Properties

Label 285.2.i.e.106.2
Level $285$
Weight $2$
Character 285.106
Analytic conductor $2.276$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.2
Root \(0.809017 - 1.40126i\) of defining polynomial
Character \(\chi\) \(=\) 285.106
Dual form 285.2.i.e.121.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 - 1.40126i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.309017 - 0.535233i) q^{4} +(0.500000 - 0.866025i) q^{5} +(0.809017 + 1.40126i) q^{6} +0.763932 q^{7} +2.23607 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.809017 - 1.40126i) q^{10} +2.00000 q^{11} +0.618034 q^{12} +(0.618034 + 1.07047i) q^{13} +(0.618034 - 1.07047i) q^{14} +(0.500000 + 0.866025i) q^{15} +(2.42705 - 4.20378i) q^{16} +(1.73607 - 3.00696i) q^{17} -1.61803 q^{18} +(-4.35410 - 0.204441i) q^{19} -0.618034 q^{20} +(-0.381966 + 0.661585i) q^{21} +(1.61803 - 2.80252i) q^{22} +(1.23607 + 2.14093i) q^{23} +(-1.11803 + 1.93649i) q^{24} +(-0.500000 - 0.866025i) q^{25} +2.00000 q^{26} +1.00000 q^{27} +(-0.236068 - 0.408882i) q^{28} +(0.381966 + 0.661585i) q^{29} +1.61803 q^{30} -8.23607 q^{31} +(-1.69098 - 2.92887i) q^{32} +(-1.00000 + 1.73205i) q^{33} +(-2.80902 - 4.86536i) q^{34} +(0.381966 - 0.661585i) q^{35} +(-0.309017 + 0.535233i) q^{36} +2.47214 q^{37} +(-3.80902 + 5.93583i) q^{38} -1.23607 q^{39} +(1.11803 - 1.93649i) q^{40} +(-3.85410 + 6.67550i) q^{41} +(0.618034 + 1.07047i) q^{42} +(-5.85410 + 10.1396i) q^{43} +(-0.618034 - 1.07047i) q^{44} -1.00000 q^{45} +4.00000 q^{46} +(-0.881966 - 1.52761i) q^{47} +(2.42705 + 4.20378i) q^{48} -6.41641 q^{49} -1.61803 q^{50} +(1.73607 + 3.00696i) q^{51} +(0.381966 - 0.661585i) q^{52} +(0.500000 + 0.866025i) q^{53} +(0.809017 - 1.40126i) q^{54} +(1.00000 - 1.73205i) q^{55} +1.70820 q^{56} +(2.35410 - 3.66854i) q^{57} +1.23607 q^{58} +(1.00000 - 1.73205i) q^{59} +(0.309017 - 0.535233i) q^{60} +(-6.23607 - 10.8012i) q^{61} +(-6.66312 + 11.5409i) q^{62} +(-0.381966 - 0.661585i) q^{63} +4.23607 q^{64} +1.23607 q^{65} +(1.61803 + 2.80252i) q^{66} +(1.61803 + 2.80252i) q^{67} -2.14590 q^{68} -2.47214 q^{69} +(-0.618034 - 1.07047i) q^{70} +(-4.61803 + 7.99867i) q^{71} +(-1.11803 - 1.93649i) q^{72} +(1.76393 - 3.05522i) q^{73} +(2.00000 - 3.46410i) q^{74} +1.00000 q^{75} +(1.23607 + 2.39364i) q^{76} +1.52786 q^{77} +(-1.00000 + 1.73205i) q^{78} +(-2.42705 - 4.20378i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(6.23607 + 10.8012i) q^{82} +15.1803 q^{83} +0.472136 q^{84} +(-1.73607 - 3.00696i) q^{85} +(9.47214 + 16.4062i) q^{86} -0.763932 q^{87} +4.47214 q^{88} +(-1.76393 - 3.05522i) q^{89} +(-0.809017 + 1.40126i) q^{90} +(0.472136 + 0.817763i) q^{91} +(0.763932 - 1.32317i) q^{92} +(4.11803 - 7.13264i) q^{93} -2.85410 q^{94} +(-2.35410 + 3.66854i) q^{95} +3.38197 q^{96} +(1.00000 - 1.73205i) q^{97} +(-5.19098 + 8.99105i) q^{98} +(-1.00000 - 1.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 2 q^{3} + q^{4} + 2 q^{5} + q^{6} + 12 q^{7} - 2 q^{9} - q^{10} + 8 q^{11} - 2 q^{12} - 2 q^{13} - 2 q^{14} + 2 q^{15} + 3 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{19} + 2 q^{20} - 6 q^{21}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 1.40126i 0.572061 0.990839i −0.424293 0.905525i \(-0.639477\pi\)
0.996354 0.0853143i \(-0.0271894\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) −0.309017 0.535233i −0.154508 0.267617i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0.809017 + 1.40126i 0.330280 + 0.572061i
\(7\) 0.763932 0.288739 0.144370 0.989524i \(-0.453885\pi\)
0.144370 + 0.989524i \(0.453885\pi\)
\(8\) 2.23607 0.790569
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −0.809017 1.40126i −0.255834 0.443117i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0.618034 0.178411
\(13\) 0.618034 + 1.07047i 0.171412 + 0.296894i 0.938914 0.344153i \(-0.111834\pi\)
−0.767502 + 0.641047i \(0.778500\pi\)
\(14\) 0.618034 1.07047i 0.165177 0.286094i
\(15\) 0.500000 + 0.866025i 0.129099 + 0.223607i
\(16\) 2.42705 4.20378i 0.606763 1.05094i
\(17\) 1.73607 3.00696i 0.421058 0.729294i −0.574985 0.818164i \(-0.694992\pi\)
0.996043 + 0.0888696i \(0.0283254\pi\)
\(18\) −1.61803 −0.381374
\(19\) −4.35410 0.204441i −0.998899 0.0469020i
\(20\) −0.618034 −0.138197
\(21\) −0.381966 + 0.661585i −0.0833518 + 0.144370i
\(22\) 1.61803 2.80252i 0.344966 0.597499i
\(23\) 1.23607 + 2.14093i 0.257738 + 0.446415i 0.965636 0.259900i \(-0.0836895\pi\)
−0.707898 + 0.706315i \(0.750356\pi\)
\(24\) −1.11803 + 1.93649i −0.228218 + 0.395285i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 2.00000 0.392232
\(27\) 1.00000 0.192450
\(28\) −0.236068 0.408882i −0.0446127 0.0772714i
\(29\) 0.381966 + 0.661585i 0.0709293 + 0.122853i 0.899309 0.437314i \(-0.144070\pi\)
−0.828380 + 0.560167i \(0.810737\pi\)
\(30\) 1.61803 0.295411
\(31\) −8.23607 −1.47924 −0.739621 0.673024i \(-0.764995\pi\)
−0.739621 + 0.673024i \(0.764995\pi\)
\(32\) −1.69098 2.92887i −0.298926 0.517756i
\(33\) −1.00000 + 1.73205i −0.174078 + 0.301511i
\(34\) −2.80902 4.86536i −0.481742 0.834402i
\(35\) 0.381966 0.661585i 0.0645640 0.111828i
\(36\) −0.309017 + 0.535233i −0.0515028 + 0.0892055i
\(37\) 2.47214 0.406417 0.203208 0.979136i \(-0.434863\pi\)
0.203208 + 0.979136i \(0.434863\pi\)
\(38\) −3.80902 + 5.93583i −0.617904 + 0.962918i
\(39\) −1.23607 −0.197929
\(40\) 1.11803 1.93649i 0.176777 0.306186i
\(41\) −3.85410 + 6.67550i −0.601910 + 1.04254i 0.390622 + 0.920551i \(0.372260\pi\)
−0.992532 + 0.121987i \(0.961073\pi\)
\(42\) 0.618034 + 1.07047i 0.0953647 + 0.165177i
\(43\) −5.85410 + 10.1396i −0.892742 + 1.54627i −0.0561679 + 0.998421i \(0.517888\pi\)
−0.836574 + 0.547853i \(0.815445\pi\)
\(44\) −0.618034 1.07047i −0.0931721 0.161379i
\(45\) −1.00000 −0.149071
\(46\) 4.00000 0.589768
\(47\) −0.881966 1.52761i −0.128648 0.222825i 0.794505 0.607258i \(-0.207730\pi\)
−0.923153 + 0.384433i \(0.874397\pi\)
\(48\) 2.42705 + 4.20378i 0.350315 + 0.606763i
\(49\) −6.41641 −0.916630
\(50\) −1.61803 −0.228825
\(51\) 1.73607 + 3.00696i 0.243098 + 0.421058i
\(52\) 0.381966 0.661585i 0.0529692 0.0917453i
\(53\) 0.500000 + 0.866025i 0.0686803 + 0.118958i 0.898321 0.439340i \(-0.144788\pi\)
−0.829640 + 0.558298i \(0.811454\pi\)
\(54\) 0.809017 1.40126i 0.110093 0.190687i
\(55\) 1.00000 1.73205i 0.134840 0.233550i
\(56\) 1.70820 0.228268
\(57\) 2.35410 3.66854i 0.311808 0.485910i
\(58\) 1.23607 0.162304
\(59\) 1.00000 1.73205i 0.130189 0.225494i −0.793560 0.608492i \(-0.791775\pi\)
0.923749 + 0.382998i \(0.125108\pi\)
\(60\) 0.309017 0.535233i 0.0398939 0.0690983i
\(61\) −6.23607 10.8012i −0.798447 1.38295i −0.920627 0.390442i \(-0.872322\pi\)
0.122181 0.992508i \(-0.461011\pi\)
\(62\) −6.66312 + 11.5409i −0.846217 + 1.46569i
\(63\) −0.381966 0.661585i −0.0481232 0.0833518i
\(64\) 4.23607 0.529508
\(65\) 1.23607 0.153315
\(66\) 1.61803 + 2.80252i 0.199166 + 0.344966i
\(67\) 1.61803 + 2.80252i 0.197674 + 0.342382i 0.947774 0.318943i \(-0.103328\pi\)
−0.750100 + 0.661325i \(0.769994\pi\)
\(68\) −2.14590 −0.260228
\(69\) −2.47214 −0.297610
\(70\) −0.618034 1.07047i −0.0738692 0.127945i
