80818i −0.132346 0.229231i
\(643\) 2.63442 4.56296i 0.103892 0.179945i −0.809393 0.587267i \(-0.800204\pi\)
0.913285 + 0.407322i \(0.133537\pi\)
\(644\) 41.5316 71.9349i 1.63658 2.83463i
\(645\) −1.16638 −0.0459262
\(646\) 12.3562 55.8988i 0.486148 2.19931i
\(647\) 25.3370 0.996098 0.498049 0.867149i \(-0.334050\pi\)
0.498049 + 0.867149i \(0.334050\pi\)
\(648\) −1.18132 + 2.04611i −0.0464067 + 0.0803787i
\(649\) 24.3595 42.1920i 0.956196 1.65618i
\(650\) −1.31072 2.27023i −0.0514106 0.0890458i
\(651\) −8.07818 + 13.9918i −0.316609 + 0.548383i
\(652\) 16.2073 + 28.0718i 0.634726 + 1.09938i
\(653\) 12.3697 0.484065 0.242032 0.970268i \(-0.422186\pi\)
0.242032 + 0.970268i \(0.422186\pi\)
\(654\) −28.9170 −1.13074
\(655\) −6.78366 11.7497i −0.265060 0.459097i
\(656\) −0.988564 1.71224i −0.0385969 0.0668519i
\(657\) 3.63345 0.141754
\(658\) 66.7279 2.60133
\(659\) 11.4551 + 19.8407i 0.446226 + 0.772885i 0.998137 0.0610175i \(-0.0194346\pi\)
−0.551911 + 0.833903i \(0.686101\pi\)
\(660\) 7.34996 12.7305i 0.286097 0.495534i
\(661\) −1.64082 2.84198i −0.0638203 0.110540i 0.832350 0.554251i \(-0.186995\pi\)
−0.896170 + 0.443711i \(0.853662\pi\)
\(662\) −18.8423 + 32.6358i −0.732327 + 1.26843i
\(663\) 3.40798 5.90279i 0.132355 0.229245i
\(664\) −21.2262 −0.823735
\(665\) −13.1606 + 4.15846i −0.510345 + 0.161258i
\(666\) 16.3367 0.633034
\(667\) 31.4353 54.4475i 1.21718 2.10821i
\(668\) −22.3037 + 38.6312i −0.862957 + 1.49469i
\(669\) 0.464804 + 0.805064i 0.0179704 + 0.0311256i
\(670\) −1.16707 + 2.02143i −0.0450879 + 0.0780946i
\(671\) 12.3053 + 21.3134i 0.475040 + 0.822794i
\(672\) 20.6014 0.794716
\(673\) 29.2183 1.12628 0.563142 0.826360i \(-0.309592\pi\)
0.563142 + 0.826360i \(0.309592\pi\)
\(674\) 19.5910 + 33.9326i 0.754617 + 1.30704i
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) −35.5150 −1.36596
\(677\) −36.0085 −1.38392 −0.691960 0.721936i \(-0.743253\pi\)
−0.691960 + 0.721936i \(0.743253\pi\)
\(678\) −18.8496 32.6485i −0.723915 1.25386i
\(679\) −3.16638 + 5.48433i −0.121515 + 0.210469i
\(680\) −6.90326 11.9568i −0.264728 0.458522i
\(681\) 1.26885 2.19771i 0.0486224 0.0842165i
\(682\) 27.6241 47.8464i 1.05778 1.83213i
\(683\) 32.7395 1.25274 0.626371 0.779525i \(-0.284540\pi\)
0.626371 + 0.779525i \(0.284540\pi\)
\(684\) −12.6820 + 4.00724i −0.484908 + 0.153221i
\(685\) 15.8437 0.605356
\(686\) 14.1404 24.4919i 0.539884 0.935107i
\(687\) −0.456161 + 0.790094i −0.0174036 + 0.0301440i
\(688\) 0.462143 + 0.800456i 0.0176191 + 0.0305171i
\(689\) 1.60598 2.78164i 0.0611831 0.105972i
\(690\) −9.66137 16.7340i −0.367802 0.637052i
\(691\) −17.3452 −0.659842 −0.329921 0.944009i \(-0.607022\pi\)
−0.329921 + 0.944009i \(0.607022\pi\)
