Properties

Label 285.2.i.c.121.1
Level $285$
Weight $2$
Character 285.121
Analytic conductor $2.276$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 285.121
Dual form 285.2.i.c.106.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-1.00000 + 1.73205i) q^{6} -2.00000 q^{7} +(-0.500000 + 0.866025i) q^{9} +(-1.00000 + 1.73205i) q^{10} +1.00000 q^{11} -2.00000 q^{12} +(-1.00000 + 1.73205i) q^{13} +(-2.00000 - 3.46410i) q^{14} +(-0.500000 + 0.866025i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-1.00000 - 1.73205i) q^{17} -2.00000 q^{18} +(0.500000 - 4.33013i) q^{19} -2.00000 q^{20} +(-1.00000 - 1.73205i) q^{21} +(1.00000 + 1.73205i) q^{22} +(2.00000 - 3.46410i) q^{23} +(-0.500000 + 0.866025i) q^{25} -4.00000 q^{26} -1.00000 q^{27} +(2.00000 - 3.46410i) q^{28} +(2.50000 - 4.33013i) q^{29} -2.00000 q^{30} +9.00000 q^{31} +(-4.00000 + 6.92820i) q^{32} +(0.500000 + 0.866025i) q^{33} +(2.00000 - 3.46410i) q^{34} +(-1.00000 - 1.73205i) q^{35} +(-1.00000 - 1.73205i) q^{36} -6.00000 q^{37} +(8.00000 - 3.46410i) q^{38} -2.00000 q^{39} +(-3.00000 - 5.19615i) q^{41} +(2.00000 - 3.46410i) q^{42} +(5.00000 + 8.66025i) q^{43} +(-1.00000 + 1.73205i) q^{44} -1.00000 q^{45} +8.00000 q^{46} +(-2.00000 + 3.46410i) q^{48} -3.00000 q^{49} -2.00000 q^{50} +(1.00000 - 1.73205i) q^{51} +(-2.00000 - 3.46410i) q^{52} +(1.00000 - 1.73205i) q^{53} +(-1.00000 - 1.73205i) q^{54} +(0.500000 + 0.866025i) q^{55} +(4.00000 - 1.73205i) q^{57} +10.0000 q^{58} +(-3.50000 - 6.06218i) q^{59} +(-1.00000 - 1.73205i) q^{60} +(3.50000 - 6.06218i) q^{61} +(9.00000 + 15.5885i) q^{62} +(1.00000 - 1.73205i) q^{63} -8.00000 q^{64} -2.00000 q^{65} +(-1.00000 + 1.73205i) q^{66} +(-4.00000 + 6.92820i) q^{67} +4.00000 q^{68} +4.00000 q^{69} +(2.00000 - 3.46410i) q^{70} +(-1.50000 - 2.59808i) q^{71} +(1.00000 + 1.73205i) q^{73} +(-6.00000 - 10.3923i) q^{74} -1.00000 q^{75} +(7.00000 + 5.19615i) q^{76} -2.00000 q^{77} +(-2.00000 - 3.46410i) q^{78} +(5.50000 + 9.52628i) q^{79} +(-2.00000 + 3.46410i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(6.00000 - 10.3923i) q^{82} +6.00000 q^{83} +4.00000 q^{84} +(1.00000 - 1.73205i) q^{85} +(-10.0000 + 17.3205i) q^{86} +5.00000 q^{87} +(-7.50000 + 12.9904i) q^{89} +(-1.00000 - 1.73205i) q^{90} +(2.00000 - 3.46410i) q^{91} +(4.00000 + 6.92820i) q^{92} +(4.50000 + 7.79423i) q^{93} +(4.00000 - 1.73205i) q^{95} -8.00000 q^{96} +(-4.00000 - 6.92820i) q^{97} +(-3.00000 - 5.19615i) q^{98} +(-0.500000 + 0.866025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} - 2 q^{4} + q^{5} - 2 q^{6} - 4 q^{7} - q^{9} - 2 q^{10} + 2 q^{11} - 4 q^{12} - 2 q^{13} - 4 q^{14} - q^{15} + 4 q^{16} - 2 q^{17} - 4 q^{18} + q^{19} - 4 q^{20} - 2 q^{21} + 2 q^{22}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) −1.00000 + 1.73205i −0.408248 + 0.707107i