\(71\) −4.61803 + 7.99867i −0.548060 + 0.949267i 0.450348 + 0.892853i \(0.351300\pi\)
−0.998407 + 0.0564141i \(0.982033\pi\)
\(72\) −1.11803 1.93649i −0.131762 0.228218i
\(73\) 1.76393 3.05522i 0.206453 0.357586i −0.744142 0.668022i \(-0.767141\pi\)
0.950595 + 0.310435i \(0.100475\pi\)
\(74\) 2.00000 3.46410i 0.232495 0.402694i
\(75\) 1.00000 0.115470
\(76\) 1.23607 + 2.39364i 0.141787 + 0.274569i
\(77\) 1.52786 0.174116
\(78\) −1.00000 + 1.73205i −0.113228 + 0.196116i
\(79\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(80\) −2.42705 4.20378i −0.271353 0.469996i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 6.23607 + 10.8012i 0.688659 + 1.19279i
\(83\) 15.1803 1.66626 0.833129 0.553078i \(-0.186547\pi\)
0.833129 + 0.553078i \(0.186547\pi\)
\(84\) 0.472136 0.0515143
\(85\) −1.73607 3.00696i −0.188303 0.326150i
\(86\) 9.47214 + 16.4062i 1.02141 + 1.76913i
\(87\) −0.763932 −0.0819021
\(88\) 4.47214 0.476731
\(89\) −1.76393 3.05522i −0.186976 0.323853i 0.757264 0.653109i \(-0.226535\pi\)
−0.944241 + 0.329256i \(0.893202\pi\)
\(90\) −0.809017 + 1.40126i −0.0852779 + 0.147706i
\(91\) 0.472136 + 0.817763i 0.0494933 + 0.0857249i
\(92\) 0.763932 1.32317i 0.0796454 0.137950i
\(93\) 4.11803 7.13264i 0.427020 0.739621i
\(94\) −2.85410 −0.294378
\(95\) −2.35410 + 3.66854i −0.241526 + 0.376385i
\(96\) 3.38197 0.345170
\(97\) 1.00000 1.73205i 0.101535 0.175863i −0.810782 0.585348i \(-0.800958\pi\)
0.912317 + 0.409484i \(0.134291\pi\)
\(98\) −5.19098 + 8.99105i −0.524368 + 0.908233i
\(99\) −1.00000 1.73205i −0.100504 0.174078i
\(100\) −0.309017 + 0.535233i −0.0309017 + 0.0535233i
\(101\) −4.09017 7.08438i −0.406987 0.704922i 0.587563 0.809178i \(-0.300087\pi\)
−0.994551 + 0.104256i \(0.966754\pi\)
\(102\) 5.61803 0.556268
\(103\) 0.944272 0.0930419 0.0465209 0.998917i \(-0.485187\pi\)
0.0465209 + 0.998917i \(0.485187\pi\)
\(104\) 1.38197 + 2.39364i 0.135513 + 0.234715i
\(105\) 0.381966 + 0.661585i 0.0372761 + 0.0645640i
\(106\) 1.61803 0.157157
\(107\) −13.6525 −1.31983 −0.659917 0.751338i \(-0.729409\pi\)
−0.659917 + 0.751338i \(0.729409\pi\)
\(108\) −0.309017 0.535233i −0.0297352 0.0515028i
\(109\) 3.50000 6.06218i 0.335239 0.580651i −0.648292 0.761392i \(-0.724516\pi\)
0.983531 + 0.180741i \(0.0578495\pi\)
\(110\) −1.61803 2.80252i −0.154273 0.267210i
\(111\) −1.23607 + 2.14093i −0.117322 + 0.203208i
\(112\) 1.85410 3.21140i 0.175196 0.303449i
\(113\) 6.52786 0.614090 0.307045 0.951695i \(-0.400660\pi\)
0.307045 + 0.951695i \(0.400660\pi\)
\(114\) −3.23607 6.26662i −0.303086 0.586923i
\(115\) 2.47214 0.230528
\(116\) 0.236068 0.408882i 0.0219184 0.0379637i
\(117\) 0.618034 1.07047i 0.0571373 0.0989646i
\(118\) −1.61803 2.80252i −0.148952 0.257993i
\(119\) 1.32624 2.29711i 0.121576 0.210576i
\(120\) 1.11803 + 1.93649i 0.102062 + 0.176777i
\(121\) −7.00000 −0.636364
\(122\) −20.1803 −1.82704
\(123\) −3.85410 6.67550i −0.347513 0.601910i
\(124\) 2.54508 + 4.40822i 0.228555 + 0.395870i
\(125\) −1.00000 −0.0894427
\(126\) −1.23607 −0.110118
\(127\) 7.61803 + 13.1948i 0.675991 + 1.17085i 0.976178 + 0.216971i \(0.0696176\pi\)
−0.300187 + 0.953880i \(0.597049\pi\)
\(128\) 6.80902 11.7936i 0.601838 1.04241i
\(129\) −5.85410 10.1396i −0.515425 0.892742i
\(130\) 1.00000 1.73205i 0.0877058 0.151911i
\(131\) 1.23607 2.14093i 0.107996 0.187054i −0.806962 0.590603i \(-0.798890\pi\)
0.914958 + 0.403549i \(0.132223\pi\)
\(132\) 1.23607 0.107586
\(133\) −3.32624 0.156179i −0.288421 0.0135424i
\(134\) 5.23607 0.452327
\(135\) 0.500000 0.866025i 0.0430331 0.0745356i
\(136\) 3.88197 6.72376i 0.332876 0.576558i
\(137\) −10.2082 17.6811i −0.872146 1.51060i −0.859772 0.510677i \(-0.829395\pi\)
−0.0123732 0.999923i \(-0.503939\pi\)
\(138\) −2.00000 + 3.46410i −0.170251 + 0.294884i
\(139\) −1.88197 3.25966i −0.159626 0.276481i 0.775108 0.631829i \(-0.217696\pi\)
−0.934734 + 0.355348i \(0.884362\pi\)
\(140\) −0.472136 −0.0399028
\(141\) 1.76393 0.148550
\(142\) 7.47214 + 12.9421i 0.627048 + 1.08608i
\(143\) 1.23607 + 2.14093i 0.103365 + 0.179034i
\(144\) −4.85410 −0.404508
\(145\) 0.763932 0.0634411
\(146\) −2.85410 4.94345i −0.236207 0.409123i
\(147\) 3.20820 5.55677i 0.264608 0.458315i
\(148\) −0.763932 1.32317i −0.0627948 0.108764i
\(149\) 4.85410 8.40755i 0.397664 0.688773i −0.595774 0.803152i \(-0.703154\pi\)
0.993437 + 0.114379i \(0.0364878\pi\)
\(150\) 0.809017 1.40126i 0.0660560 0.114412i
\(151\) −16.7082 −1.35969 −0.679847 0.733354i \(-0.737954\pi\)
−0.679847 + 0.733354i \(0.737954\pi\)
\(152\) −9.73607 0.457144i −0.789699 0.0370792i
\(153\) −3.47214 −0.280706
\(154\) 1.23607 2.14093i 0.0996052 0.172521i
\(155\) −4.11803 + 7.13264i −0.330768 + 0.572908i
\(156\) 0.381966 + 0.661585i 0.0305818 + 0.0529692i
\(157\) −10.0000 + 17.3205i −0.798087 + 1.38233i 0.122774 + 0.992435i \(0.460821\pi\)
−0.920860 + 0.389892i \(0.872512\pi\)
\(158\) 0 0
\(159\) −1.00000 −0.0793052
\(160\) −3.38197 −0.267368
\(161\) 0.944272 + 1.63553i 0.0744191 + 0.128898i
\(162\) 0.809017 + 1.40126i 0.0635624 + 0.110093i
\(163\) 8.94427 0.700569 0.350285 0.936643i \(-0.386085\pi\)
0.350285 + 0.936643i \(0.386085\pi\)
\(164\) 4.76393 0.372001
\(165\) 1.00000 + 1.73205i 0.0778499 + 0.134840i
\(166\) 12.2812 21.2716i 0.953202 1.65099i
\(167\) −0.409830 0.709846i −0.0317136 0.0549296i 0.849733 0.527213i \(-0.176763\pi\)
−0.881447 + 0.472284i \(0.843430\pi\)
\(168\) −0.854102 + 1.47935i −0.0658954 + 0.114134i
\(169\) 5.73607 9.93516i 0.441236 0.764243i
\(170\) −5.61803 −0.430884
\(171\) 2.00000 + 3.87298i 0.152944 + 0.296174i
\(172\) 7.23607 0.551745
\(173\) 5.94427 10.2958i 0.451935 0.782774i −0.546572 0.837412i \(-0.684067\pi\)
0.998506 + 0.0546387i \(0.0174007\pi\)
\(174\) −0.618034 + 1.07047i −0.0468530 + 0.0811518i
\(175\) −0.381966 0.661585i −0.0288739 0.0500111i
\(176\) 4.85410 8.40755i 0.365892 0.633743i
\(177\) 1.00000 + 1.73205i 0.0751646 + 0.130189i
\(178\) −5.70820 −0.427848
\(179\) 17.7082 1.32357 0.661787 0.749692i \(-0.269798\pi\)
0.661787 + 0.749692i \(0.269798\pi\)
\(180\) 0.309017 + 0.535233i 0.0230328 + 0.0398939i
\(181\) 6.73607 + 11.6672i 0.500688 + 0.867217i 1.00000 0.000794604i \(0.000252930\pi\)
−0.499312 + 0.866422i \(0.666414\pi\)
\(182\) 1.52786 0.113253
\(183\) 12.4721 0.921967
\(184\) 2.76393 + 4.78727i 0.203760 + 0.352922i
\(185\) 1.23607 2.14093i 0.0908775 0.157404i
\(186\) −6.66312 11.5409i −0.488564 0.846217i
\(187\) 3.47214 6.01392i 0.253908 0.439781i
\(188\) −0.545085 + 0.944115i −0.0397544 + 0.0688567i
\(189\) 0.763932 0.0555679
\(190\) 3.23607 + 6.26662i 0.234769 + 0.454628i
\(191\) 21.7082 1.57075 0.785375 0.619020i \(-0.212470\pi\)
0.785375 + 0.619020i \(0.212470\pi\)
\(192\) −2.11803 + 3.66854i −0.152856 + 0.264754i
\(193\) −2.38197 + 4.12569i −0.171458 + 0.296973i −0.938930 0.344109i \(-0.888181\pi\)
0.767472 + 0.641082i \(0.221514\pi\)
\(194\) −1.61803 2.80252i −0.116168 0.201209i
\(195\) −0.618034 + 1.07047i −0.0442583 + 0.0766577i
\(196\) 1.98278 + 3.43427i 0.141627 + 0.245305i
\(197\) 11.4721 0.817356 0.408678 0.912679i \(-0.365990\pi\)
