Properties

Label 285.2.i.e.121.1
Level $285$
Weight $2$
Character 285.121
Analytic conductor $2.276$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.1
Root \(-0.309017 - 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 285.121
Dual form 285.2.i.e.106.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.535233i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.809017 - 1.40126i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-0.309017 + 0.535233i) q^{6} +5.23607 q^{7} -2.23607 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.309017 - 0.535233i) q^{10} +2.00000 q^{11} -1.61803 q^{12} +(-1.61803 + 2.80252i) q^{13} +(-1.61803 - 2.80252i) q^{14} +(0.500000 - 0.866025i) q^{15} +(-0.927051 - 1.60570i) q^{16} +(-2.73607 - 4.73901i) q^{17} +0.618034 q^{18} +(2.35410 - 3.66854i) q^{19} +1.61803 q^{20} +(-2.61803 - 4.53457i) q^{21} +(-0.618034 - 1.07047i) q^{22} +(-3.23607 + 5.60503i) q^{23} +(1.11803 + 1.93649i) q^{24} +(-0.500000 + 0.866025i) q^{25} +2.00000 q^{26} +1.00000 q^{27} +(4.23607 - 7.33708i) q^{28} +(2.61803 - 4.53457i) q^{29} -0.618034 q^{30} -3.76393 q^{31} +(-2.80902 + 4.86536i) q^{32} +(-1.00000 - 1.73205i) q^{33} +(-1.69098 + 2.92887i) q^{34} +(2.61803 + 4.53457i) q^{35} +(0.809017 + 1.40126i) q^{36} -6.47214 q^{37} +(-2.69098 - 0.126351i) q^{38} +3.23607 q^{39} +(-1.11803 - 1.93649i) q^{40} +(2.85410 + 4.94345i) q^{41} +(-1.61803 + 2.80252i) q^{42} +(0.854102 + 1.47935i) q^{43} +(1.61803 - 2.80252i) q^{44} -1.00000 q^{45} +4.00000 q^{46} +(-3.11803 + 5.40059i) q^{47} +(-0.927051 + 1.60570i) q^{48} +20.4164 q^{49} +0.618034 q^{50} +(-2.73607 + 4.73901i) q^{51} +(2.61803 + 4.53457i) q^{52} +(0.500000 - 0.866025i) q^{53} +(-0.309017 - 0.535233i) q^{54} +(1.00000 + 1.73205i) q^{55} -11.7082 q^{56} +(-4.35410 - 0.204441i) q^{57} -3.23607 q^{58} +(1.00000 + 1.73205i) q^{59} +(-0.809017 - 1.40126i) q^{60} +(-1.76393 + 3.05522i) q^{61} +(1.16312 + 2.01458i) q^{62} +(-2.61803 + 4.53457i) q^{63} -0.236068 q^{64} -3.23607 q^{65} +(-0.618034 + 1.07047i) q^{66} +(-0.618034 + 1.07047i) q^{67} -8.85410 q^{68} +6.47214 q^{69} +(1.61803 - 2.80252i) q^{70} +(-2.38197 - 4.12569i) q^{71} +(1.11803 - 1.93649i) q^{72} +(6.23607 + 10.8012i) q^{73} +(2.00000 + 3.46410i) q^{74} +1.00000 q^{75} +(-3.23607 - 6.26662i) q^{76} +10.4721 q^{77} +(-1.00000 - 1.73205i) q^{78} +(0.927051 - 1.60570i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(1.76393 - 3.05522i) q^{82} -7.18034 q^{83} -8.47214 q^{84} +(2.73607 - 4.73901i) q^{85} +(0.527864 - 0.914287i) q^{86} -5.23607 q^{87} -4.47214 q^{88} +(-6.23607 + 10.8012i) q^{89} +(0.309017 + 0.535233i) q^{90} +(-8.47214 + 14.6742i) q^{91} +(5.23607 + 9.06914i) q^{92} +(1.88197 + 3.25966i) q^{93} +3.85410 q^{94} +(4.35410 + 0.204441i) q^{95} +5.61803 q^{96} +(1.00000 + 1.73205i) q^{97} +(-6.30902 - 10.9275i) q^{98} +(-1.00000 + 1.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 2 q^{3} + q^{4} + 2 q^{5} + q^{6} + 12 q^{7} - 2 q^{9} - q^{10} + 8 q^{11} - 2 q^{12} - 2 q^{13} - 2 q^{14} + 2 q^{15} + 3 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{19} + 2 q^{20} - 6 q^{21}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 0.535233i −0.218508 0.378467i 0.735844 0.677151i \(-0.236786\pi\)
−0.954352 + 0.298684i \(0.903452\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0.809017 1.40126i 0.404508 0.700629i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) −0.309017 + 0.535233i −0.126156 + 0.218508i
\(7\) 5.23607 1.97905 0.989524 0.144370i \(-0.0461154\pi\)
0.989524 + 0.144370i \(0.0461154\pi\)
\(8\) −2.23607 −0.790569
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.309017 0.535233i 0.0977198 0.169256i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) −1.61803 −0.467086
\(13\) −1.61803 + 2.80252i −0.448762 + 0.777278i −0.998306 0.0581865i \(-0.981468\pi\)
0.549544 + 0.835465i \(0.314802\pi\)
\(14\) −1.61803 2.80252i −0.432438 0.749004i
\(15\) 0.500000 0.866025i 0.129099 0.223607i
\(16\) −0.927051 1.60570i −0.231763 0.401425i
\(17\) −2.73607 4.73901i −0.663594 1.14938i −0.979664 0.200643i \(-0.935697\pi\)
0.316071 0.948736i \(-0.397636\pi\)
\(18\) 0.618034 0.145672
\(19\) 2.35410 3.66854i 0.540068 0.841621i
\(20\) 1.61803 0.361803
\(21\) −2.61803 4.53457i −0.571302 0.989524i
\(22\) −0.618034 1.07047i −0.131765 0.228224i
\(23\) −3.23607 + 5.60503i −0.674767 + 1.16873i 0.301770 + 0.953381i \(0.402422\pi\)
−0.976537 + 0.215350i \(0.930911\pi\)
\(24\) 1.11803 + 1.93649i 0.228218 + 0.395285i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 2.00000 0.392232
\(27\) 1.00000 0.192450
\(28\) 4.23607 7.33708i 0.800542 1.38658i
\(29\) 2.61803 4.53457i 0.486157 0.842048i −0.513717 0.857960i \(-0.671732\pi\)
0.999873 + 0.0159118i \(0.00506509\pi\)
\(30\) −0.618034 −0.112837
\(31\) −3.76393 −0.676022 −0.338011 0.941142i \(-0.609754\pi\)
−0.338011 + 0.941142i \(0.609754\pi\)
\(32\) −2.80902 + 4.86536i −0.496569 + 0.860082i
\(33\) −1.00000 1.73205i −0.174078 0.301511i
\(34\) −1.69098 + 2.92887i −0.290001 + 0.502297i
\(35\) 2.61803 + 4.53457i 0.442529 + 0.766482i
\(36\) 0.809017 + 1.40126i 0.134836 + 0.233543i
\(37\) −6.47214 −1.06401 −0.532006 0.846740i \(-0.678562\pi\)
−0.532006 + 0.846740i \(0.678562\pi\)
\(38\) −2.69098 0.126351i −0.436535 0.0204969i
\(39\) 3.23607 0.518186
\(40\) −1.11803 1.93649i −0.176777 0.306186i
\(41\) 2.85410 + 4.94345i 0.445736 + 0.772037i 0.998103 0.0615637i \(-0.0196087\pi\)
−0.552367 + 0.833601i \(0.686275\pi\)
\(42\) −1.61803 + 2.80252i −0.249668 + 0.432438i
\(43\) 0.854102 + 1.47935i 0.130249 + 0.225598i 0.923773 0.382941i \(-0.125089\pi\)
−0.793523 + 0.608540i \(0.791756\pi\)
\(44\) 1.61803 2.80252i 0.243928 0.422495i
\(45\) −1.00000 −0.149071
\(46\) 4.00000 0.589768
\(47\) −3.11803 + 5.40059i −0.454812 + 0.787757i −0.998677 0.0514150i \(-0.983627\pi\)
0.543865 + 0.839172i \(0.316960\pi\)
\(48\) −0.927051 + 1.60570i −0.133808 + 0.231763i
\(49\) 20.4164 2.91663
\(50\) 0.618034 0.0874032
\(51\) −2.73607 + 4.73901i −0.383126 + 0.663594i
\(52\) 2.61803 + 4.53457i 0.363056 + 0.628831i
\(53\) 0.500000 0.866025i 0.0686803 0.118958i −0.829640 0.558298i \(-0.811454\pi\)
0.898321 + 0.439340i \(0.144788\pi\)
\(54\) −0.309017 0.535233i −0.0420519 0.0728360i
\(55\) 1.00000 + 1.73205i 0.134840 + 0.233550i
\(56\) −11.7082 −1.56457
\(57\) −4.35410 0.204441i −0.576715 0.0270789i
\(58\) −3.23607 −0.424917
\(59\) 1.00000 + 1.73205i 0.130189 + 0.225494i 0.923749 0.382998i \(-0.125108\pi\)
−0.793560 + 0.608492i \(0.791775\pi\)
\(60\) −0.809017 1.40126i −0.104444 0.180902i
\(61\) −1.76393 + 3.05522i −0.225848 + 0.391181i −0.956574 0.291491i \(-0.905849\pi\)
0.730725 + 0.682672i \(0.239182\pi\)
\(62\) 1.16312 + 2.01458i 0.147716 + 0.255852i
\(63\) −2.61803 + 4.53457i −0.329841 + 0.571302i
\(64\) −0.236068 −0.0295085
\(65\) −3.23607 −0.401385
\(66\) −0.618034 + 1.07047i −0.0760747 + 0.131765i
\(67\) −0.618034 + 1.07047i −0.0755049 + 0.130778i −0.901306 0.433184i \(-0.857390\pi\)
0.825801 + 0.563962i \(0.190724\pi\)
\(68\) −8.85410 −1.07372