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.00000 + 1.73205i −0.316228 + 0.547723i
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) −2.00000 −0.577350
\(13\) −1.00000 + 1.73205i −0.277350 + 0.480384i −0.970725 0.240192i \(-0.922790\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) −2.00000 3.46410i −0.534522 0.925820i
\(15\) −0.500000 + 0.866025i −0.129099 + 0.223607i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i \(-0.244646\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) −2.00000 −0.471405
\(19\) 0.500000 4.33013i 0.114708 0.993399i
\(20\) −2.00000 −0.447214
\(21\) −1.00000 1.73205i −0.218218 0.377964i
\(22\) 1.00000 + 1.73205i 0.213201 + 0.369274i
\(23\) 2.00000 3.46410i 0.417029 0.722315i −0.578610 0.815604i \(-0.696405\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −4.00000 −0.784465
\(27\) −1.00000 −0.192450
\(28\) 2.00000 3.46410i 0.377964 0.654654i
\(29\) 2.50000 4.33013i 0.464238 0.804084i −0.534928 0.844897i \(-0.679661\pi\)
0.999167 + 0.0408130i \(0.0129948\pi\)
\(30\) −2.00000 −0.365148
\(31\) 9.00000 1.61645 0.808224 0.588875i \(-0.200429\pi\)
0.808224 + 0.588875i \(0.200429\pi\)
\(32\) −4.00000 + 6.92820i −0.707107 + 1.22474i
\(33\) 0.500000 + 0.866025i 0.0870388 + 0.150756i
\(34\) 2.00000 3.46410i 0.342997 0.594089i
\(35\) −1.00000 1.73205i −0.169031 0.292770i
\(36\) −1.00000 1.73205i −0.166667 0.288675i
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 8.00000 3.46410i 1.29777 0.561951i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −3.00000 5.19615i −0.468521 0.811503i 0.530831 0.847477i \(-0.321880\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) 2.00000 3.46410i 0.308607 0.534522i
\(43\) 5.00000 + 8.66025i 0.762493 + 1.32068i 0.941562 + 0.336840i \(0.109358\pi\)
−0.179069 + 0.983836i \(0.557309\pi\)
\(44\) −1.00000 + 1.73205i −0.150756 + 0.261116i
\(45\) −1.00000 −0.149071
\(46\) 8.00000 1.17954
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) −2.00000 + 3.46410i −0.288675 + 0.500000i
\(49\) −3.00000 −0.428571
\(50\) −2.00000 −0.282843
\(51\) 1.00000 1.73205i 0.140028 0.242536i
\(52\) −2.00000 3.46410i −0.277350 0.480384i
\(53\) 1.00000 1.73205i 0.137361 0.237915i −0.789136 0.614218i \(-0.789471\pi\)
0.926497 + 0.376303i \(0.122805\pi\)
\(54\) −1.00000 1.73205i −0.136083 0.235702i
\(55\) 0.500000 + 0.866025i 0.0674200 + 0.116775i
\(56\) 0 0
\(57\) 4.00000 1.73205i 0.529813 0.229416i
\(58\) 10.0000 1.31306
\(59\) −3.50000 6.06218i −0.455661 0.789228i 0.543065 0.839691i \(-0.317264\pi\)
−0.998726 + 0.0504625i \(0.983930\pi\)
\(60\) −1.00000 1.73205i −0.129099 0.223607i
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) 9.00000 + 15.5885i 1.14300 + 1.97974i