0.408678 + 0.912679i \(0.365990\pi\)
\(198\) −3.23607 −0.229977
\(199\) 6.94427 + 12.0278i 0.492266 + 0.852630i 0.999960 0.00890711i \(-0.00283526\pi\)
−0.507694 + 0.861537i \(0.669502\pi\)
\(200\) −1.11803 1.93649i −0.0790569 0.136931i
\(201\) −3.23607 −0.228255
\(202\) −13.2361 −0.931286
\(203\) 0.291796 + 0.505406i 0.0204801 + 0.0354725i
\(204\) 1.07295 1.85840i 0.0751215 0.130114i
\(205\) 3.85410 + 6.67550i 0.269182 + 0.466237i
\(206\) 0.763932 1.32317i 0.0532257 0.0921896i
\(207\) 1.23607 2.14093i 0.0859127 0.148805i
\(208\) 6.00000 0.416025
\(209\) −8.70820 0.408882i −0.602359 0.0282829i
\(210\) 1.23607 0.0852968
\(211\) −9.59017 + 16.6107i −0.660215 + 1.14353i 0.320345 + 0.947301i \(0.396201\pi\)
−0.980559 + 0.196224i \(0.937132\pi\)
\(212\) 0.309017 0.535233i 0.0212234 0.0367600i
\(213\) −4.61803 7.99867i −0.316422 0.548060i
\(214\) −11.0451 + 19.1306i −0.755026 + 1.30774i
\(215\) 5.85410 + 10.1396i 0.399246 + 0.691515i
\(216\) 2.23607 0.152145
\(217\) −6.29180 −0.427115
\(218\) −5.66312 9.80881i −0.383555 0.664336i
\(219\) 1.76393 + 3.05522i 0.119195 + 0.206453i
\(220\) −1.23607 −0.0833357
\(221\) 4.29180 0.288697
\(222\) 2.00000 + 3.46410i 0.134231 + 0.232495i
\(223\) −4.32624 + 7.49326i −0.289706 + 0.501786i −0.973740 0.227665i \(-0.926891\pi\)
0.684033 + 0.729451i \(0.260224\pi\)
\(224\) −1.29180 2.23746i −0.0863118 0.149496i
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) 5.28115 9.14723i 0.351297 0.608464i
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) −2.69098 0.126351i −0.178215 0.00836783i
\(229\) 13.4721 0.890264 0.445132 0.895465i \(-0.353157\pi\)
0.445132 + 0.895465i \(0.353157\pi\)
\(230\) 2.00000 3.46410i 0.131876 0.228416i
\(231\) −0.763932 + 1.32317i −0.0502630 + 0.0870581i
\(232\) 0.854102 + 1.47935i 0.0560745 + 0.0971240i
\(233\) 0.0278640 0.0482619i 0.00182543 0.00316174i −0.865111 0.501580i \(-0.832752\pi\)
0.866937 + 0.498418i \(0.166086\pi\)
\(234\) −1.00000 1.73205i −0.0653720 0.113228i
\(235\) −1.76393 −0.115066
\(236\) −1.23607 −0.0804612
\(237\) 0 0
\(238\) −2.14590 3.71680i −0.139098 0.240925i
\(239\) 21.1246 1.36644 0.683219 0.730214i \(-0.260580\pi\)
0.683219 + 0.730214i \(0.260580\pi\)
\(240\) 4.85410 0.313331
\(241\) 10.6803 + 18.4989i 0.687981 + 1.19162i 0.972490 + 0.232945i \(0.0748362\pi\)
−0.284509 + 0.958673i \(0.591830\pi\)
\(242\) −5.66312 + 9.80881i −0.364039 + 0.630534i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −3.85410 + 6.67550i −0.246734 + 0.427355i
\(245\) −3.20820 + 5.55677i −0.204965 + 0.355009i
\(246\) −12.4721 −0.795194
\(247\) −2.47214 4.78727i −0.157298 0.304607i
\(248\) −18.4164 −1.16944
\(249\) −7.59017 + 13.1466i −0.481007 + 0.833129i
\(250\) −0.809017 + 1.40126i −0.0511667 + 0.0886234i
\(251\) −15.7082 27.2074i −0.991493 1.71732i −0.608468 0.793578i \(-0.708216\pi\)
−0.383025 0.923738i \(-0.625118\pi\)
\(252\) −0.236068 + 0.408882i −0.0148709 + 0.0257571i
\(253\) 2.47214 + 4.28187i 0.155422 + 0.269199i
\(254\) 24.6525 1.54683
\(255\) 3.47214 0.217434
\(256\) −6.78115 11.7453i −0.423822 0.734081i
\(257\) −2.70820 4.69075i −0.168933 0.292601i 0.769112 0.639114i \(-0.220699\pi\)
−0.938045 + 0.346513i \(0.887366\pi\)
\(258\) −18.9443 −1.17942
\(259\) 1.88854 0.117348
\(260\) −0.381966 0.661585i −0.0236885 0.0410297i
\(261\) 0.381966 0.661585i 0.0236431 0.0409511i
\(262\) −2.00000 3.46410i −0.123560 0.214013i
\(263\) 2.35410 4.07742i 0.145160 0.251425i −0.784273 0.620416i \(-0.786964\pi\)
0.929433 + 0.368992i \(0.120297\pi\)
\(264\) −2.23607 + 3.87298i −0.137620 + 0.238366i
\(265\) 1.00000 0.0614295
\(266\) −2.90983 + 4.53457i −0.178413 + 0.278032i
\(267\) 3.52786 0.215902
\(268\) 1.00000 1.73205i 0.0610847 0.105802i
\(269\) −12.4721 + 21.6024i −0.760440 + 1.31712i 0.182185 + 0.983264i \(0.441683\pi\)
−0.942624 + 0.333856i \(0.891650\pi\)
\(270\) −0.809017 1.40126i −0.0492352 0.0852779i
\(271\) −6.11803 + 10.5967i −0.371644 + 0.643706i −0.989819 0.142334i \(-0.954539\pi\)
0.618175 + 0.786041i \(0.287872\pi\)
\(272\) −8.42705 14.5961i −0.510965 0.885017i
\(273\) −0.944272 −0.0571499
\(274\) −33.0344 −1.99568
\(275\) −1.00000 1.73205i −0.0603023 0.104447i
\(276\) 0.763932 + 1.32317i 0.0459833 + 0.0796454i
\(277\) 17.7082 1.06398 0.531991 0.846750i \(-0.321444\pi\)
0.531991 + 0.846750i \(0.321444\pi\)
\(278\) −6.09017 −0.365264
\(279\) 4.11803 + 7.13264i 0.246540 + 0.427020i
\(280\) 0.854102 1.47935i 0.0510424 0.0884080i
\(281\) −0.618034 1.07047i −0.0368688 0.0638587i 0.847002 0.531589i \(-0.178405\pi\)
−0.883871 + 0.467731i \(0.845072\pi\)
\(282\) 1.42705 2.47172i 0.0849796 0.147189i
\(283\) −5.09017 + 8.81643i −0.302579 + 0.524083i −0.976719 0.214521i \(-0.931181\pi\)
0.674140 + 0.738603i \(0.264514\pi\)
\(284\) 5.70820 0.338720
\(285\) −2.00000 3.87298i −0.118470 0.229416i
\(286\) 4.00000 0.236525
\(287\) −2.94427 + 5.09963i −0.173795 + 0.301022i
\(288\) −1.69098 + 2.92887i −0.0996421 + 0.172585i
\(289\) 2.47214 + 4.28187i 0.145420 + 0.251874i
\(290\) 0.618034 1.07047i 0.0362922 0.0628599i
\(291\) 1.00000 + 1.73205i 0.0586210 + 0.101535i
\(292\) −2.18034 −0.127595
\(293\) −3.58359 −0.209356 −0.104678 0.994506i \(-0.533381\pi\)
−0.104678 + 0.994506i \(0.533381\pi\)
\(294\) −5.19098 8.99105i −0.302744 0.524368i
\(295\) −1.00000 1.73205i −0.0582223 0.100844i
\(296\) 5.52786 0.321301
\(297\) 2.00000 0.116052
\(298\) −7.85410 13.6037i −0.454976 0.788041i
\(299\) −1.52786 + 2.64634i −0.0883587 + 0.153042i
\(300\) −0.309017 0.535233i −0.0178411 0.0309017i
\(301\) −4.47214 + 7.74597i −0.257770 + 0.446470i
\(302\) −13.5172 + 23.4125i −0.777829 + 1.34724i
\(303\) 8.18034 0.469948
\(304\) −11.4271 + 17.8075i −0.655386 + 1.02133i
\(305\) −12.4721 −0.714152
\(306\) −2.80902 + 4.86536i −0.160581 + 0.278134i
\(307\) 10.0902 17.4767i 0.575876 0.997447i −0.420069 0.907492i \(-0.637994\pi\)
0.995946 0.0899552i \(-0.0286724\pi\)
\(308\) −0.472136 0.817763i −0.0269024 0.0465964i
\(309\) −0.472136 + 0.817763i −0.0268589 + 0.0465209i
\(310\) 6.66312 + 11.5409i 0.378440 + 0.655477i
\(311\) −21.4164 −1.21441 −0.607207 0.794544i \(-0.707710\pi\)
−0.607207 + 0.794544i \(0.707710\pi\)
\(312\) −2.76393 −0.156477
\(313\) −15.7984 27.3636i −0.892977 1.54668i −0.836289 0.548289i \(-0.815279\pi\)
−0.0566882 0.998392i \(-0.518054\pi\)
\(314\) 16.1803 + 28.0252i 0.913109 + 1.58155i
\(315\) −0.763932 −0.0430427
\(316\) 0 0
\(317\) −2.44427 4.23360i −0.137284 0.237783i 0.789184 0.614157i \(-0.210504\pi\)
−0.926468 + 0.376374i \(0.877171\pi\)
\(318\) −0.809017 + 1.40126i −0.0453674 + 0.0785787i
\(319\) 0.763932 + 1.32317i 0.0427720 + 0.0740832i
\(320\) 2.11803 3.66854i 0.118402 0.205078i
\(321\) 6.82624 11.8234i 0.381003 0.659917i
\(322\) 3.05573 0.170289
\(323\) −8.17376 + 12.7377i −0.454800 + 0.708743i
\(324\) 0.618034 0.0343352
\(325\) 0.618034 1.07047i 0.0342824 0.0593788i
\(326\) 7.23607 12.5332i 0.400769 0.694152i
\(327\) 3.50000 + 6.06218i 0.193550 + 0.335239i
\(328\) −8.61803 + 14.9269i −0.475851 + 0.824199i
\(329\) −0.673762 1.16699i −0.0371457 0.0643382i
\(330\) 3.23607 0.178140