\(692\) −2.00532 −0.0762308
\(693\) −7.62734 13.2109i −0.289739 0.501842i
\(694\) 34.9363 + 60.5115i 1.32616 + 2.29698i
\(695\) −4.31269 −0.163590
\(696\) −17.2773 −0.654893
\(697\) 7.28995 + 12.6266i 0.276127 + 0.478265i
\(698\) −0.997300 + 1.72737i −0.0377484 + 0.0653821i
\(699\) −11.4894 19.9003i −0.434570 0.752697i
\(700\) −4.83069 + 8.36699i −0.182583 + 0.316243i
\(701\) −1.21218 + 2.09956i −0.0457834 + 0.0792992i −0.888009 0.459826i \(-0.847912\pi\)
0.842226 + 0.539125i \(0.181245\pi\)
\(702\) −2.62144 −0.0989398
\(703\) 23.3733 + 21.3911i 0.881539 + 0.806780i
\(704\) −62.8130 −2.36736
\(705\) 4.68830 8.12038i 0.176572 0.305831i
\(706\) 5.92304 10.2590i 0.222917 0.386103i
\(707\) −17.2887 29.9449i −0.650209 1.12619i
\(708\) −15.4278 + 26.7218i −0.579814 + 1.00427i
\(709\) −5.25378 9.09982i −0.197310 0.341751i 0.750345 0.661046i \(-0.229887\pi\)
−0.947655 + 0.319295i \(0.896554\pi\)
\(710\) −9.71527 −0.364607
\(711\) −15.0765 −0.565414
\(712\) −4.92881 8.53694i −0.184715 0.319935i
\(713\) −21.9341 37.9910i −0.821439 1.42277i
\(714\) −41.5861 −1.55632
\(715\) 5.61928 0.210149
\(716\) 35.4931 + 61.4758i 1.32644 + 2.29746i
\(717\) 10.5924 18.3466i 0.395582 0.685167i
\(718\) 30.6367 + 53.0643i 1.14335 + 1.98034i
\(719\) 7.74161 13.4089i 0.288713 0.500066i −0.684789 0.728741i \(-0.740106\pi\)
0.973503 + 0.228675i \(0.0734392\pi\)
\(720\) 0.396220 0.686273i 0.0147662 0.0255759i
\(721\) −18.1153 −0.674648
\(722\) −38.7238 17.9989i −1.44115 0.669851i
\(723\) 4.30263 0.160017
\(724\) −2.21390 + 3.83459i −0.0822790 + 0.142511i
\(725\) −3.65634 + 6.33297i −0.135793 + 0.235201i
\(726\) 13.7212 + 23.7658i 0.509242 + 0.882032i
\(727\) −9.03690 + 15.6524i −0.335160 + 0.580514i −0.983516 0.180823i \(-0.942124\pi\)
0.648355 + 0.761338i \(0.275457\pi\)
\(728\) −4.36287 7.55671i −0.161699 0.280070i
\(729\) 1.00000 0.0370370
\(730\) 8.16617 0.302243
\(731\) −3.40798 5.90279i −0.126049 0.218323i
\(732\) −7.79341 13.4986i −0.288053 0.498922i
\(733\) −32.5312 −1.20157 −0.600784 0.799411i \(-0.705145\pi\)
−0.600784 + 0.799411i \(0.705145\pi\)
\(734\) 3.08203 0.113760
\(735\) 1.51299 + 2.62057i 0.0558074 + 0.0966612i
\(736\) −27.9688 + 48.4433i −1.03094 + 1.78565i
\(737\) −2.50172 4.33311i −0.0921520 0.159612i
\(738\) 2.80374 4.85622i 0.103207 0.178760i
\(739\) −23.9823 + 41.5386i −0.882205 + 1.52802i −0.0333206 + 0.999445i \(0.510608\pi\)
−0.848884 + 0.528579i \(0.822725\pi\)
\(740\) 22.1790 0.815315
\(741\) −3.75055 3.43248i −0.137780 0.126095i
\(742\) −19.5971 −0.719433
\(743\) 12.8553 22.2660i 0.471615 0.816861i −0.527858 0.849333i \(-0.677005\pi\)
0.999473 + 0.0324716i \(0.0103378\pi\)
\(744\) −6.02766 + 10.4402i −0.220985 + 0.382756i
\(745\) −4.78869 8.29426i −0.175444 0.303878i