\(63\) 1.00000 1.73205i 0.125988 0.218218i
\(64\) −8.00000 −1.00000
\(65\) −2.00000 −0.248069
\(66\) −1.00000 + 1.73205i −0.123091 + 0.213201i
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) 4.00000 0.485071
\(69\) 4.00000 0.481543
\(70\) 2.00000 3.46410i 0.239046 0.414039i
\(71\) −1.50000 2.59808i −0.178017 0.308335i 0.763184 0.646181i \(-0.223635\pi\)
−0.941201 + 0.337846i \(0.890302\pi\)
\(72\) 0 0
\(73\) 1.00000 + 1.73205i 0.117041 + 0.202721i 0.918594 0.395203i \(-0.129326\pi\)
−0.801553 + 0.597924i \(0.795992\pi\)
\(74\) −6.00000 10.3923i −0.697486 1.20808i
\(75\) −1.00000 −0.115470
\(76\) 7.00000 + 5.19615i 0.802955 + 0.596040i
\(77\) −2.00000 −0.227921
\(78\) −2.00000 3.46410i −0.226455 0.392232i
\(79\) 5.50000 + 9.52628i 0.618798 + 1.07179i 0.989705 + 0.143120i \(0.0457135\pi\)
−0.370907 + 0.928670i \(0.620953\pi\)
\(80\) −2.00000 + 3.46410i −0.223607 + 0.387298i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 6.00000 10.3923i 0.662589 1.14764i
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 4.00000 0.436436
\(85\) 1.00000 1.73205i 0.108465 0.187867i
\(86\) −10.0000 + 17.3205i −1.07833 + 1.86772i
\(87\) 5.00000 0.536056
\(88\) 0 0
\(89\) −7.50000 + 12.9904i −0.794998 + 1.37698i 0.127842 + 0.991795i \(0.459195\pi\)
−0.922840 + 0.385183i \(0.874138\pi\)
\(90\) −1.00000 1.73205i −0.105409 0.182574i
\(91\) 2.00000 3.46410i 0.209657 0.363137i
\(92\) 4.00000 + 6.92820i 0.417029 + 0.722315i
\(93\) 4.50000 + 7.79423i 0.466628 + 0.808224i
\(94\) 0 0
\(95\) 4.00000 1.73205i 0.410391 0.177705i
\(96\) −8.00000 −0.816497
\(97\) −4.00000 6.92820i −0.406138 0.703452i 0.588315 0.808632i \(-0.299792\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(98\) −3.00000 5.19615i −0.303046 0.524891i
\(99\) −0.500000 + 0.866025i −0.0502519 + 0.0870388i
\(100\) −1.00000 1.73205i −0.100000 0.173205i
\(101\) 3.50000 6.06218i 0.348263 0.603209i −0.637678 0.770303i \(-0.720105\pi\)
0.985941 + 0.167094i \(0.0534383\pi\)
\(102\) 4.00000 0.396059
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 1.00000 1.73205i 0.0975900 0.169031i
\(106\) 4.00000 0.388514
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 1.00000 1.73205i 0.0962250 0.166667i
\(109\) −9.50000 16.4545i −0.909935 1.57605i −0.814152 0.580651i \(-0.802798\pi\)
−0.0957826 0.995402i \(-0.530535\pi\)
\(110\) −1.00000 + 1.73205i −0.0953463 + 0.165145i
\(111\) −3.00000 5.19615i −0.284747 0.493197i
\(112\) −4.00000 6.92820i −0.377964 0.654654i
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 7.00000 + 5.19615i 0.655610 + 0.486664i
\(115\) 4.00000 0.373002
\(116\) 5.00000 + 8.66025i 0.464238 + 0.804084i
\(117\) −1.00000 1.73205i −0.0924500 0.160128i
\(118\) 7.00000 12.1244i 0.644402 1.11614i