\(331\) −2.47214 −0.135881 −0.0679404 0.997689i \(-0.521643\pi\)
−0.0679404 + 0.997689i \(0.521643\pi\)
\(332\) −4.69098 8.12502i −0.257451 0.445918i
\(333\) −1.23607 2.14093i −0.0677361 0.117322i
\(334\) −1.32624 −0.0725685
\(335\) 3.23607 0.176805
\(336\) 1.85410 + 3.21140i 0.101150 + 0.175196i
\(337\) 3.23607 5.60503i 0.176280 0.305326i −0.764324 0.644833i \(-0.776927\pi\)
0.940603 + 0.339507i \(0.110260\pi\)
\(338\) −9.28115 16.0754i −0.504828 0.874388i
\(339\) −3.26393 + 5.65330i −0.177272 + 0.307045i
\(340\) −1.07295 + 1.85840i −0.0581888 + 0.100786i
\(341\) −16.4721 −0.892016
\(342\) 7.04508 + 0.330792i 0.380955 + 0.0178872i
\(343\) −10.2492 −0.553406
\(344\) −13.0902 + 22.6728i −0.705775 + 1.22244i
\(345\) −1.23607 + 2.14093i −0.0665477 + 0.115264i
\(346\) −9.61803 16.6589i −0.517069 0.895589i
\(347\) 14.0623 24.3566i 0.754904 1.30753i −0.190518 0.981684i \(-0.561017\pi\)
0.945422 0.325849i \(-0.105650\pi\)
\(348\) 0.236068 + 0.408882i 0.0126546 + 0.0219184i
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) −1.23607 −0.0660706
\(351\) 0.618034 + 1.07047i 0.0329882 + 0.0571373i
\(352\) −3.38197 5.85774i −0.180259 0.312218i
\(353\) 30.9443 1.64700 0.823499 0.567318i \(-0.192019\pi\)
0.823499 + 0.567318i \(0.192019\pi\)
\(354\) 3.23607 0.171995
\(355\) 4.61803 + 7.99867i 0.245100 + 0.424525i
\(356\) −1.09017 + 1.88823i −0.0577789 + 0.100076i
\(357\) 1.32624 + 2.29711i 0.0701920 + 0.121576i
\(358\) 14.3262 24.8138i 0.757165 1.31145i
\(359\) −11.7639 + 20.3757i −0.620877 + 1.07539i 0.368446 + 0.929649i \(0.379890\pi\)
−0.989323 + 0.145741i \(0.953443\pi\)
\(360\) −2.23607 −0.117851
\(361\) 18.9164 + 1.78031i 0.995600 + 0.0937007i
\(362\) 21.7984 1.14570
\(363\) 3.50000 6.06218i 0.183702 0.318182i
\(364\) 0.291796 0.505406i 0.0152943 0.0264905i
\(365\) −1.76393 3.05522i −0.0923284 0.159918i
\(366\) 10.0902 17.4767i 0.527422 0.913521i
\(367\) −3.09017 5.35233i −0.161306 0.279389i 0.774032 0.633147i \(-0.218237\pi\)
−0.935337 + 0.353758i \(0.884904\pi\)
\(368\) 12.0000 0.625543
\(369\) 7.70820 0.401273
\(370\) −2.00000 3.46410i −0.103975 0.180090i
\(371\) 0.381966 + 0.661585i 0.0198307 + 0.0343478i
\(372\) −5.09017 −0.263913
\(373\) 35.5967 1.84313 0.921565 0.388224i \(-0.126911\pi\)
0.921565 + 0.388224i \(0.126911\pi\)
\(374\) −5.61803 9.73072i −0.290502 0.503164i
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) −1.97214 3.41584i −0.101705 0.176158i
\(377\) −0.472136 + 0.817763i −0.0243162 + 0.0421170i
\(378\) 0.618034 1.07047i 0.0317882 0.0550588i
\(379\) 25.5279 1.31128 0.655639 0.755074i \(-0.272399\pi\)
0.655639 + 0.755074i \(0.272399\pi\)
\(380\) 2.69098 + 0.126351i 0.138045 + 0.00648169i
\(381\) −15.2361 −0.780567
\(382\) 17.5623 30.4188i 0.898566 1.55636i
\(383\) −18.0623 + 31.2848i −0.922941 + 1.59858i −0.128101 + 0.991761i \(0.540888\pi\)
−0.794840 + 0.606819i \(0.792445\pi\)
\(384\) 6.80902 + 11.7936i 0.347471 + 0.601838i
\(385\) 0.763932 1.32317i 0.0389336 0.0674349i
\(386\) 3.85410 + 6.67550i 0.196169 + 0.339774i
\(387\) 11.7082 0.595161
\(388\) −1.23607 −0.0627518
\(389\) −3.56231 6.17009i −0.180616 0.312836i 0.761474 0.648195i \(-0.224476\pi\)
−0.942091 + 0.335359i \(0.891142\pi\)
\(390\) 1.00000 + 1.73205i 0.0506370 + 0.0877058i
\(391\) 8.58359 0.434091
\(392\) −14.3475 −0.724659
\(393\) 1.23607 + 2.14093i 0.0623514 + 0.107996i
\(394\) 9.28115 16.0754i 0.467578 0.809868i
\(395\) 0 0
\(396\) −0.618034 + 1.07047i −0.0310574 + 0.0537930i
\(397\) 7.09017 12.2805i 0.355845 0.616342i −0.631417 0.775444i \(-0.717526\pi\)
0.987262 + 0.159101i \(0.0508596\pi\)
\(398\) 22.4721 1.12643
\(399\) 1.79837 2.80252i 0.0900313 0.140301i
\(400\) −4.85410 −0.242705
\(401\) −16.8541 + 29.1922i −0.841654 + 1.45779i 0.0468422 + 0.998902i \(0.485084\pi\)
−0.888496 + 0.458885i \(0.848249\pi\)
\(402\) −2.61803 + 4.53457i −0.130576 + 0.226164i
\(403\) −5.09017 8.81643i −0.253559 0.439178i
\(404\) −2.52786 + 4.37839i −0.125766 + 0.217833i
\(405\) 0.500000 + 0.866025i 0.0248452 + 0.0430331i
\(406\) 0.944272 0.0468634
\(407\) 4.94427 0.245078
\(408\) 3.88197 + 6.72376i 0.192186 + 0.332876i
\(409\) −9.18034 15.9008i −0.453939 0.786245i 0.544688 0.838639i \(-0.316648\pi\)
−0.998626 + 0.0523941i \(0.983315\pi\)
\(410\) 12.4721 0.615955
\(411\) 20.4164 1.00707
\(412\) −0.291796 0.505406i −0.0143758 0.0248995i
\(413\) 0.763932 1.32317i 0.0375906 0.0651089i
\(414\) −2.00000 3.46410i −0.0982946 0.170251i
\(415\) 7.59017 13.1466i 0.372587 0.645339i
\(416\) 2.09017 3.62028i 0.102479 0.177499i
\(417\) 3.76393 0.184321
\(418\) −7.61803 + 11.8717i −0.372610 + 0.580662i
\(419\) 34.9443 1.70714 0.853570 0.520979i \(-0.174433\pi\)
0.853570 + 0.520979i \(0.174433\pi\)
\(420\) 0.236068 0.408882i 0.0115189 0.0199514i
\(421\) 9.18034 15.9008i 0.447422 0.774958i −0.550795 0.834641i \(-0.685675\pi\)
0.998217 + 0.0596822i \(0.0190087\pi\)
\(422\) 15.5172 + 26.8766i 0.755366 + 1.30833i
\(423\) −0.881966 + 1.52761i −0.0428827 + 0.0742749i
\(424\) 1.11803 + 1.93649i 0.0542965 + 0.0940443i
\(425\) −3.47214 −0.168423
\(426\) −14.9443 −0.724052
\(427\) −4.76393 8.25137i −0.230543 0.399312i
\(428\) 4.21885 + 7.30726i 0.203926 + 0.353210i
\(429\) −2.47214 −0.119356
\(430\) 18.9443 0.913574
\(431\) 0.763932 + 1.32317i 0.0367973 + 0.0637348i 0.883838 0.467794i \(-0.154951\pi\)
−0.847040 + 0.531529i \(0.821618\pi\)
\(432\) 2.42705 4.20378i 0.116772 0.202254i
\(433\) −4.79837 8.31103i −0.230595 0.399402i 0.727388 0.686226i \(-0.240734\pi\)
−0.957983 + 0.286824i \(0.907401\pi\)
\(434\) −5.09017 + 8.81643i −0.244336 + 0.423202i
\(435\) −0.381966 + 0.661585i −0.0183139 + 0.0317206i
\(436\) −4.32624 −0.207189
\(437\) −4.94427 9.57454i −0.236517 0.458012i
\(438\) 5.70820 0.272749
\(439\) 3.11803 5.40059i 0.148816 0.257756i −0.781974 0.623311i \(-0.785787\pi\)
0.930790 + 0.365554i \(0.119121\pi\)
\(440\) 2.23607 3.87298i 0.106600 0.184637i
\(441\) 3.20820 + 5.55677i 0.152772 + 0.264608i
\(442\) 3.47214 6.01392i 0.165153 0.286053i
\(443\) −3.35410 5.80948i −0.159358 0.276016i 0.775279 0.631619i \(-0.217609\pi\)
−0.934637 + 0.355602i \(0.884276\pi\)
\(444\) 1.52786 0.0725092
\(445\) −3.52786 −0.167237
\(446\) 7.00000 + 12.1244i 0.331460 + 0.574105i
\(447\) 4.85410 + 8.40755i 0.229591 + 0.397664i
\(448\) 3.23607 0.152890
\(449\) −26.0689 −1.23027 −0.615133 0.788423i \(-0.710898\pi\)
−0.615133 + 0.788423i \(0.710898\pi\)
\(450\) 0.809017 + 1.40126i 0.0381374 + 0.0660560i
\(451\) −7.70820 + 13.3510i −0.362965 + 0.628674i
\(452\) −2.01722 3.49393i −0.0948821 0.164341i
\(453\) 8.35410 14.4697i 0.392510 0.679847i
\(454\) 3.23607 5.60503i 0.151876 0.263057i
\(455\) 0.944272 0.0442681
\(456\) 5.26393 8.20311i 0.246506 0.384146i
\(457\) 24.7639 1.15841 0.579204 0.815183i \(-0.303363\pi\)
0.579204 + 0.815183i \(0.303363\pi\)
\(458\) 10.8992 18.8779i 0.509286 0.882108i
\(459\) 1.73607 3.00696i 0.0810327 0.140353i
\(460\) −0.763932 1.32317i −0.0356185 0.0616931i
\(461\) 17.3820 30.1064i 0.809559 1.40220i −0.103611 0.994618i \(-0.533040\pi\)
0.913170 0.407579i \(-0.133627\pi\)
\(462\) 1.23607 + 2.14093i 0.0575071 + 0.0996052i