\(746\) −37.2861 + 64.5814i −1.36514 + 2.36449i
\(747\) 4.49204 + 7.78044i 0.164355 + 0.284671i
\(748\) 85.9016 3.14087
\(749\) −9.44874 −0.345249
\(750\) 1.12375 + 1.94639i 0.0410335 + 0.0710720i
\(751\) 4.55713 + 7.89319i 0.166292 + 0.288026i 0.937113 0.349025i \(-0.113487\pi\)
−0.770821 + 0.637051i \(0.780154\pi\)
\(752\) −7.43039 −0.270958
\(753\) 13.5430 0.493534
\(754\) −9.58488 16.6015i −0.349061 0.604591i
\(755\) −0.950844 + 1.64691i −0.0346048 + 0.0599372i
\(756\) 4.83069 + 8.36699i 0.175690 + 0.304305i
\(757\) 19.5958 33.9409i 0.712222 1.23360i −0.251800 0.967779i \(-0.581022\pi\)
0.964021 0.265825i \(-0.0856442\pi\)
\(758\) 35.0207 60.6576i 1.27201 2.20318i
\(759\) 41.4200 1.50345
\(760\) −9.81996 + 3.10290i −0.356207 + 0.112554i
\(761\) 52.4574 1.90158 0.950790 0.309837i \(-0.100275\pi\)
0.950790 + 0.309837i \(0.100275\pi\)
\(762\) 0.115148 0.199442i 0.00417137 0.00722503i
\(763\) −20.3698 + 35.2816i −0.737437 + 1.27728i
\(764\) −29.0779 50.3645i −1.05200 1.82212i
\(765\) −2.92184 + 5.06077i −0.105639 + 0.182973i
\(766\) −33.3319 57.7326i −1.20433 2.08596i
\(767\) −11.7951 −0.425895
\(768\) 10.5362 0.380193
\(769\) −11.8286 20.4878i −0.426551 0.738807i 0.570013 0.821635i \(-0.306938\pi\)
−0.996564 + 0.0828283i \(0.973605\pi\)
\(770\) −17.1424 29.6915i −0.617769 1.07001i
\(771\) 21.9202 0.789437
\(772\) 47.8915 1.72365
\(773\) 2.67555 + 4.63418i 0.0962328 + 0.166680i 0.910122 0.414339i \(-0.135987\pi\)
−0.813890 + 0.581019i \(0.802654\pi\)
\(774\) −1.31072 + 2.27023i −0.0471128 + 0.0816018i
\(775\) 2.55123 + 4.41887i 0.0916430 + 0.158730i
\(776\) −2.36264 + 4.09222i −0.0848139 + 0.146902i
\(777\) 11.5080 19.9324i 0.412846 0.715071i
\(778\) −45.0352 −1.61459
\(779\) 10.3700 3.27671i 0.371545 0.117400i
\(780\) −3.55890 −0.127429
\(781\) 10.4128 18.0354i 0.372598 0.645358i
\(782\) 56.4579 97.7880i 2.01893 3.49689i
\(783\) 3.65634 + 6.33297i 0.130667 + 0.226322i
\(784\) 1.19895 2.07664i 0.0428197 0.0741658i
\(785\) 9.19333 + 15.9233i 0.328124 + 0.568327i
\(786\) −30.4925 −1.08763
\(787\) 26.2322 0.935078 0.467539 0.883972i \(-0.345141\pi\)
0.467539 + 0.883972i \(0.345141\pi\)
\(788\) −12.5653 21.7637i −0.447620 0.775300i
\(789\) −9.58645 16.6042i −0.341287 0.591126i
\(790\) −33.8844 −1.20555
\(791\) −53.1126 −1.88847
\(792\) −5.69125 9.85754i −0.202230 0.350272i
\(793\) 2.97915 5.16005i 0.105793 0.183239i
\(794\) 21.8803 + 37.8977i 0.776501 + 1.34494i
\(795\) −1.37689 + 2.38485i −0.0488333 + 0.0845818i
\(796\) −26.5292 + 45.9500i −0.940304 + 1.62865i
\(797\) 4.25354 0.150668 0.0753341 0.997158i \(-0.475998\pi\)
0.0753341 + 0.997158i \(0.475998\pi\)
\(798\) −6.69518 + 30.2886i −0.237007 + 1.07221i
\(799\) 54.7938 1.93847