\(119\) 2.00000 + 3.46410i 0.183340 + 0.317554i
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 14.0000 1.26750
\(123\) 3.00000 5.19615i 0.270501 0.468521i
\(124\) −9.00000 + 15.5885i −0.808224 + 1.39988i
\(125\) −1.00000 −0.0894427
\(126\) 4.00000 0.356348
\(127\) −2.00000 + 3.46410i −0.177471 + 0.307389i −0.941014 0.338368i \(-0.890125\pi\)
0.763542 + 0.645758i \(0.223458\pi\)
\(128\) 0 0
\(129\) −5.00000 + 8.66025i −0.440225 + 0.762493i
\(130\) −2.00000 3.46410i −0.175412 0.303822i
\(131\) −8.00000 13.8564i −0.698963 1.21064i −0.968826 0.247741i \(-0.920312\pi\)
0.269863 0.962899i \(-0.413022\pi\)
\(132\) −2.00000 −0.174078
\(133\) −1.00000 + 8.66025i −0.0867110 + 0.750939i
\(134\) −16.0000 −1.38219
\(135\) −0.500000 0.866025i −0.0430331 0.0745356i
\(136\) 0 0
\(137\) 3.00000 5.19615i 0.256307 0.443937i −0.708942 0.705266i \(-0.750827\pi\)
0.965250 + 0.261329i \(0.0841608\pi\)
\(138\) 4.00000 + 6.92820i 0.340503 + 0.589768i
\(139\) −10.0000 + 17.3205i −0.848189 + 1.46911i 0.0346338 + 0.999400i \(0.488974\pi\)
−0.882823 + 0.469706i \(0.844360\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) 3.00000 5.19615i 0.251754 0.436051i
\(143\) −1.00000 + 1.73205i −0.0836242 + 0.144841i
\(144\) −4.00000 −0.333333
\(145\) 5.00000 0.415227
\(146\) −2.00000 + 3.46410i −0.165521 + 0.286691i
\(147\) −1.50000 2.59808i −0.123718 0.214286i
\(148\) 6.00000 10.3923i 0.493197 0.854242i
\(149\) −4.50000 7.79423i −0.368654 0.638528i 0.620701 0.784047i \(-0.286848\pi\)
−0.989355 + 0.145519i \(0.953515\pi\)
\(150\) −1.00000 1.73205i −0.0816497 0.141421i
\(151\) −3.00000 −0.244137 −0.122068 0.992522i \(-0.538953\pi\)
−0.122068 + 0.992522i \(0.538953\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) −2.00000 3.46410i −0.161165 0.279145i
\(155\) 4.50000 + 7.79423i 0.361449 + 0.626048i
\(156\) 2.00000 3.46410i 0.160128 0.277350i
\(157\) −6.00000 10.3923i −0.478852 0.829396i 0.520854 0.853646i \(-0.325614\pi\)
−0.999706 + 0.0242497i \(0.992280\pi\)
\(158\) −11.0000 + 19.0526i −0.875113 + 1.51574i
\(159\) 2.00000 0.158610
\(160\) −8.00000 −0.632456
\(161\) −4.00000 + 6.92820i −0.315244 + 0.546019i
\(162\) 1.00000 1.73205i 0.0785674 0.136083i
\(163\) −18.0000 −1.40987 −0.704934 0.709273i \(-0.749024\pi\)
−0.704934 + 0.709273i \(0.749024\pi\)
\(164\) 12.0000 0.937043
\(165\) −0.500000 + 0.866025i −0.0389249 + 0.0674200i
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) 1.00000 1.73205i 0.0773823 0.134030i −0.824737 0.565516i \(-0.808677\pi\)
0.902120 + 0.431486i \(0.142010\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 4.00000 0.306786
\(171\) 3.50000 + 2.59808i 0.267652 + 0.198680i
\(172\) −20.0000 −1.52499
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 5.00000 + 8.66025i 0.379049 + 0.656532i