\(69\) 6.47214 0.779154
\(70\) 1.61803 2.80252i 0.193392 0.334965i
\(71\) −2.38197 4.12569i −0.282687 0.489629i 0.689358 0.724420i \(-0.257893\pi\)
−0.972046 + 0.234792i \(0.924559\pi\)
\(72\) 1.11803 1.93649i 0.131762 0.228218i
\(73\) 6.23607 + 10.8012i 0.729877 + 1.26418i 0.956935 + 0.290302i \(0.0937558\pi\)
−0.227058 + 0.973881i \(0.572911\pi\)
\(74\) 2.00000 + 3.46410i 0.232495 + 0.402694i
\(75\) 1.00000 0.115470
\(76\) −3.23607 6.26662i −0.371202 0.718830i
\(77\) 10.4721 1.19341
\(78\) −1.00000 1.73205i −0.113228 0.196116i
\(79\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) 0.927051 1.60570i 0.103647 0.179523i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 1.76393 3.05522i 0.194794 0.337393i
\(83\) −7.18034 −0.788145 −0.394072 0.919079i \(-0.628934\pi\)
−0.394072 + 0.919079i \(0.628934\pi\)
\(84\) −8.47214 −0.924386
\(85\) 2.73607 4.73901i 0.296768 0.514018i
\(86\) 0.527864 0.914287i 0.0569210 0.0985901i
\(87\) −5.23607 −0.561365
\(88\) −4.47214 −0.476731
\(89\) −6.23607 + 10.8012i −0.661022 + 1.14492i 0.319326 + 0.947645i \(0.396544\pi\)
−0.980347 + 0.197278i \(0.936790\pi\)
\(90\) 0.309017 + 0.535233i 0.0325733 + 0.0564185i
\(91\) −8.47214 + 14.6742i −0.888121 + 1.53827i
\(92\) 5.23607 + 9.06914i 0.545898 + 0.945523i
\(93\) 1.88197 + 3.25966i 0.195151 + 0.338011i
\(94\) 3.85410 0.397520
\(95\) 4.35410 + 0.204441i 0.446721 + 0.0209752i
\(96\) 5.61803 0.573388
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) −6.30902 10.9275i −0.637307 1.10385i
\(99\) −1.00000 + 1.73205i −0.100504 + 0.174078i
\(100\) 0.809017 + 1.40126i 0.0809017 + 0.140126i
\(101\) 7.09017 12.2805i 0.705498 1.22196i −0.261013 0.965335i \(-0.584057\pi\)
0.966511 0.256624i \(-0.0826101\pi\)
\(102\) 3.38197 0.334865
\(103\) −16.9443 −1.66957 −0.834784 0.550577i \(-0.814408\pi\)
−0.834784 + 0.550577i \(0.814408\pi\)
\(104\) 3.61803 6.26662i 0.354777 0.614493i
\(105\) 2.61803 4.53457i 0.255494 0.442529i
\(106\) −0.618034 −0.0600288
\(107\) 17.6525 1.70653 0.853265 0.521478i \(-0.174619\pi\)
0.853265 + 0.521478i \(0.174619\pi\)
\(108\) 0.809017 1.40126i 0.0778477 0.134836i
\(109\) 3.50000 + 6.06218i 0.335239 + 0.580651i 0.983531 0.180741i \(-0.0578495\pi\)
−0.648292 + 0.761392i \(0.724516\pi\)
\(110\) 0.618034 1.07047i 0.0589272 0.102065i
\(111\) 3.23607 + 5.60503i 0.307154 + 0.532006i
\(112\) −4.85410 8.40755i −0.458670 0.794439i
\(113\) 15.4721 1.45550 0.727748 0.685845i \(-0.240567\pi\)
0.727748 + 0.685845i \(0.240567\pi\)
\(114\) 1.23607 + 2.39364i 0.115768 + 0.224184i
\(115\) −6.47214 −0.603530
\(116\) −4.23607 7.33708i −0.393309 0.681231i
\(117\) −1.61803 2.80252i −0.149587 0.259093i
\(118\) 0.618034 1.07047i 0.0568946 0.0985444i
\(119\) −14.3262 24.8138i −1.31328 2.27467i
\(120\) −1.11803 + 1.93649i −0.102062 + 0.176777i
\(121\) −7.00000 −0.636364
\(122\) 2.18034 0.197399
\(123\) 2.85410 4.94345i 0.257346 0.445736i
\(124\) −3.04508 + 5.27424i −0.273457 + 0.473641i
\(125\) −1.00000 −0.0894427
\(126\) 3.23607 0.288292
\(127\) 5.38197 9.32184i 0.477572 0.827179i −0.522097 0.852886i \(-0.674850\pi\)
0.999670 + 0.0257065i \(0.00818354\pi\)
\(128\) 5.69098 + 9.85707i 0.503017 + 0.871250i
\(129\) 0.854102 1.47935i 0.0751995 0.130249i
\(130\) 1.00000 + 1.73205i 0.0877058 + 0.151911i
\(131\) −3.23607 5.60503i −0.282737 0.489714i 0.689321 0.724456i \(-0.257909\pi\)
−0.972058 + 0.234742i \(0.924576\pi\)
\(132\) −3.23607 −0.281664
\(133\) 12.3262 19.2087i 1.06882 1.66561i
\(134\) 0.763932 0.0659937
\(135\) 0.500000 + 0.866025i 0.0430331 + 0.0745356i
\(136\) 6.11803 + 10.5967i 0.524617 + 0.908663i
\(137\) 3.20820 5.55677i 0.274095 0.474747i −0.695811 0.718225i \(-0.744955\pi\)
0.969906 + 0.243478i \(0.0782883\pi\)
\(138\) −2.00000 3.46410i −0.170251 0.294884i
\(139\) −4.11803 + 7.13264i −0.349287 + 0.604983i −0.986123 0.166016i \(-0.946910\pi\)
0.636836 + 0.770999i \(0.280243\pi\)
\(140\) 8.47214 0.716026
\(141\) 6.23607 0.525172
\(142\) −1.47214 + 2.54981i −0.123539 + 0.213976i
\(143\) −3.23607 + 5.60503i −0.270614 + 0.468717i
\(144\) 1.85410 0.154508
\(145\) 5.23607 0.434832
\(146\) 3.85410 6.67550i 0.318968 0.552468i
\(147\) −10.2082 17.6811i −0.841958 1.45831i
\(148\) −5.23607 + 9.06914i −0.430402 + 0.745478i
\(149\) −1.85410 3.21140i −0.151894 0.263088i 0.780030 0.625742i \(-0.215204\pi\)
−0.931924 + 0.362654i \(0.881871\pi\)
\(150\) −0.309017 0.535233i −0.0252311 0.0437016i
\(151\) −3.29180 −0.267883 −0.133941 0.990989i \(-0.542763\pi\)
−0.133941 + 0.990989i \(0.542763\pi\)
\(152\) −5.26393 + 8.20311i −0.426961 + 0.665360i
\(153\) 5.47214 0.442396
\(154\) −3.23607 5.60503i −0.260770 0.451667i
\(155\) −1.88197 3.25966i −0.151163 0.261822i
\(156\) 2.61803 4.53457i 0.209610 0.363056i
\(157\) −10.0000 17.3205i −0.798087 1.38233i −0.920860 0.389892i \(-0.872512\pi\)
0.122774 0.992435i \(-0.460821\pi\)
\(158\) 0 0
\(159\) −1.00000 −0.0793052
\(160\) −5.61803 −0.444145
\(161\) −16.9443 + 29.3483i −1.33540 + 2.31297i
\(162\) −0.309017 + 0.535233i −0.0242787 + 0.0420519i
\(163\) −8.94427 −0.700569 −0.350285 0.936643i \(-0.613915\pi\)
−0.350285 + 0.936643i \(0.613915\pi\)
\(164\) 9.23607 0.721216
\(165\) 1.00000 1.73205i 0.0778499 0.134840i
\(166\) 2.21885 + 3.84316i 0.172216 + 0.298287i
\(167\) −11.5902 + 20.0748i −0.896874 + 1.55343i −0.0654066 + 0.997859i \(0.520834\pi\)
−0.831468 + 0.555573i \(0.812499\pi\)
\(168\) 5.85410 + 10.1396i 0.451654 + 0.782287i
\(169\) 1.26393 + 2.18919i 0.0972255 + 0.168400i
\(170\) −3.38197 −0.259385
\(171\) 2.00000 + 3.87298i 0.152944 + 0.296174i
\(172\) 2.76393 0.210748
\(173\) −11.9443 20.6881i −0.908106 1.57289i −0.816693 0.577073i \(-0.804195\pi\)
−0.0914136 0.995813i \(-0.529139\pi\)
\(174\) 1.61803 + 2.80252i 0.122663 + 0.212458i
\(175\) −2.61803 + 4.53457i −0.197905 + 0.342781i
\(176\) −1.85410 3.21140i −0.139758 0.242068i
\(177\) 1.00000 1.73205i 0.0751646 0.130189i
\(178\) 7.70820 0.577754
\(179\) 4.29180 0.320784 0.160392 0.987053i \(-0.448724\pi\)
0.160392 + 0.987053i \(0.448724\pi\)
\(180\) −0.809017 + 1.40126i −0.0603006 + 0.104444i
\(181\) 2.26393 3.92125i 0.168277 0.291464i −0.769537 0.638602i \(-0.779513\pi\)
0.937814 + 0.347138i \(0.112846\pi\)
\(182\) 10.4721 0.776246
\(183\) 3.52786 0.260787
\(184\) 7.23607 12.5332i 0.533450 0.923963i
\(185\) −3.23607 5.60503i −0.237920 0.412090i
\(186\) 1.16312 2.01458i 0.0852840 0.147716i
\(187\) −5.47214 9.47802i −0.400162 0.693101i
\(188\) 5.04508 + 8.73834i 0.367951 + 0.637309i
\(189\) 5.23607 0.380868
\(190\) −1.23607 2.39364i −0.0896738 0.173653i
\(191\) 8.29180 0.599973 0.299987 0.953943i \(-0.403018\pi\)
0.299987 + 0.953943i \(0.403018\pi\)
\(192\) 0.118034 + 0.204441i 0.00851837 + 0.0147542i
\(193\) −4.61803 7.99867i −0.332413 0.575757i 0.650571 0.759445i \(-0.274530\pi\)
−0.982985 + 0.183688i \(0.941196\pi\)
\(194\) 0.618034 1.07047i 0.0443723 0.0768550i
\(195\) 1.61803 + 2.80252i 0.115870 + 0.200692i
\(196\) 16.5172 28.6087i 1.17980 2.04348i
\(197\) 2.52786 0.180103 0.0900514 0.995937i \(-0.471297\pi\)
0.0900514 + 0.995937i \(0.471297\pi\)