\(463\) −37.7082 −1.75245 −0.876224 0.481903i \(-0.839946\pi\)
−0.876224 + 0.481903i \(0.839946\pi\)
\(464\) 3.70820 0.172149
\(465\) −4.11803 7.13264i −0.190969 0.330768i
\(466\) −0.0450850 0.0780895i −0.00208852 0.00361742i
\(467\) −15.7639 −0.729468 −0.364734 0.931112i \(-0.618840\pi\)
−0.364734 + 0.931112i \(0.618840\pi\)
\(468\) −0.763932 −0.0353128
\(469\) 1.23607 + 2.14093i 0.0570763 + 0.0988591i
\(470\) −1.42705 + 2.47172i −0.0658250 + 0.114012i
\(471\) −10.0000 17.3205i −0.460776 0.798087i
\(472\) 2.23607 3.87298i 0.102923 0.178269i
\(473\) −11.7082 + 20.2792i −0.538344 + 0.932439i
\(474\) 0 0
\(475\) 2.00000 + 3.87298i 0.0917663 + 0.177705i
\(476\) −1.63932 −0.0751381
\(477\) 0.500000 0.866025i 0.0228934 0.0396526i
\(478\) 17.0902 29.6010i 0.781686 1.35392i
\(479\) 17.0344 + 29.5045i 0.778324 + 1.34810i 0.932907 + 0.360116i \(0.117263\pi\)
−0.154584 + 0.987980i \(0.549404\pi\)
\(480\) 1.69098 2.92887i 0.0771825 0.133684i
\(481\) 1.52786 + 2.64634i 0.0696646 + 0.120663i
\(482\) 34.5623 1.57427
\(483\) −1.88854 −0.0859317
\(484\) 2.16312 + 3.74663i 0.0983236 + 0.170301i
\(485\) −1.00000 1.73205i −0.0454077 0.0786484i
\(486\) −1.61803 −0.0733955
\(487\) −33.7082 −1.52746 −0.763732 0.645533i \(-0.776635\pi\)
−0.763732 + 0.645533i \(0.776635\pi\)
\(488\) −13.9443 24.1522i −0.631228 1.09332i
\(489\) −4.47214 + 7.74597i −0.202237 + 0.350285i
\(490\) 5.19098 + 8.99105i 0.234505 + 0.406174i
\(491\) 10.8541 18.7999i 0.489839 0.848426i −0.510093 0.860119i \(-0.670389\pi\)
0.999932 + 0.0116937i \(0.00372231\pi\)
\(492\) −2.38197 + 4.12569i −0.107387 + 0.186000i
\(493\) 2.65248 0.119462
\(494\) −8.70820 0.408882i −0.391801 0.0183965i
\(495\) −2.00000 −0.0898933
\(496\) −19.9894 + 34.6226i −0.897549 + 1.55460i
\(497\) −3.52786 + 6.11044i −0.158246 + 0.274091i
\(498\) 12.2812 + 21.2716i 0.550332 + 0.953202i
\(499\) 11.8262 20.4836i 0.529415 0.916974i −0.469996 0.882668i \(-0.655745\pi\)
0.999411 0.0343055i \(-0.0109219\pi\)
\(500\) 0.309017 + 0.535233i 0.0138197 + 0.0239364i
\(501\) 0.819660 0.0366197
\(502\) −50.8328 −2.26878
\(503\) −11.8820 20.5802i −0.529791 0.917624i −0.999396 0.0347480i \(-0.988937\pi\)
0.469605 0.882876i \(-0.344396\pi\)
\(504\) −0.854102 1.47935i −0.0380447 0.0658954i
\(505\) −8.18034 −0.364020
\(506\) 8.00000 0.355643
\(507\) 5.73607 + 9.93516i 0.254748 + 0.441236i
\(508\) 4.70820 8.15485i 0.208893 0.361813i
\(509\) −4.14590 7.18091i −0.183764 0.318288i 0.759396 0.650629i \(-0.225495\pi\)
−0.943159 + 0.332341i \(0.892161\pi\)
\(510\) 2.80902 4.86536i 0.124385 0.215442i
\(511\) 1.34752 2.33398i 0.0596110 0.103249i
\(512\) 5.29180 0.233867
\(513\) −4.35410 0.204441i −0.192238 0.00902628i
\(514\) −8.76393 −0.386560
\(515\) 0.472136 0.817763i 0.0208048 0.0360350i
\(516\) −3.61803 + 6.26662i −0.159275 + 0.275873i
\(517\) −1.76393 3.05522i −0.0775776 0.134368i
\(518\) 1.52786 2.64634i 0.0671305 0.116273i
\(519\) 5.94427 + 10.2958i 0.260925 + 0.451935i
\(520\) 2.76393 0.121206
\(521\) −25.4164 −1.11351 −0.556757 0.830676i \(-0.687954\pi\)
−0.556757 + 0.830676i \(0.687954\pi\)
\(522\) −0.618034 1.07047i −0.0270506 0.0468530i
\(523\) −22.4164 38.8264i −0.980201 1.69776i −0.661578 0.749877i \(-0.730113\pi\)
−0.318623 0.947881i \(-0.603221\pi\)
\(524\) −1.52786 −0.0667451
\(525\) 0.763932 0.0333407
\(526\) −3.80902 6.59741i −0.166081 0.287661i
\(527\) −14.2984 + 24.7655i −0.622847 + 1.07880i
\(528\) 4.85410 + 8.40755i 0.211248 + 0.365892i
\(529\) 8.44427 14.6259i 0.367142 0.635909i
\(530\) 0.809017 1.40126i 0.0351415 0.0608668i
\(531\) −2.00000 −0.0867926
\(532\) 0.944272 + 1.82857i 0.0409394 + 0.0792788i
\(533\) −9.52786 −0.412698
\(534\) 2.85410 4.94345i 0.123509 0.213924i
\(535\) −6.82624 + 11.8234i −0.295124 + 0.511170i
\(536\) 3.61803 + 6.26662i 0.156275 + 0.270677i
\(537\) −8.85410 + 15.3358i −0.382083 + 0.661787i
\(538\) 20.1803 + 34.9534i 0.870036 + 1.50695i
\(539\) −12.8328 −0.552749
\(540\) −0.618034 −0.0265959
\(541\) 21.2082 + 36.7337i 0.911812 + 1.57930i 0.811503 + 0.584348i \(0.198650\pi\)
0.100309 + 0.994956i \(0.468017\pi\)
\(542\) 9.89919 + 17.1459i 0.425206 + 0.736479i
\(543\) −13.4721 −0.578145
\(544\) −11.7426 −0.503462
\(545\) −3.50000 6.06218i −0.149924 0.259675i
\(546\) −0.763932 + 1.32317i −0.0326933 + 0.0566264i
\(547\) −12.4164 21.5058i −0.530887 0.919524i −0.999350 0.0360406i \(-0.988525\pi\)
0.468463 0.883483i \(-0.344808\pi\)
\(548\) −6.30902 + 10.9275i −0.269508 + 0.466801i
\(549\) −6.23607 + 10.8012i −0.266149 + 0.460983i
\(550\) −3.23607 −0.137986
\(551\) −1.52786 2.95870i −0.0650892 0.126045i
\(552\) −5.52786 −0.235282
\(553\) 0 0
\(554\) 14.3262 24.8138i 0.608664 1.05424i
\(555\) 1.23607 + 2.14093i 0.0524682 + 0.0908775i
\(556\) −1.16312 + 2.01458i −0.0493272 + 0.0854373i
\(557\) −7.18034 12.4367i −0.304241 0.526960i 0.672851 0.739778i \(-0.265069\pi\)
−0.977092 + 0.212817i \(0.931736\pi\)
\(558\) 13.3262 0.564145
\(559\) −14.4721 −0.612106
\(560\) −1.85410 3.21140i −0.0783501 0.135706i
\(561\) 3.47214 + 6.01392i 0.146594 + 0.253908i
\(562\) −2.00000 −0.0843649
\(563\) 21.0689 0.887948 0.443974 0.896040i \(-0.353568\pi\)
0.443974 + 0.896040i \(0.353568\pi\)
\(564\) −0.545085 0.944115i −0.0229522 0.0397544i
\(565\) 3.26393 5.65330i 0.137315 0.237836i
\(566\) 8.23607 + 14.2653i 0.346188 + 0.599615i
\(567\) −0.381966 + 0.661585i −0.0160411 + 0.0277839i
\(568\) −10.3262 + 17.8856i −0.433279 + 0.750462i
\(569\) −14.9443 −0.626496 −0.313248 0.949671i \(-0.601417\pi\)
−0.313248 + 0.949671i \(0.601417\pi\)
\(570\) −7.04508 0.330792i −0.295086 0.0138554i
\(571\) 15.6525 0.655036 0.327518 0.944845i \(-0.393788\pi\)
0.327518 + 0.944845i \(0.393788\pi\)
\(572\) 0.763932 1.32317i 0.0319416 0.0553245i
\(573\) −10.8541 + 18.7999i −0.453437 + 0.785375i
\(574\) 4.76393 + 8.25137i 0.198843 + 0.344406i
\(575\) 1.23607 2.14093i 0.0515476 0.0892831i
\(576\) −2.11803 3.66854i −0.0882514 0.152856i
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 8.00000 0.332756
\(579\) −2.38197 4.12569i −0.0989911 0.171458i
\(580\) −0.236068 0.408882i −0.00980219 0.0169779i
\(581\) 11.5967 0.481114
\(582\) 3.23607 0.134139
\(583\) 1.00000 + 1.73205i 0.0414158 + 0.0717342i
\(584\) 3.94427 6.83168i 0.163215 0.282697i
\(585\) −0.618034 1.07047i −0.0255526 0.0442583i
\(586\) −2.89919 + 5.02154i −0.119764 + 0.207438i
\(587\) −13.8262 + 23.9477i −0.570670 + 0.988429i 0.425827 + 0.904804i \(0.359983\pi\)
−0.996497 + 0.0836249i \(0.973350\pi\)
\(588\) −3.96556 −0.163537
\(589\) 35.8607 + 1.68379i 1.47761 + 0.0693793i
\(590\) −3.23607 −0.133227
\(591\) −5.73607 + 9.93516i −0.235950 + 0.408678i
\(592\) 6.00000 10.3923i 0.246598 0.427121i
\(593\) 6.44427 + 11.1618i 0.264635 + 0.458360i 0.967468 0.252994i \(-0.0814153\pi\)
−0.702833 + 0.711355i \(0.748082\pi\)
\(594\) 1.61803 2.80252i 0.0663887 0.114989i
\(595\) −1.32624 2.29711i −0.0543705 0.0941724i
\(596\) −6.00000 −0.245770
\(597\) −13.8885 −0.568420
\(598\) 2.47214 + 4.28187i 0.101093 + 0.175098i
\(599\) −19.5623 33.8829i −0.799294 1.38442i −0.920076 0.391739i \(-0.871874\pi\)
0.120782 0.992679i \(-0.461460\pi\)