\(175\) 1.00000 1.73205i 0.0755929 0.130931i
\(176\) 2.00000 + 3.46410i 0.150756 + 0.261116i
\(177\) 3.50000 6.06218i 0.263076 0.455661i
\(178\) −30.0000 −2.24860
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) 1.00000 1.73205i 0.0745356 0.129099i
\(181\) −5.00000 + 8.66025i −0.371647 + 0.643712i −0.989819 0.142331i \(-0.954540\pi\)
0.618172 + 0.786043i \(0.287874\pi\)
\(182\) 8.00000 0.592999
\(183\) 7.00000 0.517455
\(184\) 0 0
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) −9.00000 + 15.5885i −0.659912 + 1.14300i
\(187\) −1.00000 1.73205i −0.0731272 0.126660i
\(188\) 0 0
\(189\) 2.00000 0.145479
\(190\) 7.00000 + 5.19615i 0.507833 + 0.376969i
\(191\) 15.0000 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(192\) −4.00000 6.92820i −0.288675 0.500000i
\(193\) 13.0000 + 22.5167i 0.935760 + 1.62078i 0.773272 + 0.634074i \(0.218619\pi\)
0.162488 + 0.986710i \(0.448048\pi\)
\(194\) 8.00000 13.8564i 0.574367 0.994832i
\(195\) −1.00000 1.73205i −0.0716115 0.124035i
\(196\) 3.00000 5.19615i 0.214286 0.371154i
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) −2.00000 −0.142134
\(199\) 1.50000 2.59808i 0.106332 0.184173i −0.807950 0.589252i \(-0.799423\pi\)
0.914282 + 0.405079i \(0.132756\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 14.0000 0.985037
\(203\) −5.00000 + 8.66025i −0.350931 + 0.607831i
\(204\) 2.00000 + 3.46410i 0.140028 + 0.242536i
\(205\) 3.00000 5.19615i 0.209529 0.362915i
\(206\) −8.00000 13.8564i −0.557386 0.965422i
\(207\) 2.00000 + 3.46410i 0.139010 + 0.240772i
\(208\) −8.00000 −0.554700
\(209\) 0.500000 4.33013i 0.0345857 0.299521i
\(210\) 4.00000 0.276026
\(211\) 13.5000 + 23.3827i 0.929378 + 1.60973i 0.784364 + 0.620301i \(0.212990\pi\)
0.145014 + 0.989430i \(0.453677\pi\)
\(212\) 2.00000 + 3.46410i 0.137361 + 0.237915i
\(213\) 1.50000 2.59808i 0.102778 0.178017i
\(214\) 0 0
\(215\) −5.00000 + 8.66025i −0.340997 + 0.590624i
\(216\) 0 0
\(217\) −18.0000 −1.22192
\(218\) 19.0000 32.9090i 1.28684 2.22888i
\(219\) −1.00000 + 1.73205i −0.0675737 + 0.117041i
\(220\) −2.00000 −0.134840
\(221\) 4.00000 0.269069
\(222\) 6.00000 10.3923i 0.402694 0.697486i
\(223\) 6.00000 + 10.3923i 0.401790 + 0.695920i 0.993942 0.109906i \(-0.0350549\pi\)
−0.592152 + 0.805826i \(0.701722\pi\)
\(224\) 8.00000 13.8564i 0.534522 0.925820i
\(225\) −0.500000 0.866025i −0.0333333 0.0577350i
\(226\) −10.0000 17.3205i −0.665190 1.15214i
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) −1.00000 + 8.66025i −0.0662266 + 0.573539i
\(229\) −11.0000 −0.726900 −0.363450 0.931614i \(-0.618401\pi\)
−0.363450 + 0.931614i \(0.618401\pi\)
\(230\) 4.00000 + 6.92820i 0.263752 + 0.456832i
\(231\) −1.00000 1.73205i −0.0657952 0.113961i