\(198\) 1.23607 0.0878435
\(199\) −10.9443 + 18.9560i −0.775819 + 1.34376i 0.158514 + 0.987357i \(0.449330\pi\)
−0.934333 + 0.356401i \(0.884004\pi\)
\(200\) 1.11803 1.93649i 0.0790569 0.136931i
\(201\) 1.23607 0.0871855
\(202\) −8.76393 −0.616628
\(203\) 13.7082 23.7433i 0.962127 1.66645i
\(204\) 4.42705 + 7.66788i 0.309956 + 0.536859i
\(205\) −2.85410 + 4.94345i −0.199339 + 0.345265i
\(206\) 5.23607 + 9.06914i 0.364814 + 0.631877i
\(207\) −3.23607 5.60503i −0.224922 0.389577i
\(208\) 6.00000 0.416025
\(209\) 4.70820 7.33708i 0.325673 0.507517i
\(210\) −3.23607 −0.223310
\(211\) 1.59017 + 2.75426i 0.109472 + 0.189611i 0.915556 0.402190i \(-0.131751\pi\)
−0.806085 + 0.591800i \(0.798417\pi\)
\(212\) −0.809017 1.40126i −0.0555635 0.0962388i
\(213\) −2.38197 + 4.12569i −0.163210 + 0.282687i
\(214\) −5.45492 9.44819i −0.372890 0.645865i
\(215\) −0.854102 + 1.47935i −0.0582493 + 0.100891i
\(216\) −2.23607 −0.152145
\(217\) −19.7082 −1.33788
\(218\) 2.16312 3.74663i 0.146505 0.253754i
\(219\) 6.23607 10.8012i 0.421394 0.729877i
\(220\) 3.23607 0.218176
\(221\) 17.7082 1.19118
\(222\) 2.00000 3.46410i 0.134231 0.232495i
\(223\) 11.3262 + 19.6176i 0.758461 + 1.31369i 0.943635 + 0.330987i \(0.107382\pi\)
−0.185174 + 0.982706i \(0.559285\pi\)
\(224\) −14.7082 + 25.4754i −0.982733 + 1.70214i
\(225\) −0.500000 0.866025i −0.0333333 0.0577350i
\(226\) −4.78115 8.28120i −0.318038 0.550857i
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) −3.80902 + 5.93583i −0.252258 + 0.393110i
\(229\) 4.52786 0.299210 0.149605 0.988746i \(-0.452200\pi\)
0.149605 + 0.988746i \(0.452200\pi\)
\(230\) 2.00000 + 3.46410i 0.131876 + 0.228416i
\(231\) −5.23607 9.06914i −0.344508 0.596705i
\(232\) −5.85410 + 10.1396i −0.384341 + 0.665697i
\(233\) 8.97214 + 15.5402i 0.587784 + 1.01807i 0.994522 + 0.104527i \(0.0333329\pi\)
−0.406738 + 0.913545i \(0.633334\pi\)
\(234\) −1.00000 + 1.73205i −0.0653720 + 0.113228i
\(235\) −6.23607 −0.406796
\(236\) 3.23607 0.210650
\(237\) 0 0
\(238\) −8.85410 + 15.3358i −0.573926 + 0.994069i
\(239\) −19.1246 −1.23707 −0.618534 0.785758i \(-0.712273\pi\)
−0.618534 + 0.785758i \(0.712273\pi\)
\(240\) −1.85410 −0.119682
\(241\) −11.6803 + 20.2309i −0.752397 + 1.30319i 0.194261 + 0.980950i \(0.437769\pi\)
−0.946658 + 0.322240i \(0.895564\pi\)
\(242\) 2.16312 + 3.74663i 0.139051 + 0.240843i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 2.85410 + 4.94345i 0.182715 + 0.316472i
\(245\) 10.2082 + 17.6811i 0.652178 + 1.12961i
\(246\) −3.52786 −0.224928
\(247\) 6.47214 + 12.5332i 0.411812 + 0.797471i
\(248\) 8.41641 0.534442
\(249\) 3.59017 + 6.21836i 0.227518 + 0.394072i
\(250\) 0.309017 + 0.535233i 0.0195440 + 0.0338511i
\(251\) −2.29180 + 3.96951i −0.144657 + 0.250553i −0.929245 0.369464i \(-0.879541\pi\)
0.784588 + 0.620017i \(0.212875\pi\)
\(252\) 4.23607 + 7.33708i 0.266847 + 0.462193i
\(253\) −6.47214 + 11.2101i −0.406900 + 0.704771i
\(254\) −6.65248 −0.417413
\(255\) −5.47214 −0.342678
\(256\) 3.28115 5.68312i 0.205072 0.355195i
\(257\) 10.7082 18.5472i 0.667959 1.15694i −0.310514 0.950569i \(-0.600501\pi\)
0.978474 0.206371i \(-0.0661654\pi\)
\(258\) −1.05573 −0.0657268
\(259\) −33.8885 −2.10573
\(260\) −2.61803 + 4.53457i −0.162364 + 0.281222i
\(261\) 2.61803 + 4.53457i 0.162052 + 0.280683i
\(262\) −2.00000 + 3.46410i −0.123560 + 0.214013i
\(263\) −4.35410 7.54153i −0.268485 0.465030i 0.699985 0.714157i \(-0.253190\pi\)
−0.968471 + 0.249127i \(0.919856\pi\)
\(264\) 2.23607 + 3.87298i 0.137620 + 0.238366i
\(265\) 1.00000 0.0614295
\(266\) −14.0902 0.661585i −0.863924 0.0405644i
\(267\) 12.4721 0.763282
\(268\) 1.00000 + 1.73205i 0.0610847 + 0.105802i
\(269\) −3.52786 6.11044i −0.215098 0.372560i 0.738205 0.674576i \(-0.235674\pi\)
−0.953303 + 0.302016i \(0.902340\pi\)
\(270\) 0.309017 0.535233i 0.0188062 0.0325733i
\(271\) −3.88197 6.72376i −0.235813 0.408439i 0.723696 0.690119i \(-0.242442\pi\)
−0.959509 + 0.281680i \(0.909109\pi\)
\(272\) −5.07295 + 8.78661i −0.307593 + 0.532766i
\(273\) 16.9443 1.02551
\(274\) −3.96556 −0.239568
\(275\) −1.00000 + 1.73205i −0.0603023 + 0.104447i
\(276\) 5.23607 9.06914i 0.315174 0.545898i
\(277\) 4.29180 0.257869 0.128935 0.991653i \(-0.458844\pi\)
0.128935 + 0.991653i \(0.458844\pi\)
\(278\) 5.09017 0.305288
\(279\) 1.88197 3.25966i 0.112670 0.195151i
\(280\) −5.85410 10.1396i −0.349850 0.605957i
\(281\) 1.61803 2.80252i 0.0965238 0.167184i −0.813720 0.581257i \(-0.802561\pi\)
0.910244 + 0.414073i \(0.135894\pi\)
\(282\) −1.92705 3.33775i −0.114754 0.198760i
\(283\) 6.09017 + 10.5485i 0.362023 + 0.627042i 0.988294 0.152563i \(-0.0487528\pi\)
−0.626271 + 0.779606i \(0.715420\pi\)
\(284\) −7.70820 −0.457398
\(285\) −2.00000 3.87298i −0.118470 0.229416i
\(286\) 4.00000 0.236525
\(287\) 14.9443 + 25.8842i 0.882132 + 1.52790i
\(288\) −2.80902 4.86536i −0.165523 0.286694i
\(289\) −6.47214 + 11.2101i −0.380714 + 0.659416i
\(290\) −1.61803 2.80252i −0.0950142 0.164569i
\(291\) 1.00000 1.73205i 0.0586210 0.101535i
\(292\) 20.1803 1.18097
\(293\) −30.4164 −1.77695 −0.888473 0.458929i \(-0.848233\pi\)
−0.888473 + 0.458929i \(0.848233\pi\)
\(294\) −6.30902 + 10.9275i −0.367949 + 0.637307i
\(295\) −1.00000 + 1.73205i −0.0582223 + 0.100844i
\(296\) 14.4721 0.841176
\(297\) 2.00000 0.116052
\(298\) −1.14590 + 1.98475i −0.0663801 + 0.114974i
\(299\) −10.4721 18.1383i −0.605619 1.04896i
\(300\) 0.809017 1.40126i 0.0467086 0.0809017i
\(301\) 4.47214 + 7.74597i 0.257770 + 0.446470i
\(302\) 1.01722 + 1.76188i 0.0585345 + 0.101385i
\(303\) −14.1803 −0.814639
\(304\) −8.07295 0.379054i −0.463015 0.0217402i
\(305\) −3.52786 −0.202005
\(306\) −1.69098 2.92887i −0.0966671 0.167432i
\(307\) −1.09017 1.88823i −0.0622193 0.107767i 0.833238 0.552915i \(-0.186484\pi\)
−0.895457 + 0.445148i \(0.853151\pi\)
\(308\) 8.47214 14.6742i 0.482745 0.836138i
\(309\) 8.47214 + 14.6742i 0.481963 + 0.834784i
\(310\) −1.16312 + 2.01458i −0.0660607 + 0.114421i
\(311\) 5.41641 0.307136 0.153568 0.988138i \(-0.450924\pi\)
0.153568 + 0.988138i \(0.450924\pi\)
\(312\) −7.23607 −0.409662
\(313\) 8.79837 15.2392i 0.497313 0.861372i −0.502682 0.864472i \(-0.667653\pi\)
0.999995 + 0.00309934i \(0.000986551\pi\)
\(314\) −6.18034 + 10.7047i −0.348777 + 0.604099i
\(315\) −5.23607 −0.295019
\(316\) 0 0
\(317\) 15.4443 26.7503i 0.867437 1.50244i 0.00282959 0.999996i \(-0.499099\pi\)
0.864607 0.502448i \(-0.167567\pi\)
\(318\) 0.309017 + 0.535233i 0.0173288 + 0.0300144i
\(319\) 5.23607 9.06914i 0.293164 0.507774i
\(320\) −0.118034 0.204441i −0.00659830 0.0114286i
\(321\) −8.82624 15.2875i −0.492633 0.853265i
\(322\) 20.9443 1.16718
\(323\) −23.8262 1.11873i −1.32573 0.0622477i
\(324\) −1.61803 −0.0898908
\(325\) −1.61803 2.80252i −0.0897524 0.155456i
\(326\) 2.76393 + 4.78727i 0.153080 + 0.265142i
\(327\) 3.50000 6.06218i 0.193550 0.335239i
\(328\) −6.38197 11.0539i −0.352385 0.610349i
\(329\) −16.3262 + 28.2779i −0.900095 + 1.55901i
\(330\) −1.23607 −0.0680433
\(331\) 6.47214 0.355741 0.177870 0.984054i \(-0.443079\pi\)