\(800\) 3.25314 5.63461i 0.115016 0.199214i
\(801\) −2.08614 + 3.61330i −0.0737102 + 0.127670i
\(802\) 41.3126 + 71.5556i 1.45880 + 2.52671i
\(803\) −8.75244 + 15.1597i −0.308867 + 0.534973i
\(804\) 1.58444 + 2.74432i 0.0558787 + 0.0967848i
\(805\) −27.2228 −0.959479
\(806\) −13.3758 −0.471143
\(807\) 10.2026 + 17.6714i 0.359147 + 0.622062i
\(808\) −12.9002 22.3438i −0.453828 0.786054i
\(809\) −12.2708 −0.431419 −0.215710 0.976458i \(-0.569206\pi\)
−0.215710 + 0.976458i \(0.569206\pi\)
\(810\) 2.24750 0.0789689
\(811\) 5.22559 + 9.05099i 0.183495 + 0.317823i 0.943068 0.332599i \(-0.107925\pi\)
−0.759573 + 0.650422i \(0.774592\pi\)
\(812\) −35.3253 + 61.1852i −1.23968 + 2.14718i
\(813\) 8.16106 + 14.1354i 0.286221 + 0.495749i
\(814\) −39.3527 + 68.1608i −1.37931 + 2.38903i
\(815\) 5.31172 9.20016i 0.186061 0.322268i
\(816\) 4.63076 0.162109
\(817\) −4.84789 + 1.53183i −0.169606 + 0.0535919i
\(818\) −28.2393 −0.987365
\(819\) −1.84661 + 3.19841i −0.0645256 + 0.111762i
\(820\) 3.80640 6.59288i 0.132925 0.230233i
\(821\) −5.03353 8.71832i −0.175671 0.304272i 0.764722 0.644360i \(-0.222876\pi\)
−0.940393 + 0.340089i \(0.889543\pi\)
\(822\) 17.8043 30.8379i 0.620996 1.07560i
\(823\) −21.6974 37.5810i −0.756324 1.30999i −0.944713 0.327897i \(-0.893660\pi\)
0.188390 0.982094i \(-0.439673\pi\)
\(824\) −13.5170 −0.470887
\(825\) −4.81770 −0.167731
\(826\) 35.9825 + 62.3236i 1.25199 + 2.16851i
\(827\) 7.36950 + 12.7643i 0.256263 + 0.443860i 0.965238 0.261374i \(-0.0841755\pi\)
−0.708975 + 0.705233i \(0.750842\pi\)
\(828\) −26.2329 −0.911655
\(829\) 54.5313 1.89395 0.946974 0.321309i \(-0.104123\pi\)
0.946974 + 0.321309i \(0.104123\pi\)
\(830\) 10.0958 + 17.4865i 0.350432 + 0.606965i
\(831\) 3.54032 6.13202i 0.122812 0.212717i
\(832\) 7.60363 + 13.1699i 0.263608 + 0.456583i
\(833\) −8.84140 + 15.3138i −0.306336 + 0.530590i
\(834\) −4.84637 + 8.39416i −0.167816 + 0.290666i
\(835\) 14.6195 0.505928
\(836\) 13.8298 62.5652i 0.478313 2.16386i
\(837\) 5.10247 0.176367
\(838\) −26.8210 + 46.4553i −0.926515 + 1.60477i
\(839\) −18.7632 + 32.4988i −0.647777 + 1.12198i 0.335876 + 0.941906i \(0.390968\pi\)
−0.983653 + 0.180076i \(0.942366\pi\)
\(840\) 3.74052 + 6.47876i 0.129060 + 0.223539i
\(841\) −12.2377 + 21.1963i −0.421990 + 0.730908i
\(842\) 7.42805 + 12.8658i 0.255988 + 0.443384i
\(843\) 10.1226 0.348640
\(844\) 64.3274 2.21424
\(845\) 5.81978 + 10.0801i 0.200206 + 0.346768i
\(846\) −10.5369 18.2505i −0.362267 0.627465i
\(847\) 38.6622 1.32845
\(848\) 2.18221 0.0749373
\(849\) 7.25556 + 12.5670i 0.249010 + 0.431298i
\(850\) −6.56681 + 11.3741i −0.225240 + 0.390127i
\(851\) 31.2468 + 54.1211i 1.07113 + 1.85525i
\(852\) −6.59480 + 11.4225i −0.225934 + 0.391329i
