Newspace parameters
Level: | \( N \) | \(=\) | \( 285 = 3 \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 285.i (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.27573645761\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).
\(n\) | \(172\) | \(191\) | \(211\) |
\(\chi(n)\) | \(1\) | \(1\) | \(\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
106.1 |
|
−1.20711 | + | 2.09077i | 0.500000 | − | 0.866025i | −1.91421 | − | 3.31552i | 0.500000 | − | 0.866025i | 1.20711 | + | 2.09077i | −3.82843 | 4.41421 | −0.500000 | − | 0.866025i | 1.20711 | + | 2.09077i | ||||||||||||||||
106.2 | 0.207107 | − | 0.358719i | 0.500000 | − | 0.866025i | 0.914214 | + | 1.58346i | 0.500000 | − | 0.866025i | −0.207107 | − | 0.358719i | 1.82843 | 1.58579 | −0.500000 | − | 0.866025i | −0.207107 | − | 0.358719i | |||||||||||||||||
121.1 | −1.20711 | − | 2.09077i | 0.500000 | + | 0.866025i | −1.91421 | + | 3.31552i | 0.500000 | + | 0.866025i | 1.20711 | − | 2.09077i | −3.82843 | 4.41421 | −0.500000 | + | 0.866025i | 1.20711 | − | 2.09077i | |||||||||||||||||
121.2 | 0.207107 | + | 0.358719i | 0.500000 | + | 0.866025i | 0.914214 | − | 1.58346i | 0.500000 | + | 0.866025i | −0.207107 | + | 0.358719i | 1.82843 | 1.58579 | −0.500000 | + | 0.866025i | −0.207107 | + | 0.358719i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 285.2.i.d | ✓ | 4 |
3.b | odd | 2 | 1 | 855.2.k.f | 4 | ||
19.c | even | 3 | 1 | inner | 285.2.i.d | ✓ | 4 |
19.c | even | 3 | 1 | 5415.2.a.u | 2 | ||
19.d | odd | 6 | 1 | 5415.2.a.o | 2 | ||
57.h | odd | 6 | 1 | 855.2.k.f | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
285.2.i.d | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
285.2.i.d | ✓ | 4 | 19.c | even | 3 | 1 | inner |
855.2.k.f | 4 | 3.b | odd | 2 | 1 | ||
855.2.k.f | 4 | 57.h | odd | 6 | 1 | ||
5415.2.a.o | 2 | 19.d | odd | 6 | 1 | ||
5415.2.a.u | 2 | 19.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 2T_{2}^{3} + 5T_{2}^{2} - 2T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(285, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 2 T^{3} + 5 T^{2} - 2 T + 1 \)
$3$
\( (T^{2} - T + 1)^{2} \)
$5$
\( (T^{2} - T + 1)^{2} \)
$7$
\( (T^{2} + 2 T - 7)^{2} \)
$11$
\( (T^{2} - 8)^{2} \)
$13$
\( T^{4} + 2 T^{3} + 11 T^{2} - 14 T + 49 \)
$17$
\( T^{4} - 8 T^{3} + 56 T^{2} - 64 T + 64 \)
$19$
\( (T^{2} - 8 T + 19)^{2} \)
$23$
\( T^{4} + 4 T^{3} + 20 T^{2} - 16 T + 16 \)
$29$
\( T^{4} + 8 T^{3} + 80 T^{2} - 128 T + 256 \)
$31$
\( (T + 5)^{4} \)
$37$
\( (T^{2} + 10 T + 17)^{2} \)
$41$
\( T^{4} + 8T^{2} + 64 \)
$43$
\( T^{4} + 10 T^{3} + 83 T^{2} + \cdots + 289 \)
$47$
\( T^{4} - 12 T^{3} + 116 T^{2} + \cdots + 784 \)
$53$
\( (T^{2} - 2 T + 4)^{2} \)
$59$
\( T^{4} \)
$61$
\( T^{4} + 6 T^{3} + 155 T^{2} + \cdots + 14161 \)
$67$
\( T^{4} - 6 T^{3} + 99 T^{2} + \cdots + 3969 \)
$71$
\( (T^{2} + 10 T + 100)^{2} \)
$73$
\( T^{4} + 2 T^{3} + 75 T^{2} + \cdots + 5041 \)
$79$
\( T^{4} - 18 T^{3} + 275 T^{2} + \cdots + 2401 \)
$83$
\( (T + 8)^{4} \)
$89$
\( T^{4} + 8 T^{3} + 120 T^{2} + \cdots + 3136 \)
$97$
\( (T^{2} - 6 T + 36)^{2} \)
show more
show less