0.177870 + 0.984054i \(0.443079\pi\)
\(332\) −5.80902 + 10.0615i −0.318811 + 0.552197i
\(333\) 3.23607 5.60503i 0.177335 0.307154i
\(334\) 14.3262 0.783897
\(335\) −1.23607 −0.0675336
\(336\) −4.85410 + 8.40755i −0.264813 + 0.458670i
\(337\) −1.23607 2.14093i −0.0673329 0.116624i 0.830394 0.557177i \(-0.188116\pi\)
−0.897726 + 0.440553i \(0.854782\pi\)
\(338\) 0.781153 1.35300i 0.0424891 0.0735933i
\(339\) −7.73607 13.3993i −0.420166 0.727748i
\(340\) −4.42705 7.66788i −0.240091 0.415849i
\(341\) −7.52786 −0.407657
\(342\) 1.45492 2.26728i 0.0786728 0.122601i
\(343\) 70.2492 3.79310
\(344\) −1.90983 3.30792i −0.102971 0.178351i
\(345\) 3.23607 + 5.60503i 0.174224 + 0.301765i
\(346\) −7.38197 + 12.7859i −0.396857 + 0.687376i
\(347\) −6.06231 10.5002i −0.325442 0.563681i 0.656160 0.754622i \(-0.272180\pi\)
−0.981602 + 0.190940i \(0.938846\pi\)
\(348\) −4.23607 + 7.33708i −0.227077 + 0.393309i
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) 3.23607 0.172975
\(351\) −1.61803 + 2.80252i −0.0863643 + 0.149587i
\(352\) −5.61803 + 9.73072i −0.299442 + 0.518649i
\(353\) 13.0557 0.694886 0.347443 0.937701i \(-0.387050\pi\)
0.347443 + 0.937701i \(0.387050\pi\)
\(354\) −1.23607 −0.0656963
\(355\) 2.38197 4.12569i 0.126422 0.218969i
\(356\) 10.0902 + 17.4767i 0.534778 + 0.926263i
\(357\) −14.3262 + 24.8138i −0.758225 + 1.31328i
\(358\) −1.32624 2.29711i −0.0700939 0.121406i
\(359\) −16.2361 28.1217i −0.856907 1.48421i −0.874865 0.484368i \(-0.839050\pi\)
0.0179577 0.999839i \(-0.494284\pi\)
\(360\) 2.23607 0.117851
\(361\) −7.91641 17.2722i −0.416653 0.909066i
\(362\) −2.79837 −0.147079
\(363\) 3.50000 + 6.06218i 0.183702 + 0.318182i
\(364\) 13.7082 + 23.7433i 0.718505 + 1.24449i
\(365\) −6.23607 + 10.8012i −0.326411 + 0.565360i
\(366\) −1.09017 1.88823i −0.0569841 0.0986993i
\(367\) 8.09017 14.0126i 0.422303 0.731451i −0.573861 0.818953i \(-0.694555\pi\)
0.996164 + 0.0875018i \(0.0278883\pi\)
\(368\) 12.0000 0.625543
\(369\) −5.70820 −0.297157
\(370\) −2.00000 + 3.46410i −0.103975 + 0.180090i
\(371\) 2.61803 4.53457i 0.135922 0.235423i
\(372\) 6.09017 0.315761
\(373\) −13.5967 −0.704013 −0.352006 0.935998i \(-0.614500\pi\)
−0.352006 + 0.935998i \(0.614500\pi\)
\(374\) −3.38197 + 5.85774i −0.174877 + 0.302896i
\(375\) 0.500000 + 0.866025i 0.0258199 + 0.0447214i
\(376\) 6.97214 12.0761i 0.359560 0.622777i
\(377\) 8.47214 + 14.6742i 0.436337 + 0.755758i
\(378\) −1.61803 2.80252i −0.0832227 0.144146i
\(379\) 34.4721 1.77071 0.885357 0.464911i \(-0.153914\pi\)
0.885357 + 0.464911i \(0.153914\pi\)
\(380\) 3.80902 5.93583i 0.195398 0.304501i
\(381\) −10.7639 −0.551453
\(382\) −2.56231 4.43804i −0.131099 0.227070i
\(383\) 2.06231 + 3.57202i 0.105379 + 0.182522i 0.913893 0.405955i \(-0.133061\pi\)
−0.808514 + 0.588477i \(0.799728\pi\)
\(384\) 5.69098 9.85707i 0.290417 0.503017i
\(385\) 5.23607 + 9.06914i 0.266855 + 0.462206i
\(386\) −2.85410 + 4.94345i −0.145270 + 0.251615i
\(387\) −1.70820 −0.0868329
\(388\) 3.23607 0.164286
\(389\) 16.5623 28.6868i 0.839742 1.45448i −0.0503679 0.998731i \(-0.516039\pi\)
0.890110 0.455745i \(-0.150627\pi\)
\(390\) 1.00000 1.73205i 0.0506370 0.0877058i
\(391\) 35.4164 1.79108
\(392\) −45.6525 −2.30580
\(393\) −3.23607 + 5.60503i −0.163238 + 0.282737i
\(394\) −0.781153 1.35300i −0.0393539 0.0681630i
\(395\) 0 0
\(396\) 1.61803 + 2.80252i 0.0813093 + 0.140832i
\(397\) −4.09017 7.08438i −0.205280 0.355555i 0.744942 0.667129i \(-0.232477\pi\)
−0.950222 + 0.311574i \(0.899144\pi\)
\(398\) 13.5279 0.678091
\(399\) −22.7984 1.07047i −1.14135 0.0535903i
\(400\) 1.85410 0.0927051
\(401\) −10.1459 17.5732i −0.506662 0.877564i −0.999970 0.00770974i \(-0.997546\pi\)
0.493308 0.869855i \(-0.335787\pi\)
\(402\) −0.381966 0.661585i −0.0190507 0.0329968i
\(403\) 6.09017 10.5485i 0.303373 0.525457i
\(404\) −11.4721 19.8703i −0.570760 0.988585i
\(405\) 0.500000 0.866025i 0.0248452 0.0430331i
\(406\) −16.9443 −0.840930
\(407\) −12.9443 −0.641624
\(408\) 6.11803 10.5967i 0.302888 0.524617i
\(409\) 13.1803 22.8290i 0.651726 1.12882i −0.330978 0.943638i \(-0.607379\pi\)
0.982704 0.185184i \(-0.0592881\pi\)
\(410\) 3.52786 0.174229
\(411\) −6.41641 −0.316498
\(412\) −13.7082 + 23.7433i −0.675355 + 1.16975i
\(413\) 5.23607 + 9.06914i 0.257650 + 0.446263i
\(414\) −2.00000 + 3.46410i −0.0982946 + 0.170251i
\(415\) −3.59017 6.21836i −0.176235 0.305247i
\(416\) −9.09017 15.7446i −0.445682 0.771944i
\(417\) 8.23607 0.403322
\(418\) −5.38197 0.252703i −0.263241 0.0123601i
\(419\) 17.0557 0.833227 0.416613 0.909084i \(-0.363217\pi\)
0.416613 + 0.909084i \(0.363217\pi\)
\(420\) −4.23607 7.33708i −0.206699 0.358013i
\(421\) −13.1803 22.8290i −0.642370 1.11262i −0.984902 0.173112i \(-0.944618\pi\)
0.342532 0.939506i \(-0.388716\pi\)
\(422\) 0.982779 1.70222i 0.0478409 0.0828629i
\(423\) −3.11803 5.40059i −0.151604 0.262586i
\(424\) −1.11803 + 1.93649i −0.0542965 + 0.0940443i
\(425\) 5.47214 0.265438
\(426\) 2.94427 0.142650
\(427\) −9.23607 + 15.9973i −0.446965 + 0.774165i
\(428\) 14.2812 24.7357i 0.690306 1.19564i
\(429\) 6.47214 0.312478
\(430\) 1.05573 0.0509117
\(431\) 5.23607 9.06914i 0.252213 0.436845i −0.711922 0.702258i \(-0.752175\pi\)
0.964135 + 0.265413i \(0.0855085\pi\)
\(432\) −0.927051 1.60570i −0.0446028 0.0772542i
\(433\) 19.7984 34.2918i 0.951449 1.64796i 0.209157 0.977882i \(-0.432928\pi\)
0.742292 0.670076i \(-0.233739\pi\)
\(434\) 6.09017 + 10.5485i 0.292338 + 0.506343i
\(435\) −2.61803 4.53457i −0.125525 0.217416i
\(436\) 11.3262 0.542428
\(437\) 12.9443 + 25.0665i 0.619208 + 1.19909i
\(438\) −7.70820 −0.368312
\(439\) 0.881966 + 1.52761i 0.0420939 + 0.0729088i 0.886305 0.463102i \(-0.153264\pi\)
−0.844211 + 0.536011i \(0.819930\pi\)
\(440\) −2.23607 3.87298i −0.106600 0.184637i
\(441\) −10.2082 + 17.6811i −0.486105 + 0.841958i
\(442\) −5.47214 9.47802i −0.260283 0.450823i
\(443\) 3.35410 5.80948i 0.159358 0.276016i −0.775279 0.631619i \(-0.782391\pi\)
0.934637 + 0.355602i \(0.115724\pi\)
\(444\) 10.4721 0.496986
\(445\) −12.4721 −0.591236
\(446\) 7.00000 12.1244i 0.331460 0.574105i
\(447\) −1.85410 + 3.21140i −0.0876960 + 0.151894i
\(448\) −1.23607 −0.0583987
\(449\) 32.0689 1.51342 0.756712 0.653748i \(-0.226804\pi\)
0.756712 + 0.653748i \(0.226804\pi\)
\(450\) −0.309017 + 0.535233i −0.0145672 + 0.0252311i
\(451\) 5.70820 + 9.88690i 0.268789 + 0.465556i
\(452\) 12.5172 21.6805i 0.588761 1.01976i
\(453\) 1.64590 + 2.85078i 0.0773310 + 0.133941i
\(454\) −1.23607 2.14093i −0.0580115 0.100479i
\(455\) −16.9443 −0.794360
\(456\) 9.73607 + 0.457144i 0.455933 + 0.0214077i
\(457\) 29.2361 1.36761 0.683803 0.729667i \(-0.260325\pi\)
0.683803 + 0.729667i \(0.260325\pi\)
\(458\) −1.39919 2.42346i −0.0653797 0.113241i
\(459\) −2.73607 4.73901i −0.127709 0.221198i
\(460\) −5.23607 + 9.06914i −0.244133 + 0.422851i
\(461\) 19.6180 + 33.9794i 0.913703 + 1.58258i 0.808789 + 0.588099i \(0.200123\pi\)
0.104914 + 0.994481i \(0.466543\pi\)
\(462\) −3.23607 + 5.60503i −0.150556 + 0.260770i
\(463\) −24.2918 −1.12894 −0.564468 0.825455i \(-0.690919\pi\)