\(232\) 0 0
\(233\) 12.0000 + 20.7846i 0.786146 + 1.36165i 0.928312 + 0.371802i \(0.121260\pi\)
−0.142166 + 0.989843i \(0.545407\pi\)
\(234\) 2.00000 3.46410i 0.130744 0.226455i
\(235\) 0 0
\(236\) 14.0000 0.911322
\(237\) −5.50000 + 9.52628i −0.357263 + 0.618798i
\(238\) −4.00000 + 6.92820i −0.259281 + 0.449089i
\(239\) 27.0000 1.74648 0.873242 0.487286i \(-0.162013\pi\)
0.873242 + 0.487286i \(0.162013\pi\)
\(240\) −4.00000 −0.258199
\(241\) −2.50000 + 4.33013i −0.161039 + 0.278928i −0.935242 0.354010i \(-0.884818\pi\)
0.774202 + 0.632938i \(0.218151\pi\)
\(242\) −10.0000 17.3205i −0.642824 1.11340i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 7.00000 + 12.1244i 0.448129 + 0.776182i
\(245\) −1.50000 2.59808i −0.0958315 0.165985i
\(246\) 12.0000 0.765092
\(247\) 7.00000 + 5.19615i 0.445399 + 0.330623i
\(248\) 0 0
\(249\) 3.00000 + 5.19615i 0.190117 + 0.329293i
\(250\) −1.00000 1.73205i −0.0632456 0.109545i
\(251\) 8.50000 14.7224i 0.536515 0.929272i −0.462573 0.886581i \(-0.653074\pi\)
0.999088 0.0426905i \(-0.0135929\pi\)
\(252\) 2.00000 + 3.46410i 0.125988 + 0.218218i
\(253\) 2.00000 3.46410i 0.125739 0.217786i
\(254\) −8.00000 −0.501965
\(255\) 2.00000 0.125245
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −11.0000 + 19.0526i −0.686161 + 1.18847i 0.286909 + 0.957958i \(0.407372\pi\)
−0.973070 + 0.230508i \(0.925961\pi\)
\(258\) −20.0000 −1.24515
\(259\) 12.0000 0.745644
\(260\) 2.00000 3.46410i 0.124035 0.214834i
\(261\) 2.50000 + 4.33013i 0.154746 + 0.268028i
\(262\) 16.0000 27.7128i 0.988483 1.71210i
\(263\) −10.0000 17.3205i −0.616626 1.06803i −0.990097 0.140386i \(-0.955166\pi\)
0.373470 0.927642i \(-0.378168\pi\)
\(264\) 0 0
\(265\) 2.00000 0.122859
\(266\) −16.0000 + 6.92820i −0.981023 + 0.424795i
\(267\) −15.0000 −0.917985
\(268\) −8.00000 13.8564i −0.488678 0.846415i
\(269\) −0.500000 0.866025i −0.0304855 0.0528025i 0.850380 0.526169i \(-0.176372\pi\)
−0.880866 + 0.473366i \(0.843039\pi\)
\(270\) 1.00000 1.73205i 0.0608581 0.105409i
\(271\) −13.5000 23.3827i −0.820067 1.42040i −0.905632 0.424064i \(-0.860603\pi\)
0.0855654 0.996333i \(-0.472730\pi\)
\(272\) 4.00000 6.92820i 0.242536 0.420084i
\(273\) 4.00000 0.242091
\(274\) 12.0000 0.724947
\(275\) −0.500000 + 0.866025i −0.0301511 + 0.0522233i
\(276\) −4.00000 + 6.92820i −0.240772 + 0.417029i
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) −40.0000 −2.39904
\(279\) −4.50000 + 7.79423i −0.269408 + 0.466628i
\(280\) 0 0
\(281\) 13.0000 22.5167i 0.775515 1.34323i −0.158990 0.987280i \(-0.550824\pi\)
0.934505 0.355951i \(-0.115843\pi\)
\(282\) 0 0
\(283\) −1.00000 1.73205i −0.0594438 0.102960i 0.834772 0.550596i \(-0.185599\pi\)
−0.894216 + 0.447636i \(0.852266\pi\)