\(600\) 2.23607 0.0912871
\(601\) −11.8885 −0.484944 −0.242472 0.970158i \(-0.577958\pi\)
−0.242472 + 0.970158i \(0.577958\pi\)
\(602\) 7.23607 + 12.5332i 0.294920 + 0.510817i
\(603\) 1.61803 2.80252i 0.0658914 0.114127i
\(604\) 5.16312 + 8.94278i 0.210084 + 0.363877i
\(605\) −3.50000 + 6.06218i −0.142295 + 0.246463i
\(606\) 6.61803 11.4628i 0.268839 0.465643i
\(607\) 12.5836 0.510752 0.255376 0.966842i \(-0.417801\pi\)
0.255376 + 0.966842i \(0.417801\pi\)
\(608\) 6.76393 + 13.0983i 0.274314 + 0.531206i
\(609\) −0.583592 −0.0236483
\(610\) −10.0902 + 17.4767i −0.408539 + 0.707610i
\(611\) 1.09017 1.88823i 0.0441036 0.0763896i
\(612\) 1.07295 + 1.85840i 0.0433714 + 0.0751215i
\(613\) −11.0000 + 19.0526i −0.444286 + 0.769526i −0.998002 0.0631797i \(-0.979876\pi\)
0.553716 + 0.832705i \(0.313209\pi\)
\(614\) −16.3262 28.2779i −0.658873 1.14120i
\(615\) −7.70820 −0.310825
\(616\) 3.41641 0.137651
\(617\) 10.2082 + 17.6811i 0.410967 + 0.711815i 0.994996 0.0999174i \(-0.0318579\pi\)
−0.584029 + 0.811733i \(0.698525\pi\)
\(618\) 0.763932 + 1.32317i 0.0307299 + 0.0532257i
\(619\) −12.7082 −0.510786 −0.255393 0.966837i \(-0.582205\pi\)
−0.255393 + 0.966837i \(0.582205\pi\)
\(620\) 5.09017 0.204426
\(621\) 1.23607 + 2.14093i 0.0496017 + 0.0859127i
\(622\) −17.3262 + 30.0099i −0.694719 + 1.20329i
\(623\) −1.34752 2.33398i −0.0539874 0.0935089i
\(624\) −3.00000 + 5.19615i −0.120096 + 0.208013i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −51.1246 −2.04335
\(627\) 4.70820 7.33708i 0.188028 0.293015i
\(628\) 12.3607 0.493245
\(629\) 4.29180 7.43361i 0.171125 0.296397i
\(630\) −0.618034 + 1.07047i −0.0246231 + 0.0426484i
\(631\) −8.64590 14.9751i −0.344188 0.596151i 0.641018 0.767526i \(-0.278512\pi\)
−0.985206 + 0.171375i \(0.945179\pi\)
\(632\) 0 0
\(633\) −9.59017 16.6107i −0.381175 0.660215i
\(634\) −7.90983 −0.314139
\(635\) 15.2361 0.604625
\(636\) 0.309017 + 0.535233i 0.0122533 + 0.0212234i
\(637\) −3.96556 6.86855i −0.157121 0.272142i
\(638\) 2.47214 0.0978728
\(639\) 9.23607 0.365373
\(640\) −6.80902 11.7936i −0.269150 0.466182i
\(641\) 17.4721 30.2626i 0.690108 1.19530i −0.281694 0.959504i \(-0.590896\pi\)
0.971802 0.235798i \(-0.0757703\pi\)
\(642\) −11.0451 19.1306i −0.435915 0.755026i
\(643\) −17.1803 + 29.7572i −0.677526 + 1.17351i 0.298197 + 0.954504i \(0.403615\pi\)
−0.975724 + 0.219006i \(0.929719\pi\)
\(644\) 0.583592 1.01081i 0.0229968 0.0398315i
\(645\) −11.7082 −0.461010
\(646\) 11.2361 + 21.7586i 0.442077 + 0.856079i
\(647\) 26.5967 1.04563 0.522813 0.852447i \(-0.324883\pi\)
0.522813 + 0.852447i \(0.324883\pi\)
\(648\) −1.11803 + 1.93649i −0.0439205 + 0.0760726i
\(649\) 2.00000 3.46410i 0.0785069 0.135978i
\(650\) −1.00000 1.73205i −0.0392232 0.0679366i
\(651\) 3.14590 5.44886i 0.123297 0.213557i
\(652\) −2.76393 4.78727i −0.108244 0.187484i
\(653\) −3.52786 −0.138056 −0.0690280 0.997615i \(-0.521990\pi\)
−0.0690280 + 0.997615i \(0.521990\pi\)
\(654\) 11.3262 0.442891
\(655\) −1.23607 2.14093i −0.0482972 0.0836532i
\(656\) 18.7082 + 32.4036i 0.730433 + 1.26515i
\(657\) −3.52786 −0.137635
\(658\) −2.18034 −0.0849985
\(659\) −7.23607 12.5332i −0.281877 0.488226i 0.689970 0.723838i \(-0.257624\pi\)
−0.971847 + 0.235612i \(0.924290\pi\)
\(660\) 0.618034 1.07047i 0.0240569 0.0416678i
\(661\) 9.79180 + 16.9599i 0.380857 + 0.659663i 0.991185 0.132485i \(-0.0422958\pi\)
−0.610328 + 0.792149i \(0.708962\pi\)
\(662\) −2.00000 + 3.46410i −0.0777322 + 0.134636i
\(663\) −2.14590 + 3.71680i −0.0833398 + 0.144349i
\(664\) 33.9443 1.31729
\(665\) −1.79837 + 2.80252i −0.0697379 + 0.108677i
\(666\) −4.00000 −0.154997
\(667\) −0.944272 + 1.63553i −0.0365624 + 0.0633279i
\(668\) −0.253289 + 0.438709i −0.00980004 + 0.0169742i
\(669\) −4.32624 7.49326i −0.167262 0.289706i
\(670\) 2.61803 4.53457i 0.101143 0.175186i
\(671\) −12.4721 21.6024i −0.481481 0.833950i
\(672\) 2.58359 0.0996642
\(673\) 15.7082 0.605507 0.302753 0.953069i \(-0.402094\pi\)
0.302753 + 0.953069i \(0.402094\pi\)
\(674\) −5.23607 9.06914i −0.201686 0.349330i
\(675\) −0.500000 0.866025i −0.0192450 0.0333333i
\(676\) −7.09017 −0.272699
\(677\) 15.0000 0.576497 0.288248 0.957556i \(-0.406927\pi\)
0.288248 + 0.957556i \(0.406927\pi\)
\(678\) 5.28115 + 9.14723i 0.202821 + 0.351297i
\(679\) 0.763932 1.32317i 0.0293170 0.0507786i
\(680\) −3.88197 6.72376i −0.148867 0.257845i
\(681\) −2.00000 + 3.46410i −0.0766402 + 0.132745i
\(682\) −13.3262 + 23.0817i −0.510288 + 0.883845i
\(683\) 35.1803 1.34614 0.673069 0.739580i \(-0.264976\pi\)
0.673069 + 0.739580i \(0.264976\pi\)
\(684\) 1.45492 2.26728i 0.0556301 0.0866918i
\(685\) −20.4164 −0.780071
\(686\) −8.29180 + 14.3618i −0.316582 + 0.548337i
\(687\) −6.73607 + 11.6672i −0.256997 + 0.445132i
\(688\) 28.4164 + 49.2187i 1.08337 + 1.87644i
\(689\) −0.618034 + 1.07047i −0.0235452 + 0.0407815i
\(690\) 2.00000 + 3.46410i 0.0761387 + 0.131876i
\(691\) −4.81966 −0.183349 −0.0916743 0.995789i \(-0.529222\pi\)
−0.0916743 + 0.995789i \(0.529222\pi\)
\(692\) −7.34752 −0.279311
\(693\) −0.763932 1.32317i −0.0290194 0.0502630i
\(694\) −22.7533 39.4099i −0.863703 1.49598i
\(695\) −3.76393 −0.142774
\(696\) −1.70820 −0.0647493
\(697\) 13.3820 + 23.1782i 0.506878 + 0.877939i
\(698\) −21.8435 + 37.8340i −0.826787 + 1.43204i
\(699\) 0.0278640 + 0.0482619i 0.00105391 + 0.00182543i
\(700\) −0.236068 + 0.408882i −0.00892253 + 0.0154543i
\(701\) −5.18034 + 8.97261i −0.195659 + 0.338891i −0.947116 0.320891i \(-0.896018\pi\)
0.751458 + 0.659781i \(0.229351\pi\)
\(702\) 2.00000 0.0754851
\(703\) −10.7639 0.505406i −0.405969 0.0190617i
\(704\) 8.47214 0.319306
\(705\) 0.881966 1.52761i 0.0332168 0.0575331i
\(706\) 25.0344 43.3609i 0.942184 1.63191i
\(707\) −3.12461 5.41199i −0.117513 0.203539i
\(708\) 0.618034 1.07047i 0.0232271 0.0402306i
\(709\) −20.9164 36.2283i −0.785532 1.36058i −0.928681 0.370880i \(-0.879056\pi\)
0.143148 0.989701i \(-0.454277\pi\)
\(710\) 14.9443 0.560849
\(711\) 0 0
\(712\) −3.94427 6.83168i −0.147818 0.256028i
\(713\) −10.1803 17.6329i −0.381257 0.660356i
\(714\) 4.29180 0.160616
\(715\) 2.47214 0.0924526
\(716\) −5.47214 9.47802i −0.204503 0.354210i
\(717\) −10.5623 + 18.2945i −0.394457 + 0.683219i
\(718\) 19.0344 + 32.9686i 0.710359 + 1.23038i
\(719\) 1.52786 2.64634i 0.0569797 0.0986918i −0.836129 0.548534i \(-0.815186\pi\)
0.893108 + 0.449842i \(0.148520\pi\)
\(720\) −2.42705 + 4.20378i −0.0904508 + 0.156665i
\(721\) 0.721360 0.0268648
\(722\) 17.7984 25.0665i 0.662387 0.932878i
\(723\) −21.3607 −0.794412
\(724\) 4.16312 7.21073i 0.154721 0.267985i
\(725\) 0.381966 0.661585i 0.0141859 0.0245706i
\(726\) −5.66312 9.80881i −0.210178 0.364039i
\(727\) −20.6180 + 35.7115i −0.764681 + 1.32447i 0.175735 + 0.984438i \(0.443770\pi\)
−0.940415 + 0.340028i \(0.889563\pi\)
\(728\) 1.05573 + 1.82857i 0.0391279 + 0.0677715i
\(729\) 1.00000 0.0370370
\(730\) −5.70820 −0.211270
\(731\) 20.3262 + 35.2061i 0.751793 + 1.30214i
\(732\) −3.85410 6.67550i −0.142452 0.246734i
\(733\) 49.1246 1.81446 0.907229 0.420636i \(-0.138193\pi\)
0.907229 + 0.420636i \(0.138193\pi\)