−0.564468 + 0.825455i \(0.690919\pi\)
\(464\) −9.70820 −0.450692
\(465\) −1.88197 + 3.25966i −0.0872741 + 0.151163i
\(466\) 5.54508 9.60437i 0.256871 0.444914i
\(467\) −20.2361 −0.936414 −0.468207 0.883619i \(-0.655100\pi\)
−0.468207 + 0.883619i \(0.655100\pi\)
\(468\) −5.23607 −0.242037
\(469\) −3.23607 + 5.60503i −0.149428 + 0.258816i
\(470\) 1.92705 + 3.33775i 0.0888882 + 0.153959i
\(471\) −10.0000 + 17.3205i −0.460776 + 0.798087i
\(472\) −2.23607 3.87298i −0.102923 0.178269i
\(473\) 1.70820 + 2.95870i 0.0785433 + 0.136041i
\(474\) 0 0
\(475\) 2.00000 + 3.87298i 0.0917663 + 0.177705i
\(476\) −46.3607 −2.12494
\(477\) 0.500000 + 0.866025i 0.0228934 + 0.0396526i
\(478\) 5.90983 + 10.2361i 0.270309 + 0.468190i
\(479\) −12.0344 + 20.8443i −0.549868 + 0.952399i 0.448415 + 0.893825i \(0.351989\pi\)
−0.998283 + 0.0585735i \(0.981345\pi\)
\(480\) 2.80902 + 4.86536i 0.128213 + 0.222072i
\(481\) 10.4721 18.1383i 0.477488 0.827034i
\(482\) 14.4377 0.657619
\(483\) 33.8885 1.54198
\(484\) −5.66312 + 9.80881i −0.257414 + 0.445855i
\(485\) −1.00000 + 1.73205i −0.0454077 + 0.0786484i
\(486\) 0.618034 0.0280346
\(487\) −20.2918 −0.919509 −0.459755 0.888046i \(-0.652063\pi\)
−0.459755 + 0.888046i \(0.652063\pi\)
\(488\) 3.94427 6.83168i 0.178549 0.309256i
\(489\) 4.47214 + 7.74597i 0.202237 + 0.350285i
\(490\) 6.30902 10.9275i 0.285012 0.493656i
\(491\) 4.14590 + 7.18091i 0.187102 + 0.324070i 0.944283 0.329135i \(-0.106757\pi\)
−0.757181 + 0.653205i \(0.773424\pi\)
\(492\) −4.61803 7.99867i −0.208197 0.360608i
\(493\) −28.6525 −1.29044
\(494\) 4.70820 7.33708i 0.211832 0.330111i
\(495\) −2.00000 −0.0898933
\(496\) 3.48936 + 6.04374i 0.156677 + 0.271372i
\(497\) −12.4721 21.6024i −0.559452 0.968999i
\(498\) 2.21885 3.84316i 0.0994289 0.172216i
\(499\) −3.82624 6.62724i −0.171286 0.296676i 0.767584 0.640949i \(-0.221459\pi\)
−0.938870 + 0.344273i \(0.888126\pi\)
\(500\) −0.809017 + 1.40126i −0.0361803 + 0.0626662i
\(501\) 23.1803 1.03562
\(502\) 2.83282 0.126435
\(503\) −14.1180 + 24.4532i −0.629492 + 1.09031i 0.358162 + 0.933660i \(0.383404\pi\)
−0.987654 + 0.156653i \(0.949930\pi\)
\(504\) 5.85410 10.1396i 0.260762 0.451654i
\(505\) 14.1803 0.631017
\(506\) 8.00000 0.355643
\(507\) 1.26393 2.18919i 0.0561332 0.0972255i
\(508\) −8.70820 15.0831i −0.386364 0.669202i
\(509\) −10.8541 + 18.7999i −0.481100 + 0.833289i −0.999765 0.0216885i \(-0.993096\pi\)
0.518665 + 0.854977i \(0.326429\pi\)
\(510\) 1.69098 + 2.92887i 0.0748780 + 0.129692i
\(511\) 32.6525 + 56.5557i 1.44446 + 2.50188i
\(512\) 18.7082 0.826794
\(513\) 2.35410 3.66854i 0.103936 0.161970i
\(514\) −13.2361 −0.583818
\(515\) −8.47214 14.6742i −0.373327 0.646621i
\(516\) −1.38197 2.39364i −0.0608377 0.105374i
\(517\) −6.23607 + 10.8012i −0.274262 + 0.475036i
\(518\) 10.4721 + 18.1383i 0.460119 + 0.796950i
\(519\) −11.9443 + 20.6881i −0.524295 + 0.908106i
\(520\) 7.23607 0.317323
\(521\) 1.41641 0.0620540 0.0310270 0.999519i \(-0.490122\pi\)
0.0310270 + 0.999519i \(0.490122\pi\)
\(522\) 1.61803 2.80252i 0.0708194 0.122663i
\(523\) 4.41641 7.64944i 0.193116 0.334487i −0.753165 0.657831i \(-0.771474\pi\)
0.946281 + 0.323345i \(0.104807\pi\)
\(524\) −10.4721 −0.457477
\(525\) 5.23607 0.228521
\(526\) −2.69098 + 4.66092i −0.117332 + 0.203226i
\(527\) 10.2984 + 17.8373i 0.448604 + 0.777005i
\(528\) −1.85410 + 3.21140i −0.0806894 + 0.139758i
\(529\) −9.44427 16.3580i −0.410621 0.711216i
\(530\) −0.309017 0.535233i −0.0134228 0.0232490i
\(531\) −2.00000 −0.0867926
\(532\) −16.9443 32.8124i −0.734627 1.42260i
\(533\) −18.4721 −0.800117
\(534\) −3.85410 6.67550i −0.166783 0.288877i
\(535\) 8.82624 + 15.2875i 0.381592 + 0.660936i
\(536\) 1.38197 2.39364i 0.0596918 0.103389i
\(537\) −2.14590 3.71680i −0.0926023 0.160392i
\(538\) −2.18034 + 3.77646i −0.0940011 + 0.162815i
\(539\) 40.8328 1.75879
\(540\) 1.61803 0.0696291
\(541\) 7.79180 13.4958i 0.334995 0.580229i −0.648488 0.761224i \(-0.724599\pi\)
0.983484 + 0.180995i \(0.0579319\pi\)
\(542\) −2.39919 + 4.15551i −0.103054 + 0.178495i
\(543\) −4.52786 −0.194309
\(544\) 30.7426 1.31808
\(545\) −3.50000 + 6.06218i −0.149924 + 0.259675i
\(546\) −5.23607 9.06914i −0.224083 0.388123i
\(547\) 14.4164 24.9700i 0.616401 1.06764i −0.373736 0.927535i \(-0.621923\pi\)
0.990137 0.140103i \(-0.0447433\pi\)
\(548\) −5.19098 8.99105i −0.221748 0.384078i
\(549\) −1.76393 3.05522i −0.0752828 0.130394i
\(550\) 1.23607 0.0527061
\(551\) −10.4721 20.2792i −0.446128 0.863923i
\(552\) −14.4721 −0.615975
\(553\) 0 0
\(554\) −1.32624 2.29711i −0.0563464 0.0975949i
\(555\) −3.23607 + 5.60503i −0.137363 + 0.237920i
\(556\) 6.66312 + 11.5409i 0.282579 + 0.489442i
\(557\) 15.1803 26.2931i 0.643212 1.11408i −0.341500 0.939882i \(-0.610935\pi\)
0.984711 0.174193i \(-0.0557318\pi\)
\(558\) −2.32624 −0.0984775
\(559\) −5.52786 −0.233804
\(560\) 4.85410 8.40755i 0.205123 0.355284i
\(561\) −5.47214 + 9.47802i −0.231034 + 0.400162i
\(562\) −2.00000 −0.0843649
\(563\) −37.0689 −1.56227 −0.781134 0.624364i \(-0.785358\pi\)
−0.781134 + 0.624364i \(0.785358\pi\)
\(564\) 5.04508 8.73834i 0.212436 0.367951i
\(565\) 7.73607 + 13.3993i 0.325459 + 0.563711i
\(566\) 3.76393 6.51932i 0.158210 0.274028i
\(567\) −2.61803 4.53457i −0.109947 0.190434i
\(568\) 5.32624 + 9.22531i 0.223484 + 0.387086i
\(569\) 2.94427 0.123430 0.0617151 0.998094i \(-0.480343\pi\)
0.0617151 + 0.998094i \(0.480343\pi\)
\(570\) −1.45492 + 2.26728i −0.0609397 + 0.0949661i
\(571\) −15.6525 −0.655036 −0.327518 0.944845i \(-0.606212\pi\)
−0.327518 + 0.944845i \(0.606212\pi\)
\(572\) 5.23607 + 9.06914i 0.218931 + 0.379200i
\(573\) −4.14590 7.18091i −0.173197 0.299987i
\(574\) 9.23607 15.9973i 0.385506 0.667716i
\(575\) −3.23607 5.60503i −0.134953 0.233746i
\(576\) 0.118034 0.204441i 0.00491808 0.00851837i
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 8.00000 0.332756
\(579\) −4.61803 + 7.99867i −0.191919 + 0.332413i
\(580\) 4.23607 7.33708i 0.175893 0.304656i
\(581\) −37.5967 −1.55978
\(582\) −1.23607 −0.0512367
\(583\) 1.00000 1.73205i 0.0414158 0.0717342i
\(584\) −13.9443 24.1522i −0.577018 0.999425i
\(585\) 1.61803 2.80252i 0.0668975 0.115870i
\(586\) 9.39919 + 16.2799i 0.388277 + 0.672515i
\(587\) 1.82624 + 3.16314i 0.0753769 + 0.130557i 0.901250 0.433299i \(-0.142651\pi\)
−0.825873 + 0.563856i \(0.809317\pi\)
\(588\) −33.0344 −1.36232
\(589\) −8.86068 + 13.8081i −0.365098 + 0.568955i
\(590\) 1.23607 0.0508881
\(591\) −1.26393 2.18919i −0.0519912 0.0900514i
\(592\) 6.00000 + 10.3923i 0.246598 + 0.427121i
\(593\) −11.4443 + 19.8221i −0.469960 + 0.813994i −0.999410 0.0343466i \(-0.989065\pi\)
0.529450 + 0.848341i \(0.322398\pi\)
\(594\) −0.618034 1.07047i −0.0253582 0.0439218i
\(595\) 14.3262 24.8138i 0.587318 1.01727i
\(596\) −6.00000 −0.245770
\(597\) 21.8885 0.895838
\(598\) −6.47214 + 11.2101i −0.264665 + 0.458414i
\(599\) 0.562306 0.973942i 0.0229752 0.0397942i −0.854309 0.519765i \(-0.826019\pi\)
0.877284 + 0.479971i \(0.159353\pi\)
\(600\) −2.23607 −0.0912871