\(853\) −0.876485 + 1.51812i −0.0300103 + 0.0519793i −0.880640 0.473785i \(-0.842887\pi\)
0.850630 + 0.525764i \(0.176221\pi\)
\(854\) −36.3533 −1.24399
\(855\) 3.21554 + 2.94284i 0.109969 + 0.100643i
\(856\) −7.05032 −0.240975
\(857\) −15.2630 + 26.4363i −0.521375 + 0.903048i 0.478316 + 0.878188i \(0.341247\pi\)
−0.999691 + 0.0248601i \(0.992086\pi\)
\(858\) 6.31465 10.9373i 0.215579 0.373393i
\(859\) −3.63363 6.29363i −0.123978 0.214736i 0.797355 0.603510i \(-0.206232\pi\)
−0.921333 + 0.388775i \(0.872898\pi\)
\(860\) −1.77945 + 3.08210i −0.0606788 + 0.105099i
\(861\) −3.95005 6.84168i −0.134617 0.233164i
\(862\) −16.7733 −0.571301
\(863\) −30.4383 −1.03613 −0.518066 0.855341i \(-0.673348\pi\)
−0.518066 + 0.855341i \(0.673348\pi\)
\(864\) −3.25314 5.63461i −0.110674 0.191693i
\(865\) 0.328608 + 0.569166i 0.0111730 + 0.0193522i
\(866\) 48.5350 1.64929
\(867\) −17.1485 −0.582394
\(868\) 24.6484 + 42.6923i 0.836622 + 1.44907i
\(869\) 36.3171 62.9030i 1.23197 2.13384i
\(870\) 8.21762 + 14.2333i 0.278603 + 0.482555i
\(871\) −0.605675 + 1.04906i −0.0205225 + 0.0355460i
\(872\) −15.1992 + 26.3259i −0.514711 + 0.891506i
\(873\) 2.00000 0.0676897
\(874\) −62.1330 56.8638i −2.10168 1.92345i
\(875\) 3.16638 0.107043
\(876\) 5.54326 9.60120i 0.187289 0.324395i
\(877\) −23.3318 + 40.4119i −0.787860 + 1.36461i 0.139416 + 0.990234i \(0.455478\pi\)
−0.927276 + 0.374379i \(0.877856\pi\)
\(878\) 37.9242 + 65.6866i 1.27988 + 2.21682i
\(879\) 3.05418 5.29000i 0.103015 0.178427i
\(880\) 1.90887 + 3.30625i 0.0643479 + 0.111454i
\(881\) −31.2809 −1.05388 −0.526939 0.849903i \(-0.676660\pi\)
−0.526939 + 0.849903i \(0.676660\pi\)
\(882\) 6.80086 0.228997
\(883\) −3.87059 6.70405i −0.130256 0.225609i 0.793519 0.608545i \(-0.208246\pi\)
−0.923775 + 0.382936i \(0.874913\pi\)
\(884\) −10.3985 18.0108i −0.349741 0.605769i
\(885\) 10.1125 0.339929
\(886\) −17.3081 −0.581476
\(887\) 2.49594 + 4.32310i 0.0838056 + 0.145156i 0.904882 0.425663i \(-0.139959\pi\)
−0.821076 + 0.570819i \(0.806626\pi\)
\(888\) 8.58685 14.8729i 0.288156 0.499100i
\(889\) −0.162226 0.280984i −0.00544089 0.00942390i
\(890\) −4.68859 + 8.12088i −0.157162 + 0.272212i
\(891\) −2.40885 + 4.17225i −0.0806995 + 0.139776i
\(892\) 2.83645 0.0949714
\(893\) 8.82157 39.9083i 0.295203 1.33548i
\(894\) −21.5251 −0.719908
\(895\) 11.6324 20.1478i 0.388827 0.673468i
\(896\) 25.7905 44.6705i 0.861600 1.49234i
\(897\) −5.01396 8.68443i −0.167411 0.289965i
\(898\) −5.44238 + 9.42647i −0.181614 + 0.314565i
\(899\) 18.6564 + 32.3138i 0.622225 + 1.07773i
\(900\) 3.05123 0.101708
\(901\) −16.0922 −0.536110
\(902\) 13.5076 + 23.3958i 0.449753 + 0.778995i
\(903\) 1.84661 + 3.19841i 0.0614512 + 0.106437i