\(734\) −10.0000 −0.369107
\(735\) −3.20820 5.55677i −0.118336 0.204965i
\(736\) 4.18034 7.24056i 0.154089 0.266891i
\(737\) 3.23607 + 5.60503i 0.119202 + 0.206464i
\(738\) 6.23607 10.8012i 0.229553 0.397597i
\(739\) 9.82624 17.0195i 0.361464 0.626074i −0.626738 0.779230i \(-0.715610\pi\)
0.988202 + 0.153156i \(0.0489437\pi\)
\(740\) −1.52786 −0.0561654
\(741\) 5.38197 + 0.252703i 0.197711 + 0.00928327i
\(742\) 1.23607 0.0453775
\(743\) −17.0623 + 29.5528i −0.625955 + 1.08419i 0.362400 + 0.932023i \(0.381957\pi\)
−0.988355 + 0.152164i \(0.951376\pi\)
\(744\) 9.20820 15.9491i 0.337589 0.584722i
\(745\) −4.85410 8.40755i −0.177841 0.308029i
\(746\) 28.7984 49.8802i 1.05438 1.82625i
\(747\) −7.59017 13.1466i −0.277710 0.481007i
\(748\) −4.29180 −0.156924
\(749\) −10.4296 −0.381088
\(750\) −0.809017 1.40126i −0.0295411 0.0511667i
\(751\) 0.826238 + 1.43109i 0.0301498 + 0.0522211i 0.880707 0.473662i \(-0.157068\pi\)
−0.850557 + 0.525883i \(0.823735\pi\)
\(752\) −8.56231 −0.312235
\(753\) 31.4164 1.14488
\(754\) 0.763932 + 1.32317i 0.0278208 + 0.0481870i
\(755\) −8.35410 + 14.4697i −0.304037 + 0.526607i
\(756\) −0.236068 0.408882i −0.00858571 0.0148709i
\(757\) −10.5623 + 18.2945i −0.383894 + 0.664923i −0.991615 0.129227i \(-0.958750\pi\)
0.607721 + 0.794150i \(0.292084\pi\)
\(758\) 20.6525 35.7711i 0.750132 1.29927i
\(759\) −4.94427 −0.179466
\(760\) −5.26393 + 8.20311i −0.190943 + 0.297558i
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) −12.3262 + 21.3497i −0.446532 + 0.773417i
\(763\) 2.67376 4.63109i 0.0967967 0.167657i
\(764\) −6.70820 11.6190i −0.242694 0.420359i
\(765\) −1.73607 + 3.00696i −0.0627677 + 0.108717i
\(766\) 29.2254 + 50.6199i 1.05596 + 1.82897i
\(767\) 2.47214 0.0892637
\(768\) 13.5623 0.489388
\(769\) 16.9164 + 29.3001i 0.610021 + 1.05659i 0.991236 + 0.132101i \(0.0421724\pi\)
−0.381215 + 0.924486i \(0.624494\pi\)
\(770\) −1.23607 2.14093i −0.0445448 0.0771539i
\(771\) 5.41641 0.195067
\(772\) 2.94427 0.105967
\(773\) −0.527864 0.914287i −0.0189860 0.0328846i 0.856376 0.516352i \(-0.172710\pi\)
−0.875362 + 0.483468i \(0.839377\pi\)
\(774\) 9.47214 16.4062i 0.340469 0.589709i
\(775\) 4.11803 + 7.13264i 0.147924 + 0.256212i
\(776\) 2.23607 3.87298i 0.0802702 0.139032i
\(777\) −0.944272 + 1.63553i −0.0338756 + 0.0586742i
\(778\) −11.5279 −0.413294
\(779\) 18.1459 28.2779i 0.650144 1.01316i
\(780\) 0.763932 0.0273532
\(781\) −9.23607 + 15.9973i −0.330492 + 0.572430i
\(782\) 6.94427 12.0278i 0.248327 0.430114i
\(783\) 0.381966 + 0.661585i 0.0136504 + 0.0236431i
\(784\) −15.5729 + 26.9731i −0.556177 + 0.963326i
\(785\) 10.0000 + 17.3205i 0.356915 + 0.618195i
\(786\) 4.00000 0.142675
\(787\) 19.2361 0.685692 0.342846 0.939392i \(-0.388609\pi\)
0.342846 + 0.939392i \(0.388609\pi\)
\(788\) −3.54508 6.14027i −0.126288 0.218738i
\(789\) 2.35410 + 4.07742i 0.0838082 + 0.145160i
\(790\) 0 0
\(791\) 4.98684 0.177312
\(792\) −2.23607 3.87298i −0.0794552 0.137620i
\(793\) 7.70820 13.3510i 0.273726 0.474108i
\(794\) −11.4721 19.8703i −0.407131 0.705171i
\(795\) −0.500000 + 0.866025i −0.0177332 + 0.0307148i
\(796\) 4.29180 7.43361i 0.152119 0.263477i
\(797\) 10.3050 0.365020 0.182510 0.983204i \(-0.441578\pi\)
0.182510 + 0.983204i \(0.441578\pi\)
\(798\) −2.47214 4.78727i −0.0875127 0.169468i
\(799\) −6.12461 −0.216673
\(800\) −1.69098 + 2.92887i −0.0597853 + 0.103551i
\(801\) −1.76393 + 3.05522i −0.0623255 + 0.107951i
\(802\) 27.2705 + 47.2339i 0.962955 + 1.66789i
\(803\) 3.52786 6.11044i 0.124496 0.215633i
\(804\) 1.00000 + 1.73205i 0.0352673 + 0.0610847i
\(805\) 1.88854 0.0665624
\(806\) −16.4721 −0.580206
\(807\) −12.4721 21.6024i −0.439040 0.760440i
\(808\) −9.14590 15.8412i −0.321752 0.557290i
\(809\) −10.2918 −0.361840 −0.180920 0.983498i \(-0.557908\pi\)
−0.180920 + 0.983498i \(0.557908\pi\)
\(810\) 1.61803 0.0568519
\(811\) −18.5344 32.1026i −0.650832 1.12727i −0.982921 0.184027i \(-0.941087\pi\)
0.332089 0.943248i \(-0.392247\pi\)
\(812\) 0.180340 0.312358i 0.00632869 0.0109616i
\(813\) −6.11803 10.5967i −0.214569 0.371644i
\(814\) 4.00000 6.92820i 0.140200 0.242833i
\(815\) 4.47214 7.74597i 0.156652 0.271329i
\(816\) 16.8541 0.590012
\(817\) 27.5623 42.9520i 0.964283 1.50270i
\(818\) −29.7082 −1.03872
\(819\) 0.472136 0.817763i 0.0164978 0.0285750i
\(820\) 2.38197 4.12569i 0.0831819 0.144075i
\(821\) 2.56231 + 4.43804i 0.0894251 + 0.154889i 0.907268 0.420552i \(-0.138164\pi\)
−0.817843 + 0.575441i \(0.804830\pi\)
\(822\) 16.5172 28.6087i 0.576104 0.997842i
\(823\) 9.23607 + 15.9973i 0.321949 + 0.557632i 0.980890 0.194562i \(-0.0623287\pi\)
−0.658941 + 0.752195i \(0.728995\pi\)
\(824\) 2.11146 0.0735561
\(825\) 2.00000 0.0696311
\(826\) −1.23607 2.14093i −0.0430083 0.0744926i
\(827\) −6.17376 10.6933i −0.214683 0.371841i 0.738492 0.674263i \(-0.235538\pi\)
−0.953174 + 0.302421i \(0.902205\pi\)
\(828\) −1.52786 −0.0530969
\(829\) 12.4164 0.431240 0.215620 0.976477i \(-0.430823\pi\)
0.215620 + 0.976477i \(0.430823\pi\)
\(830\) −12.2812 21.2716i −0.426285 0.738347i
\(831\) −8.85410 + 15.3358i −0.307145 + 0.531991i
\(832\) 2.61803 + 4.53457i 0.0907640 + 0.157208i
\(833\) −11.1393 + 19.2939i −0.385955 + 0.668493i
\(834\) 3.04508 5.27424i 0.105443 0.182632i
\(835\) −0.819660 −0.0283655
\(836\) 2.47214 + 4.78727i 0.0855006 + 0.165571i
\(837\) −8.23607 −0.284680
\(838\) 28.2705 48.9660i 0.976589 1.69150i
\(839\) 1.09017 1.88823i 0.0376368 0.0651889i −0.846593 0.532240i \(-0.821350\pi\)
0.884230 + 0.467051i \(0.154684\pi\)
\(840\) 0.854102 + 1.47935i 0.0294693 + 0.0510424i
\(841\) 14.2082 24.6093i 0.489938 0.848598i
\(842\) −14.8541 25.7281i −0.511906 0.886647i
\(843\) 1.23607 0.0425724
\(844\) 11.8541 0.408035
\(845\) −5.73607 9.93516i −0.197327 0.341780i
\(846\) 1.42705 + 2.47172i 0.0490630 + 0.0849796i
\(847\) −5.34752 −0.183743
\(848\) 4.85410 0.166691
\(849\) −5.09017 8.81643i −0.174694 0.302579i
\(850\) −2.80902 + 4.86536i −0.0963485 + 0.166880i
\(851\) 3.05573 + 5.29268i 0.104749 + 0.181431i
\(852\) −2.85410 + 4.94345i −0.0977799 + 0.169360i
\(853\) −20.7639 + 35.9642i −0.710943 + 1.23139i 0.253560 + 0.967320i \(0.418399\pi\)
−0.964503 + 0.264071i \(0.914935\pi\)
\(854\) −15.4164 −0.527539
\(855\) 4.35410 + 0.204441i 0.148907 + 0.00699173i
\(856\) −30.5279 −1.04342
\(857\) 19.4443 33.6785i 0.664204 1.15043i −0.315297 0.948993i \(-0.602104\pi\)
0.979501 0.201441i \(-0.0645626\pi\)
\(858\) −2.00000 + 3.46410i −0.0682789 + 0.118262i
\(859\) −5.06231 8.76817i −0.172724 0.299166i 0.766647 0.642068i \(-0.221923\pi\)
−0.939371 + 0.342902i \(0.888590\pi\)
\(860\) 3.61803 6.26662i 0.123374 0.213690i
\(861\) −2.94427 5.09963i −0.100341 0.173795i
\(862\) 2.47214 0.0842013
\(863\) −17.3050 −0.589067 −0.294534 0.955641i \(-0.595164\pi\)
−0.294534 + 0.955641i \(0.595164\pi\)
\(864\) −1.69098 2.92887i −0.0575284 0.0996421i
\(865\) −5.94427 10.2958i −0.202111 0.350067i
\(866\) −15.5279 −0.527658
\(867\) −4.94427 −0.167916
\(868\) 1.94427 + 3.36758i 0.0659929 + 0.114303i
\(869\) 0 0
\(870\) 0.618034 + 1.07047i 0.0209533 + 0.0362922i