\(601\) 23.8885 0.974434 0.487217 0.873281i \(-0.338012\pi\)
0.487217 + 0.873281i \(0.338012\pi\)
\(602\) 2.76393 4.78727i 0.112649 0.195115i
\(603\) −0.618034 1.07047i −0.0251683 0.0435928i
\(604\) −2.66312 + 4.61266i −0.108361 + 0.187686i
\(605\) −3.50000 6.06218i −0.142295 0.246463i
\(606\) 4.38197 + 7.58979i 0.178005 + 0.308314i
\(607\) 39.4164 1.59986 0.799931 0.600092i \(-0.204869\pi\)
0.799931 + 0.600092i \(0.204869\pi\)
\(608\) 11.2361 + 21.7586i 0.455683 + 0.882426i
\(609\) −27.4164 −1.11097
\(610\) 1.09017 + 1.88823i 0.0441397 + 0.0764522i
\(611\) −10.0902 17.4767i −0.408205 0.707031i
\(612\) 4.42705 7.66788i 0.178953 0.309956i
\(613\) −11.0000 19.0526i −0.444286 0.769526i 0.553716 0.832705i \(-0.313209\pi\)
−0.998002 + 0.0631797i \(0.979876\pi\)
\(614\) −0.673762 + 1.16699i −0.0271908 + 0.0470959i
\(615\) 5.70820 0.230177
\(616\) −23.4164 −0.943474
\(617\) −3.20820 + 5.55677i −0.129157 + 0.223707i −0.923350 0.383958i \(-0.874561\pi\)
0.794193 + 0.607666i \(0.207894\pi\)
\(618\) 5.23607 9.06914i 0.210626 0.364814i
\(619\) 0.708204 0.0284651 0.0142326 0.999899i \(-0.495469\pi\)
0.0142326 + 0.999899i \(0.495469\pi\)
\(620\) −6.09017 −0.244587
\(621\) −3.23607 + 5.60503i −0.129859 + 0.224922i
\(622\) −1.67376 2.89904i −0.0671117 0.116241i
\(623\) −32.6525 + 56.5557i −1.30819 + 2.26586i
\(624\) −3.00000 5.19615i −0.120096 0.208013i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −10.8754 −0.434668
\(627\) −8.70820 0.408882i −0.347772 0.0163292i
\(628\) −32.3607 −1.29133
\(629\) 17.7082 + 30.6715i 0.706072 + 1.22295i
\(630\) 1.61803 + 2.80252i 0.0644640 + 0.111655i
\(631\) −15.3541 + 26.5941i −0.611237 + 1.05869i 0.379795 + 0.925071i \(0.375995\pi\)
−0.991032 + 0.133623i \(0.957339\pi\)
\(632\) 0 0
\(633\) 1.59017 2.75426i 0.0632036 0.109472i
\(634\) −19.0902 −0.758168
\(635\) 10.7639 0.427154
\(636\) −0.809017 + 1.40126i −0.0320796 + 0.0555635i
\(637\) −33.0344 + 57.2173i −1.30887 + 2.26703i
\(638\) −6.47214 −0.256234
\(639\) 4.76393 0.188458
\(640\) −5.69098 + 9.85707i −0.224956 + 0.389635i
\(641\) 8.52786 + 14.7707i 0.336830 + 0.583407i 0.983835 0.179079i \(-0.0573118\pi\)
−0.647004 + 0.762486i \(0.723978\pi\)
\(642\) −5.45492 + 9.44819i −0.215288 + 0.372890i
\(643\) 5.18034 + 8.97261i 0.204293 + 0.353845i 0.949907 0.312532i \(-0.101177\pi\)
−0.745614 + 0.666378i \(0.767844\pi\)
\(644\) 27.4164 + 47.4866i 1.08036 + 1.87123i
\(645\) 1.70820 0.0672605
\(646\) 6.76393 + 13.0983i 0.266123 + 0.515346i
\(647\) −22.5967 −0.888370 −0.444185 0.895935i \(-0.646507\pi\)
−0.444185 + 0.895935i \(0.646507\pi\)
\(648\) 1.11803 + 1.93649i 0.0439205 + 0.0760726i
\(649\) 2.00000 + 3.46410i 0.0785069 + 0.135978i
\(650\) −1.00000 + 1.73205i −0.0392232 + 0.0679366i
\(651\) 9.85410 + 17.0678i 0.386213 + 0.668940i
\(652\) −7.23607 + 12.5332i −0.283386 + 0.490839i
\(653\) −12.4721 −0.488072 −0.244036 0.969766i \(-0.578472\pi\)
−0.244036 + 0.969766i \(0.578472\pi\)
\(654\) −4.32624 −0.169169
\(655\) 3.23607 5.60503i 0.126444 0.219007i
\(656\) 5.29180 9.16566i 0.206610 0.357859i
\(657\) −12.4721 −0.486584
\(658\) 20.1803 0.786712
\(659\) −2.76393 + 4.78727i −0.107668 + 0.186486i −0.914825 0.403851i \(-0.867672\pi\)
0.807157 + 0.590336i \(0.201005\pi\)
\(660\) −1.61803 2.80252i −0.0629819 0.109088i
\(661\) 23.2082 40.1978i 0.902695 1.56351i 0.0787121 0.996897i \(-0.474919\pi\)
0.823982 0.566615i \(-0.191747\pi\)
\(662\) −2.00000 3.46410i −0.0777322 0.134636i
\(663\) −8.85410 15.3358i −0.343865 0.595591i
\(664\) 16.0557 0.623083
\(665\) 22.7984 + 1.07047i 0.884083 + 0.0415109i
\(666\) −4.00000 −0.154997
\(667\) 16.9443 + 29.3483i 0.656085 + 1.13637i
\(668\) 18.7533 + 32.4816i 0.725587 + 1.25675i
\(669\) 11.3262 19.6176i 0.437898 0.758461i
\(670\) 0.381966 + 0.661585i 0.0147566 + 0.0255592i
\(671\) −3.52786 + 6.11044i −0.136192 + 0.235891i
\(672\) 29.4164 1.13476
\(673\) 2.29180 0.0883422 0.0441711 0.999024i \(-0.485935\pi\)
0.0441711 + 0.999024i \(0.485935\pi\)
\(674\) −0.763932 + 1.32317i −0.0294256 + 0.0509666i
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 4.09017 0.157314
\(677\) 15.0000 0.576497 0.288248 0.957556i \(-0.406927\pi\)
0.288248 + 0.957556i \(0.406927\pi\)
\(678\) −4.78115 + 8.28120i −0.183619 + 0.318038i
\(679\) 5.23607 + 9.06914i 0.200942 + 0.348041i
\(680\) −6.11803 + 10.5967i −0.234616 + 0.406367i
\(681\) −2.00000 3.46410i −0.0766402 0.132745i
\(682\) 2.32624 + 4.02916i 0.0890763 + 0.154285i
\(683\) 12.8197 0.490531 0.245265 0.969456i \(-0.421125\pi\)
0.245265 + 0.969456i \(0.421125\pi\)
\(684\) 7.04508 + 0.330792i 0.269376 + 0.0126482i
\(685\) 6.41641 0.245158
\(686\) −21.7082 37.5997i −0.828823 1.43556i
\(687\) −2.26393 3.92125i −0.0863744 0.149605i
\(688\) 1.58359 2.74286i 0.0603739 0.104571i
\(689\) 1.61803 + 2.80252i 0.0616422 + 0.106767i
\(690\) 2.00000 3.46410i 0.0761387 0.131876i
\(691\) −27.1803 −1.03399 −0.516994 0.855989i \(-0.672949\pi\)
−0.516994 + 0.855989i \(0.672949\pi\)
\(692\) −38.6525 −1.46935
\(693\) −5.23607 + 9.06914i −0.198902 + 0.344508i
\(694\) −3.74671 + 6.48949i −0.142223 + 0.246338i
\(695\) −8.23607 −0.312412
\(696\) 11.7082 0.443798
\(697\) 15.6180 27.0512i 0.591575 1.02464i
\(698\) 8.34346 + 14.4513i 0.315805 + 0.546990i
\(699\) 8.97214 15.5402i 0.339357 0.587784i
\(700\) 4.23607 + 7.33708i 0.160108 + 0.277316i
\(701\) 17.1803 + 29.7572i 0.648892 + 1.12391i 0.983388 + 0.181517i \(0.0581008\pi\)
−0.334495 + 0.942397i \(0.608566\pi\)
\(702\) 2.00000 0.0754851
\(703\) −15.2361 + 23.7433i −0.574639 + 0.895496i
\(704\) −0.472136 −0.0177943
\(705\) 3.11803 + 5.40059i 0.117432 + 0.203398i
\(706\) −4.03444 6.98786i −0.151838 0.262992i
\(707\) 37.1246 64.3017i 1.39621 2.41831i
\(708\) −1.61803 2.80252i −0.0608094 0.105325i
\(709\) 5.91641 10.2475i 0.222195 0.384854i −0.733279 0.679928i \(-0.762011\pi\)
0.955474 + 0.295074i \(0.0953444\pi\)
\(710\) −2.94427 −0.110497
\(711\) 0 0
\(712\) 13.9443 24.1522i 0.522584 0.905141i
\(713\) 12.1803 21.0970i 0.456157 0.790088i
\(714\) 17.7082 0.662713
\(715\) −6.47214 −0.242044
\(716\) 3.47214 6.01392i 0.129760 0.224751i
\(717\) 9.56231 + 16.5624i 0.357111 + 0.618534i
\(718\) −10.0344 + 17.3802i −0.374482 + 0.648622i
\(719\) 10.4721 + 18.1383i 0.390545 + 0.676443i 0.992521 0.122070i \(-0.0389533\pi\)
−0.601977 + 0.798514i \(0.705620\pi\)
\(720\) 0.927051 + 1.60570i 0.0345492 + 0.0598409i
\(721\) −88.7214 −3.30416
\(722\) −6.79837 + 9.57454i −0.253009 + 0.356328i
\(723\) 23.3607 0.868793
\(724\) −3.66312 6.34471i −0.136139 0.235799i
\(725\) 2.61803 + 4.53457i 0.0972313 + 0.168410i
\(726\) 2.16312 3.74663i 0.0802809 0.139051i
\(727\) −18.3820 31.8385i −0.681749 1.18082i −0.974447 0.224619i \(-0.927886\pi\)
0.292697 0.956205i \(-0.405447\pi\)
\(728\) 18.9443 32.8124i 0.702121 1.21611i
\(729\) 1.00000 0.0370370
\(730\) 7.70820 0.285293
\(731\) 4.67376 8.09519i 0.172865 0.299412i
\(732\) 2.85410 4.94345i 0.105491 0.182715i
\(733\) 8.87539 0.327820 0.163910 0.986475i \(-0.447589\pi\)
0.163910 + 0.986475i \(0.447589\pi\)
\(734\) −10.0000 −0.369107
\(735\) 10.2082 17.6811i 0.376535 0.652178i