\(904\) −39.6307 −1.31810
\(905\) 1.45115 0.0482379
\(906\) 2.13702 + 3.70142i 0.0709976 + 0.122972i
\(907\) −26.6993 + 46.2446i −0.886537 + 1.53553i −0.0425957 + 0.999092i \(0.513563\pi\)
−0.843942 + 0.536435i \(0.819771\pi\)
\(908\) −3.87156 6.70573i −0.128482 0.222538i
\(909\) −5.46008 + 9.45714i −0.181100 + 0.313674i
\(910\) −4.15024 + 7.18842i −0.137579 + 0.238294i
\(911\) 22.8765 0.757933 0.378967 0.925410i \(-0.376280\pi\)
0.378967 + 0.925410i \(0.376280\pi\)
\(912\) 0.745532 3.37275i 0.0246870 0.111683i
\(913\) −43.2826 −1.43244
\(914\) 20.4884 35.4870i 0.677697 1.17381i
\(915\) −2.55418 + 4.42398i −0.0844387 + 0.146252i
\(916\) 1.39185 + 2.41076i 0.0459881 + 0.0796538i
\(917\) −21.4797 + 37.2039i −0.709321 + 1.22858i
\(918\) 6.56681 + 11.3741i 0.216737 + 0.375400i
\(919\) −3.88045 −0.128004 −0.0640021 0.997950i \(-0.520386\pi\)
−0.0640021 + 0.997950i \(0.520386\pi\)
\(920\) −20.3127 −0.669691
\(921\) 6.27147 + 10.8625i 0.206652 + 0.357932i
\(922\) 36.5843 + 63.3659i 1.20484 + 2.08684i
\(923\) −5.04193 −0.165957
\(924\) −46.5456 −1.53124
\(925\) −3.63442 6.29501i −0.119499 0.206979i
\(926\) 34.7986 60.2729i 1.14355 1.98069i
\(927\) 2.86057 + 4.95464i 0.0939533 + 0.162732i
\(928\) 23.7892 41.2042i 0.780920 1.35259i
\(929\) −25.8821 + 44.8290i −0.849163 + 1.47079i 0.0327938 + 0.999462i \(0.489560\pi\)
−0.881956 + 0.471331i \(0.843774\pi\)
\(930\) 11.4678 0.376043
\(931\) 9.73014 + 8.90496i 0.318892 + 0.291848i
\(932\) −70.1138 −2.29665
\(933\) −8.98408 + 15.5609i −0.294126 + 0.509440i
\(934\) 29.7744 51.5708i 0.974248 1.68745i
\(935\) −14.0765 24.3813i −0.460352 0.797353i
\(936\) −1.37787 + 2.38654i −0.0450372 + 0.0780066i
\(937\) 2.11094 + 3.65625i 0.0689613 + 0.119444i 0.898444 0.439087i \(-0.144698\pi\)
−0.829483 + 0.558532i \(0.811365\pi\)
\(938\) 7.39079 0.241318
\(939\) −7.54473 −0.246213
\(940\) −14.3051 24.7772i −0.466581 0.808142i
\(941\) 8.88263 + 15.3852i 0.289566 + 0.501542i 0.973706 0.227808i \(-0.0731558\pi\)
−0.684140 + 0.729350i \(0.739822\pi\)
\(942\) 41.3239 1.34641
\(943\) 21.4506 0.698527
\(944\) −4.00678 6.93995i −0.130410 0.225876i
\(945\) 1.58319 2.74217i 0.0515012 0.0892027i
\(946\) −6.31465 10.9373i −0.205307 0.355602i
\(947\) −6.73396 + 11.6636i −0.218824 + 0.379015i −0.954449 0.298375i \(-0.903555\pi\)
0.735624 + 0.677390i \(0.236889\pi\)
\(948\) −23.0010 + 39.8389i −0.747038 + 1.29391i
\(949\) 4.23799 0.137571
\(950\) 7.22691 + 6.61402i 0.234472 + 0.214587i
\(951\) −4.51701 −0.146474
\(952\) −21.8583 + 37.8598i −0.708433 + 1.22704i
\(953\) 13.3390 23.1037i 0.432091 0.748404i −0.564962 0.825117i \(-0.691109\pi\)
0.997053 + 0.0767132i \(0.0244426\pi\)
\(954\) 3.09456 + 5.35993i 0.100190 + 0.173534i