\(871\) −2.00000 + 3.46410i −0.0677674 + 0.117377i
\(872\) 7.82624 13.5554i 0.265030 0.459045i
\(873\) −2.00000 −0.0676897
\(874\) −17.4164 0.817763i −0.589119 0.0276613i
\(875\) −0.763932 −0.0258256
\(876\) 1.09017 1.88823i 0.0368334 0.0637974i
\(877\) −28.3607 + 49.1221i −0.957672 + 1.65874i −0.229541 + 0.973299i \(0.573722\pi\)
−0.728131 + 0.685438i \(0.759611\pi\)
\(878\) −5.04508 8.73834i −0.170263 0.294905i
\(879\) 1.79180 3.10348i 0.0604358 0.104678i
\(880\) −4.85410 8.40755i −0.163632 0.283418i
\(881\) 22.0689 0.743520 0.371760 0.928329i \(-0.378755\pi\)
0.371760 + 0.928329i \(0.378755\pi\)
\(882\) 10.3820 0.349579
\(883\) −17.8885 30.9839i −0.601997 1.04269i −0.992518 0.122096i \(-0.961038\pi\)
0.390521 0.920594i \(-0.372295\pi\)
\(884\) −1.32624 2.29711i −0.0446062 0.0772602i
\(885\) 2.00000 0.0672293
\(886\) −10.8541 −0.364651
\(887\) 26.0623 + 45.1412i 0.875087 + 1.51569i 0.856670 + 0.515864i \(0.172529\pi\)
0.0184161 + 0.999830i \(0.494138\pi\)
\(888\) −2.76393 + 4.78727i −0.0927515 + 0.160650i
\(889\) 5.81966 + 10.0799i 0.195185 + 0.338071i
\(890\) −2.85410 + 4.94345i −0.0956697 + 0.165705i
\(891\) −1.00000 + 1.73205i −0.0335013 + 0.0580259i
\(892\) 5.34752 0.179048
\(893\) 3.52786 + 6.83168i 0.118055 + 0.228613i
\(894\) 15.7082 0.525361
\(895\) 8.85410 15.3358i 0.295960 0.512618i
\(896\) 5.20163 9.00948i 0.173774 0.300986i
\(897\) −1.52786 2.64634i −0.0510139 0.0883587i
\(898\) −21.0902 + 36.5292i −0.703788 + 1.21900i
\(899\) −3.14590 5.44886i −0.104922 0.181729i
\(900\) 0.618034 0.0206011
\(901\) 3.47214 0.115674
\(902\) 12.4721 + 21.6024i 0.415277 + 0.719280i
\(903\) −4.47214 7.74597i −0.148823 0.257770i
\(904\) 14.5967 0.485481
\(905\) 13.4721 0.447829
\(906\) −13.5172 23.4125i −0.449080 0.777829i
\(907\) 13.1803 22.8290i 0.437646 0.758025i −0.559861 0.828586i \(-0.689146\pi\)
0.997507 + 0.0705611i \(0.0224790\pi\)
\(908\) −1.23607 2.14093i −0.0410204 0.0710493i
\(909\) −4.09017 + 7.08438i −0.135662 + 0.234974i
\(910\) 0.763932 1.32317i 0.0253241 0.0438626i
\(911\) −49.5967 −1.64321 −0.821607 0.570055i \(-0.806922\pi\)
−0.821607 + 0.570055i \(0.806922\pi\)
\(912\) −9.70820 18.7999i −0.321471 0.622525i
\(913\) 30.3607 1.00479
\(914\) 20.0344 34.7007i 0.662680 1.14780i
\(915\) 6.23607 10.8012i 0.206158 0.357076i
\(916\) −4.16312 7.21073i −0.137553 0.238249i
\(917\) 0.944272 1.63553i 0.0311826 0.0540099i
\(918\) −2.80902 4.86536i −0.0927114 0.160581i
\(919\) −6.70820 −0.221283 −0.110642 0.993860i \(-0.535291\pi\)
−0.110642 + 0.993860i \(0.535291\pi\)
\(920\) 5.52786 0.182248
\(921\) 10.0902 + 17.4767i 0.332482 + 0.575876i
\(922\) −28.1246 48.7133i −0.926235 1.60429i
\(923\) −11.4164 −0.375776
\(924\) 0.944272 0.0310643
\(925\) −1.23607 2.14093i −0.0406417 0.0703934i
\(926\) −30.5066 + 52.8389i −1.00251 + 1.73640i
\(927\) −0.472136 0.817763i −0.0155070 0.0268589i
\(928\) 1.29180 2.23746i 0.0424053 0.0734481i
\(929\) −27.8885 + 48.3044i −0.914993 + 1.58482i −0.108083 + 0.994142i \(0.534471\pi\)
−0.806911 + 0.590673i \(0.798862\pi\)
\(930\) −13.3262 −0.436985
\(931\) 27.9377 + 1.31178i 0.915621 + 0.0429917i
\(932\) −0.0344419 −0.00112818
\(933\) 10.7082 18.5472i 0.350571 0.607207i
\(934\) −12.7533 + 22.0893i −0.417300 + 0.722785i
\(935\) −3.47214 6.01392i −0.113551 0.196676i
\(936\) 1.38197 2.39364i 0.0451710 0.0782384i
\(937\) −1.05573 1.82857i −0.0344891 0.0597369i 0.848266 0.529571i \(-0.177647\pi\)
−0.882755 + 0.469834i \(0.844314\pi\)
\(938\) 4.00000 0.130605
\(939\) 31.5967 1.03112
\(940\) 0.545085 + 0.944115i 0.0177787 + 0.0307936i
\(941\) 9.52786 + 16.5027i 0.310599 + 0.537974i 0.978492 0.206283i \(-0.0661369\pi\)
−0.667893 + 0.744257i \(0.732804\pi\)
\(942\) −32.3607 −1.05437
\(943\) −19.0557 −0.620540
\(944\) −4.85410 8.40755i −0.157988 0.273642i
\(945\) 0.381966 0.661585i 0.0124254 0.0215213i
\(946\) 18.9443 + 32.8124i 0.615931 + 1.06682i
\(947\) −3.52786 + 6.11044i −0.114640 + 0.198563i −0.917636 0.397422i \(-0.869905\pi\)
0.802996 + 0.595985i \(0.203238\pi\)
\(948\) 0 0
\(949\) 4.36068 0.141554
\(950\) 7.04508 + 0.330792i 0.228573 + 0.0107323i
\(951\) 4.88854 0.158522
\(952\) 2.96556 5.13650i 0.0961143 0.166475i
\(953\) −27.9164 + 48.3526i −0.904301 + 1.56630i −0.0824486 + 0.996595i \(0.526274\pi\)
−0.821853 + 0.569700i \(0.807059\pi\)
\(954\) −0.809017 1.40126i −0.0261929 0.0453674i
\(955\) 10.8541 18.7999i 0.351230 0.608349i
\(956\) −6.52786 11.3066i −0.211126 0.365681i
\(957\) −1.52786 −0.0493888
\(958\) 55.1246 1.78100
\(959\) −7.79837 13.5072i −0.251823 0.436170i
\(960\) 2.11803 + 3.66854i 0.0683593 + 0.118402i
\(961\) 36.8328 1.18816
\(962\) 4.94427 0.159410
\(963\) 6.82624 + 11.8234i 0.219972 + 0.381003i
\(964\) 6.60081 11.4329i 0.212598 0.368230i
\(965\) 2.38197 + 4.12569i 0.0766782 + 0.132811i
\(966\) −1.52786 + 2.64634i −0.0491582 + 0.0851445i
\(967\) 9.47214 16.4062i 0.304603 0.527588i −0.672570 0.740034i \(-0.734809\pi\)
0.977173 + 0.212445i \(0.0681428\pi\)
\(968\) −15.6525 −0.503090
\(969\) −6.94427 13.4475i −0.223082 0.431997i
\(970\) −3.23607 −0.103904
\(971\) 2.90983 5.03997i 0.0933809 0.161740i −0.815551 0.578685i \(-0.803566\pi\)
0.908932 + 0.416945i \(0.136899\pi\)
\(972\) −0.309017 + 0.535233i −0.00991172 + 0.0171676i
\(973\) −1.43769 2.49016i −0.0460904 0.0798308i
\(974\) −27.2705 + 47.2339i −0.873803 + 1.51347i
\(975\) 0.618034 + 1.07047i 0.0197929 + 0.0342824i
\(976\) −60.5410 −1.93787
\(977\) 51.7214 1.65471 0.827356 0.561677i \(-0.189844\pi\)
0.827356 + 0.561677i \(0.189844\pi\)
\(978\) 7.23607 + 12.5332i 0.231384 + 0.400769i
\(979\) −3.52786 6.11044i −0.112751 0.195291i
\(980\) 3.96556 0.126675
\(981\) −7.00000 −0.223493
\(982\) −17.5623 30.4188i −0.560436 0.970703i
\(983\) 14.8262 25.6798i 0.472884 0.819058i −0.526635 0.850092i \(-0.676546\pi\)
0.999518 + 0.0310333i \(0.00987979\pi\)
\(984\) −8.61803 14.9269i −0.274733 0.475851i
\(985\) 5.73607 9.93516i 0.182766 0.316561i
\(986\) 2.14590 3.71680i 0.0683393 0.118367i
\(987\) 1.34752 0.0428922
\(988\) −1.79837 + 2.80252i −0.0572139 + 0.0891599i
\(989\) −28.9443 −0.920374
\(990\) −1.61803 + 2.80252i −0.0514245 + 0.0890698i
\(991\) 9.82624 17.0195i 0.312141 0.540644i −0.666685 0.745340i \(-0.732287\pi\)
0.978826 + 0.204696i \(0.0656206\pi\)
\(992\) 13.9271 + 24.1224i 0.442184 + 0.765886i
\(993\) 1.23607 2.14093i 0.0392254 0.0679404i
\(994\) 5.70820 + 9.88690i 0.181053 + 0.313593i
\(995\) 13.8885 0.440296
\(996\) 9.38197 0.297279
\(997\) 29.4721 + 51.0472i 0.933392 + 1.61668i 0.777477 + 0.628912i \(0.216499\pi\)
0.155915 + 0.987770i \(0.450167\pi\)
\(998\) −19.1353 33.1432i −0.605716 1.04913i
\(999\) 2.47214 0.0782149
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.2.i.e.106.2 4
3.2 odd 2 855.2.k.e.676.1 4
19.7 even 3 inner 285.2.i.e.121.2 yes 4
19.8 odd 6 5415.2.a.t.1.2 2
19.11 even 3 5415.2.a.q.1.1 2
57.26 odd 6 855.2.k.e.406.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.e.106.2 4 1.1 even 1 trivial
285.2.i.e.121.2 yes 4 19.7 even 3 inner
855.2.k.e.406.1 4 57.26 odd 6
855.2.k.e.676.1 4 3.2 odd 2
5415.2.a.q.1.1 2 19.11 even 3
5415.2.a.t.1.2 2 19.8 odd 6