\(736\) −18.1803 31.4893i −0.670136 1.16071i
\(737\) −1.23607 + 2.14093i −0.0455311 + 0.0788623i
\(738\) 1.76393 + 3.05522i 0.0649312 + 0.112464i
\(739\) −5.82624 10.0913i −0.214322 0.371216i 0.738741 0.673990i \(-0.235421\pi\)
−0.953063 + 0.302774i \(0.902087\pi\)
\(740\) −10.4721 −0.384963
\(741\) 7.61803 11.8717i 0.279855 0.436116i
\(742\) −3.23607 −0.118800
\(743\) 3.06231 + 5.30407i 0.112345 + 0.194587i 0.916715 0.399541i \(-0.130830\pi\)
−0.804370 + 0.594128i \(0.797497\pi\)
\(744\) −4.20820 7.28882i −0.154280 0.267221i
\(745\) 1.85410 3.21140i 0.0679290 0.117657i
\(746\) 4.20163 + 7.27743i 0.153832 + 0.266446i
\(747\) 3.59017 6.21836i 0.131357 0.227518i
\(748\) −17.7082 −0.647476
\(749\) 92.4296 3.37730
\(750\) 0.309017 0.535233i 0.0112837 0.0195440i
\(751\) −14.8262 + 25.6798i −0.541017 + 0.937069i 0.457829 + 0.889040i \(0.348627\pi\)
−0.998846 + 0.0480288i \(0.984706\pi\)
\(752\) 11.5623 0.421634
\(753\) 4.58359 0.167035
\(754\) 5.23607 9.06914i 0.190686 0.330278i
\(755\) −1.64590 2.85078i −0.0599004 0.103750i
\(756\) 4.23607 7.33708i 0.154064 0.266847i
\(757\) 9.56231 + 16.5624i 0.347548 + 0.601971i 0.985813 0.167846i \(-0.0536811\pi\)
−0.638265 + 0.769816i \(0.720348\pi\)
\(758\) −10.6525 18.4506i −0.386915 0.670157i
\(759\) 12.9443 0.469847
\(760\) −9.73607 0.457144i −0.353164 0.0165823i
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 3.32624 + 5.76121i 0.120497 + 0.208707i
\(763\) 18.3262 + 31.7420i 0.663454 + 1.14914i
\(764\) 6.70820 11.6190i 0.242694 0.420359i
\(765\) 2.73607 + 4.73901i 0.0989227 + 0.171339i
\(766\) 1.27458 2.20763i 0.0460523 0.0797649i
\(767\) −6.47214 −0.233695
\(768\) −6.56231 −0.236797
\(769\) −9.91641 + 17.1757i −0.357595 + 0.619372i −0.987558 0.157252i \(-0.949736\pi\)
0.629964 + 0.776625i \(0.283070\pi\)
\(770\) 3.23607 5.60503i 0.116620 0.201991i
\(771\) −21.4164 −0.771293
\(772\) −14.9443 −0.537856
\(773\) −9.47214 + 16.4062i −0.340689 + 0.590091i −0.984561 0.175043i \(-0.943994\pi\)
0.643872 + 0.765133i \(0.277327\pi\)
\(774\) 0.527864 + 0.914287i 0.0189737 + 0.0328634i
\(775\) 1.88197 3.25966i 0.0676022 0.117090i
\(776\) −2.23607 3.87298i −0.0802702 0.139032i
\(777\) 16.9443 + 29.3483i 0.607872 + 1.05287i
\(778\) −20.4721 −0.733962
\(779\) 24.8541 + 1.16699i 0.890491 + 0.0418118i
\(780\) 5.23607 0.187481
\(781\) −4.76393 8.25137i −0.170467 0.295257i
\(782\) −10.9443 18.9560i −0.391366 0.677866i
\(783\) 2.61803 4.53457i 0.0935609 0.162052i
\(784\) −18.9271 32.7826i −0.675966 1.17081i
\(785\) 10.0000 17.3205i 0.356915 0.618195i
\(786\) 4.00000 0.142675
\(787\) 14.7639 0.526277 0.263139 0.964758i \(-0.415242\pi\)
0.263139 + 0.964758i \(0.415242\pi\)
\(788\) 2.04508 3.54219i 0.0728531 0.126185i
\(789\) −4.35410 + 7.54153i −0.155010 + 0.268485i
\(790\) 0 0
\(791\) 81.0132 2.88050
\(792\) 2.23607 3.87298i 0.0794552 0.137620i
\(793\) −5.70820 9.88690i −0.202704 0.351094i
\(794\) −2.52786 + 4.37839i −0.0897105 + 0.155383i
\(795\) −0.500000 0.866025i −0.0177332 0.0307148i
\(796\) 17.7082 + 30.6715i 0.627651 + 1.08712i
\(797\) −52.3050 −1.85274 −0.926368 0.376619i \(-0.877087\pi\)
−0.926368 + 0.376619i \(0.877087\pi\)
\(798\) 6.47214 + 12.5332i 0.229111 + 0.443672i
\(799\) 34.1246 1.20724
\(800\) −2.80902 4.86536i −0.0993137 0.172016i
\(801\) −6.23607 10.8012i −0.220341 0.381641i
\(802\) −6.27051 + 10.8608i −0.221419 + 0.383510i
\(803\) 12.4721 + 21.6024i 0.440132 + 0.762331i
\(804\) 1.00000 1.73205i 0.0352673 0.0610847i
\(805\) −33.8885 −1.19441
\(806\) −7.52786 −0.265158
\(807\) −3.52786 + 6.11044i −0.124187 + 0.215098i
\(808\) −15.8541 + 27.4601i −0.557745 + 0.966043i
\(809\) −23.7082 −0.833536 −0.416768 0.909013i \(-0.636837\pi\)
−0.416768 + 0.909013i \(0.636837\pi\)
\(810\) −0.618034 −0.0217155
\(811\) 10.5344 18.2462i 0.369914 0.640710i −0.619638 0.784888i \(-0.712720\pi\)
0.989552 + 0.144178i \(0.0460537\pi\)
\(812\) −22.1803 38.4175i −0.778377 1.34819i
\(813\) −3.88197 + 6.72376i −0.136146 + 0.235813i
\(814\) 4.00000 + 6.92820i 0.140200 + 0.242833i
\(815\) −4.47214 7.74597i −0.156652 0.271329i
\(816\) 10.1459 0.355177
\(817\) 7.43769 + 0.349227i 0.260212 + 0.0122179i
\(818\) −16.2918 −0.569629
\(819\) −8.47214 14.6742i −0.296040 0.512757i
\(820\) 4.61803 + 7.99867i 0.161269 + 0.279326i
\(821\) −17.5623 + 30.4188i −0.612929 + 1.06162i 0.377815 + 0.925881i \(0.376675\pi\)
−0.990744 + 0.135743i \(0.956658\pi\)
\(822\) 1.98278 + 3.43427i 0.0691574 + 0.119784i
\(823\) 4.76393 8.25137i 0.166060 0.287625i −0.770971 0.636870i \(-0.780229\pi\)
0.937031 + 0.349245i \(0.113562\pi\)
\(824\) 37.8885 1.31991
\(825\) 2.00000 0.0696311
\(826\) 3.23607 5.60503i 0.112597 0.195024i
\(827\) −21.8262 + 37.8042i −0.758973 + 1.31458i 0.184402 + 0.982851i \(0.440965\pi\)
−0.943375 + 0.331728i \(0.892368\pi\)
\(828\) −10.4721 −0.363932
\(829\) −14.4164 −0.500703 −0.250351 0.968155i \(-0.580546\pi\)
−0.250351 + 0.968155i \(0.580546\pi\)
\(830\) −2.21885 + 3.84316i −0.0770173 + 0.133398i
\(831\) −2.14590 3.71680i −0.0744404 0.128935i
\(832\) 0.381966 0.661585i 0.0132423 0.0229363i
\(833\) −55.8607 96.7535i −1.93546 3.35231i
\(834\) −2.54508 4.40822i −0.0881291 0.152644i
\(835\) −23.1803 −0.802189
\(836\) −6.47214 12.5332i −0.223844 0.433471i
\(837\) −3.76393 −0.130101
\(838\) −5.27051 9.12879i −0.182067 0.315349i
\(839\) −10.0902 17.4767i −0.348351 0.603362i 0.637605 0.770363i \(-0.279925\pi\)
−0.985957 + 0.167001i \(0.946592\pi\)
\(840\) −5.85410 + 10.1396i −0.201986 + 0.349850i
\(841\) 0.791796 + 1.37143i 0.0273033 + 0.0472907i
\(842\) −8.14590 + 14.1091i −0.280726 + 0.486232i
\(843\) −3.23607 −0.111456
\(844\) 5.14590 0.177129
\(845\) −1.26393 + 2.18919i −0.0434806 + 0.0753106i
\(846\) −1.92705 + 3.33775i −0.0662534 + 0.114754i
\(847\) −36.6525 −1.25939
\(848\) −1.85410 −0.0636701
\(849\) 6.09017 10.5485i 0.209014 0.362023i
\(850\) −1.69098 2.92887i −0.0580002 0.100459i
\(851\) 20.9443 36.2765i 0.717960 1.24354i
\(852\) 3.85410 + 6.67550i 0.132039 + 0.228699i
\(853\) −25.2361 43.7102i −0.864067 1.49661i −0.867971 0.496615i \(-0.834576\pi\)
0.00390458 0.999992i \(-0.498757\pi\)
\(854\) 11.4164 0.390661
\(855\) −2.35410 + 3.66854i −0.0805086 + 0.125462i
\(856\) −39.4721 −1.34913
\(857\) 1.55573 + 2.69460i 0.0531427 + 0.0920458i 0.891373 0.453271i \(-0.149743\pi\)
−0.838230 + 0.545316i \(0.816410\pi\)
\(858\) −2.00000 3.46410i −0.0682789 0.118262i
\(859\) 15.0623 26.0887i 0.513919 0.890134i −0.485950 0.873986i \(-0.661526\pi\)
0.999870 0.0161478i \(-0.00514024\pi\)
\(860\) 1.38197 + 2.39364i 0.0471246 + 0.0816223i
\(861\) 14.9443 25.8842i 0.509299 0.882132i
\(862\) −6.47214 −0.220442
\(863\) 45.3050 1.54220 0.771099 0.636715i \(-0.219707\pi\)
0.771099 + 0.636715i \(0.219707\pi\)
\(864\) −2.80902 + 4.86536i −0.0955647 + 0.165523i
\(865\) 11.9443 20.6881i 0.406117 0.703416i
\(866\) −24.4721 −0.831597
\(867\) 12.9443 0.439611
\(868\) −15.9443 + 27.6163i −0.541184 + 0.937358i
\(869\) 0 0
\(870\) −1.61803 + 2.80252i −0.0548565 + 0.0950142i
\(871\) −2.00000 3.46410i −0.0677674 0.117377i