\(955\) −9.52990 + 16.5063i −0.308380 + 0.534130i
\(956\) −32.3200 55.9799i −1.04530 1.81052i
\(957\) −35.2303 −1.13883
\(958\) −52.0188 −1.68065
\(959\) −25.0836 43.4460i −0.809990 1.40294i
\(960\) −6.51899 11.2912i −0.210399 0.364422i
\(961\) −4.96482 −0.160156
\(962\) 19.0548 0.614353
\(963\) 1.49204 + 2.58429i 0.0480803 + 0.0832776i
\(964\) 6.56417 11.3695i 0.211418 0.366186i
\(965\) −7.84789 13.5929i −0.252632 0.437572i
\(966\) −30.5916 + 52.9862i −0.984268 + 1.70480i
\(967\) 7.10344 12.3035i 0.228431 0.395655i −0.728912 0.684607i \(-0.759974\pi\)
0.957343 + 0.288953i \(0.0933071\pi\)
\(968\) 28.8484 0.927222
\(969\) −5.49777 + 24.8716i −0.176614 + 0.798991i
\(970\) 4.49499 0.144325
\(971\) −9.20622 + 15.9456i −0.295442 + 0.511720i −0.975088 0.221821i \(-0.928800\pi\)
0.679646 + 0.733540i \(0.262133\pi\)
\(972\) 1.52562 2.64245i 0.0489342 0.0847565i
\(973\) 6.82781 + 11.8261i 0.218890 + 0.379128i
\(974\) 43.0479 74.5612i 1.37934 2.38909i
\(975\) 0.583191 + 1.01012i 0.0186771 + 0.0323496i
\(976\) 4.04807 0.129576
\(977\) −3.75672 −0.120188 −0.0600941 0.998193i \(-0.519140\pi\)
−0.0600941 + 0.998193i \(0.519140\pi\)
\(978\) −11.9381 20.6773i −0.381737 0.661188i
\(979\) −10.0504 17.4078i −0.321212 0.556356i
\(980\) 9.23296 0.294936
\(981\) 12.8663 0.410790
\(982\) −26.7165 46.2744i −0.852559 1.47668i
\(983\) 5.73076 9.92597i 0.182783 0.316589i −0.760044 0.649871i \(-0.774823\pi\)
0.942827 + 0.333282i \(0.108156\pi\)
\(984\) −2.94739 5.10502i −0.0939592 0.162742i
\(985\) −4.11810 + 7.13275i −0.131214 + 0.227268i
\(986\) −48.0211 + 83.1749i −1.52930 + 2.64883i
\(987\) −29.6899 −0.945040
\(988\) −14.7920 + 4.67397i −0.470597 + 0.148699i
\(989\) −10.0279 −0.318869
\(990\) −5.41388 + 9.37711i −0.172064 + 0.298024i
\(991\) 4.54948 7.87993i 0.144519 0.250314i −0.784674 0.619908i \(-0.787170\pi\)
0.929193 + 0.369594i \(0.120503\pi\)
\(992\) −16.5991 28.7504i −0.527021 0.912827i
\(993\) 8.38369 14.5210i 0.266048 0.460809i
\(994\) 15.3811 + 26.6409i 0.487860 + 0.844998i
\(995\) 17.3892 0.551274
\(996\) 27.4125 0.868599
\(997\) −12.3463 21.3844i −0.391012 0.677252i 0.601572 0.798819i \(-0.294541\pi\)
−0.992583 + 0.121567i \(0.961208\pi\)
\(998\) −0.473811 0.820665i −0.0149982 0.0259777i
\(999\) −7.26885 −0.229976
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.2.i.f.106.1 10
3.2 odd 2 855.2.k.i.676.5 10
19.7 even 3 inner 285.2.i.f.121.1 yes 10
19.8 odd 6 5415.2.a.z.1.1 5
19.11 even 3 5415.2.a.y.1.5 5
57.26 odd 6 855.2.k.i.406.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.f.106.1 10 1.1 even 1 trivial
285.2.i.f.121.1 yes 10 19.7 even 3 inner
855.2.k.i.406.5 10 57.26 odd 6
855.2.k.i.676.5 10 3.2 odd 2
5415.2.a.y.1.5 5 19.11 even 3
5415.2.a.z.1.1 5 19.8 odd 6