\(872\) −7.82624 13.5554i −0.265030 0.459045i
\(873\) −2.00000 −0.0676897
\(874\) 9.41641 14.6742i 0.318515 0.496361i
\(875\) −5.23607 −0.177011
\(876\) −10.0902 17.4767i −0.340915 0.590483i
\(877\) 16.3607 + 28.3375i 0.552461 + 0.956890i 0.998096 + 0.0616758i \(0.0196445\pi\)
−0.445635 + 0.895215i \(0.647022\pi\)
\(878\) 0.545085 0.944115i 0.0183957 0.0318623i
\(879\) 15.2082 + 26.3414i 0.512960 + 0.888473i
\(880\) 1.85410 3.21140i 0.0625018 0.108256i
\(881\) −36.0689 −1.21519 −0.607596 0.794246i \(-0.707866\pi\)
−0.607596 + 0.794246i \(0.707866\pi\)
\(882\) 12.6180 0.424871
\(883\) 17.8885 30.9839i 0.601997 1.04269i −0.390521 0.920594i \(-0.627705\pi\)
0.992518 0.122096i \(-0.0389616\pi\)
\(884\) 14.3262 24.8138i 0.481844 0.834577i
\(885\) 2.00000 0.0672293
\(886\) −4.14590 −0.139284
\(887\) 5.93769 10.2844i 0.199368 0.345316i −0.748956 0.662620i \(-0.769444\pi\)
0.948324 + 0.317304i \(0.102778\pi\)
\(888\) −7.23607 12.5332i −0.242827 0.420588i
\(889\) 28.1803 48.8098i 0.945138 1.63703i
\(890\) 3.85410 + 6.67550i 0.129190 + 0.223763i
\(891\) −1.00000 1.73205i −0.0335013 0.0580259i
\(892\) 36.6525 1.22722
\(893\) 12.4721 + 24.1522i 0.417364 + 0.808222i
\(894\) 2.29180 0.0766491
\(895\) 2.14590 + 3.71680i 0.0717295 + 0.124239i
\(896\) 29.7984 + 51.6123i 0.995494 + 1.72425i
\(897\) −10.4721 + 18.1383i −0.349654 + 0.605619i
\(898\) −9.90983 17.1643i −0.330695 0.572781i
\(899\) −9.85410 + 17.0678i −0.328653 + 0.569243i
\(900\) −1.61803 −0.0539345
\(901\) −5.47214 −0.182303
\(902\) 3.52786 6.11044i 0.117465 0.203455i
\(903\) 4.47214 7.74597i 0.148823 0.257770i
\(904\) −34.5967 −1.15067
\(905\) 4.52786 0.150511
\(906\) 1.01722 1.76188i 0.0337949 0.0585345i
\(907\) −9.18034 15.9008i −0.304828 0.527978i 0.672395 0.740193i \(-0.265266\pi\)
−0.977223 + 0.212215i \(0.931932\pi\)
\(908\) 3.23607 5.60503i 0.107393 0.186010i
\(909\) 7.09017 + 12.2805i 0.235166 + 0.407320i
\(910\) 5.23607 + 9.06914i 0.173574 + 0.300639i
\(911\) −0.403252 −0.0133603 −0.00668017 0.999978i \(-0.502126\pi\)
−0.00668017 + 0.999978i \(0.502126\pi\)
\(912\) 3.70820 + 7.18091i 0.122791 + 0.237784i
\(913\) −14.3607 −0.475269
\(914\) −9.03444 15.6481i −0.298833 0.517594i
\(915\) 1.76393 + 3.05522i 0.0583138 + 0.101002i
\(916\) 3.66312 6.34471i 0.121033 0.209635i
\(917\) −16.9443 29.3483i −0.559549 0.969168i
\(918\) −1.69098 + 2.92887i −0.0558108 + 0.0966671i
\(919\) 6.70820 0.221283 0.110642 0.993860i \(-0.464709\pi\)
0.110642 + 0.993860i \(0.464709\pi\)
\(920\) 14.4721 0.477132
\(921\) −1.09017 + 1.88823i −0.0359223 + 0.0622193i
\(922\) 12.1246 21.0004i 0.399303 0.691613i
\(923\) 15.4164 0.507437
\(924\) −16.9443 −0.557426
\(925\) 3.23607 5.60503i 0.106401 0.184292i
\(926\) 7.50658 + 13.0018i 0.246681 + 0.427265i
\(927\) 8.47214 14.6742i 0.278261 0.481963i
\(928\) 14.7082 + 25.4754i 0.482820 + 0.836270i
\(929\) 7.88854 + 13.6634i 0.258815 + 0.448280i 0.965925 0.258823i \(-0.0833348\pi\)
−0.707110 + 0.707104i \(0.750001\pi\)
\(930\) 2.32624 0.0762803
\(931\) 48.0623 74.8985i 1.57518 2.45470i
\(932\) 29.0344 0.951055
\(933\) −2.70820 4.69075i −0.0886626 0.153568i
\(934\) 6.25329 + 10.8310i 0.204614 + 0.354402i
\(935\) 5.47214 9.47802i 0.178958 0.309964i
\(936\) 3.61803 + 6.26662i 0.118259 + 0.204831i
\(937\) −18.9443 + 32.8124i −0.618882 + 1.07194i 0.370808 + 0.928710i \(0.379081\pi\)
−0.989690 + 0.143226i \(0.954252\pi\)
\(938\) 4.00000 0.130605
\(939\) −17.5967 −0.574248
\(940\) −5.04508 + 8.73834i −0.164553 + 0.285013i
\(941\) 18.4721 31.9947i 0.602174 1.04300i −0.390317 0.920681i \(-0.627635\pi\)
0.992491 0.122316i \(-0.0390322\pi\)
\(942\) 12.3607 0.402733
\(943\) −36.9443 −1.20307
\(944\) 1.85410 3.21140i 0.0603459 0.104522i
\(945\) 2.61803 + 4.53457i 0.0851647 + 0.147510i
\(946\) 1.05573 1.82857i 0.0343247 0.0594521i
\(947\) −12.4721 21.6024i −0.405290 0.701983i 0.589065 0.808085i \(-0.299496\pi\)
−0.994355 + 0.106103i \(0.966163\pi\)
\(948\) 0 0
\(949\) −40.3607 −1.31016
\(950\) 1.45492 2.26728i 0.0472037 0.0735604i
\(951\) −30.8885 −1.00163
\(952\) 32.0344 + 55.4853i 1.03824 + 1.79829i
\(953\) −1.08359 1.87684i −0.0351010 0.0607967i 0.847941 0.530090i \(-0.177842\pi\)
−0.883042 + 0.469294i \(0.844509\pi\)
\(954\) 0.309017 0.535233i 0.0100048 0.0173288i
\(955\) 4.14590 + 7.18091i 0.134158 + 0.232369i
\(956\) −15.4721 + 26.7985i −0.500405 + 0.866726i
\(957\) −10.4721 −0.338516
\(958\) 14.8754 0.480602
\(959\) 16.7984 29.0956i 0.542448 0.939547i
\(960\) −0.118034 + 0.204441i −0.00380953 + 0.00659830i
\(961\) −16.8328 −0.542994
\(962\) −12.9443 −0.417340
\(963\) −8.82624 + 15.2875i −0.284422 + 0.492633i
\(964\) 18.8992 + 32.7344i 0.608702 + 1.05430i
\(965\) 4.61803 7.99867i 0.148660 0.257486i
\(966\) −10.4721 18.1383i −0.336935 0.583589i
\(967\) 0.527864 + 0.914287i 0.0169750 + 0.0294015i 0.874388 0.485227i \(-0.161263\pi\)
−0.857413 + 0.514629i \(0.827930\pi\)
\(968\) 15.6525 0.503090
\(969\) 10.9443 + 21.1935i 0.351581 + 0.680833i
\(970\) 1.23607 0.0396878
\(971\) 14.0902 + 24.4049i 0.452175 + 0.783190i 0.998521 0.0543695i \(-0.0173149\pi\)
−0.546346 + 0.837560i \(0.683982\pi\)
\(972\) 0.809017 + 1.40126i 0.0259492 + 0.0449454i
\(973\) −21.5623 + 37.3470i −0.691256 + 1.19729i
\(974\) 6.27051 + 10.8608i 0.200920 + 0.348004i
\(975\) −1.61803 + 2.80252i −0.0518186 + 0.0897524i
\(976\) 6.54102 0.209373
\(977\) −37.7214 −1.20681 −0.603407 0.797434i \(-0.706190\pi\)
−0.603407 + 0.797434i \(0.706190\pi\)
\(978\) 2.76393 4.78727i 0.0883808 0.153080i
\(979\) −12.4721 + 21.6024i −0.398611 + 0.690415i
\(980\) 33.0344 1.05525
\(981\) −7.00000 −0.223493
\(982\) 2.56231 4.43804i 0.0817665 0.141624i
\(983\) −0.826238 1.43109i −0.0263529 0.0456446i 0.852548 0.522649i \(-0.175056\pi\)
−0.878901 + 0.477004i \(0.841723\pi\)
\(984\) −6.38197 + 11.0539i −0.203450 + 0.352385i
\(985\) 1.26393 + 2.18919i 0.0402722 + 0.0697535i
\(986\) 8.85410 + 15.3358i 0.281972 + 0.488390i
\(987\) 32.6525 1.03934
\(988\) 22.7984 + 1.07047i 0.725313 + 0.0340561i
\(989\) −11.0557 −0.351552
\(990\) 0.618034 + 1.07047i 0.0196424 + 0.0340217i
\(991\) −5.82624 10.0913i −0.185077 0.320562i 0.758526 0.651643i \(-0.225920\pi\)
−0.943602 + 0.331081i \(0.892587\pi\)
\(992\) 10.5729 18.3129i 0.335691 0.581435i
\(993\) −3.23607 5.60503i −0.102694 0.177870i
\(994\) −7.70820 + 13.3510i −0.244489 + 0.423468i
\(995\) −21.8885 −0.693913
\(996\) 11.6180 0.368131
\(997\) 20.5279 35.5553i 0.650124 1.12605i −0.332968 0.942938i \(-0.608050\pi\)
0.983092 0.183110i \(-0.0586164\pi\)
\(998\) −2.36475 + 4.09586i −0.0748547 + 0.129652i
\(999\) −6.47214 −0.204769
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.2.i.e.121.1 yes 4
3.2 odd 2 855.2.k.e.406.2 4
19.7 even 3 5415.2.a.q.1.2 2
19.11 even 3 inner 285.2.i.e.106.1 4
19.12 odd 6 5415.2.a.t.1.1 2
57.11 odd 6 855.2.k.e.676.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.e.106.1 4 19.11 even 3 inner
285.2.i.e.121.1 yes 4 1.1 even 1 trivial
855.2.k.e.406.2 4 3.2 odd 2
855.2.k.e.676.2 4 57.11 odd 6
5415.2.a.q.1.2 2 19.7 even 3
5415.2.a.t.1.1 2 19.12 odd 6