\(284\) 6.00000 0.356034
\(285\) 3.50000 + 2.59808i 0.207322 + 0.153897i
\(286\) −4.00000 −0.236525
\(287\) 6.00000 + 10.3923i 0.354169 + 0.613438i
\(288\) −4.00000 6.92820i −0.235702 0.408248i
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 5.00000 + 8.66025i 0.293610 + 0.508548i
\(291\) 4.00000 6.92820i 0.234484 0.406138i
\(292\) −4.00000 −0.234082
\(293\) −4.00000 −0.233682 −0.116841 0.993151i \(-0.537277\pi\)
−0.116841 + 0.993151i \(0.537277\pi\)
\(294\) 3.00000 5.19615i 0.174964 0.303046i
\(295\) 3.50000 6.06218i 0.203778 0.352954i
\(296\) 0 0
\(297\) −1.00000 −0.0580259
\(298\) 9.00000 15.5885i 0.521356 0.903015i
\(299\) 4.00000 + 6.92820i 0.231326 + 0.400668i
\(300\) 1.00000 1.73205i 0.0577350 0.100000i
\(301\) −10.0000 17.3205i −0.576390 0.998337i
\(302\) −3.00000 5.19615i −0.172631 0.299005i
\(303\) 7.00000 0.402139
\(304\) 16.0000 6.92820i 0.917663 0.397360i
\(305\) 7.00000 0.400819
\(306\) 2.00000 + 3.46410i 0.114332 + 0.198030i
\(307\) 12.0000 + 20.7846i 0.684876 + 1.18624i 0.973476 + 0.228790i \(0.0734771\pi\)
−0.288600 + 0.957450i \(0.593190\pi\)
\(308\) 2.00000 3.46410i 0.113961 0.197386i
\(309\) −4.00000 6.92820i −0.227552 0.394132i
\(310\) −9.00000 + 15.5885i −0.511166 + 0.885365i
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 10.0000 17.3205i 0.565233 0.979013i −0.431795 0.901972i \(-0.642119\pi\)
0.997028 0.0770410i \(-0.0245472\pi\)
\(314\) 12.0000 20.7846i 0.677199 1.17294i
\(315\) 2.00000 0.112687
\(316\) −22.0000 −1.23760
\(317\) −16.0000 + 27.7128i −0.898650 + 1.55651i −0.0694277 + 0.997587i \(0.522117\pi\)
−0.829222 + 0.558920i \(0.811216\pi\)
\(318\) 2.00000 + 3.46410i 0.112154 + 0.194257i
\(319\) 2.50000 4.33013i 0.139973 0.242441i
\(320\) −4.00000 6.92820i −0.223607 0.387298i
\(321\) 0 0
\(322\) −16.0000 −0.891645
\(323\) −8.00000 + 3.46410i −0.445132 + 0.192748i
\(324\) 2.00000 0.111111
\(325\) −1.00000 1.73205i −0.0554700 0.0960769i
\(326\) −18.0000 31.1769i −0.996928 1.72673i
\(327\) 9.50000 16.4545i 0.525351 0.909935i
\(328\) 0 0
\(329\) 0 0
\(330\) −2.00000 −0.110096
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −6.00000 + 10.3923i −0.329293 + 0.570352i
\(333\) 3.00000 5.19615i 0.164399 0.284747i
\(334\) 4.00000 0.218870
\(335\) −8.00000 −0.437087
\(336\) 4.00000 6.92820i 0.218218 0.377964i
\(337\) 4.00000 + 6.92820i 0.217894 + 0.377403i 0.954164 0.299285i \(-0.0967480\pi\)
−0.736270 + 0.676688i \(0.763415\pi\)
\(338\) −9.00000 + 15.5885i −0.489535 + 0.847900i
\(339\) −5.00000 8.66025i −0.271563 0.470360i
\(340\) 2.00000 + 3.46410i 0.108465 + 0.187867i
\(341\) 9.00000 0.487377
\(342\) −1.00000 + 8.66025i −0.0540738 + 0.468293i
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 2.00000 + 3.46410i 0.107676 + 0.186501i
\(346\) 6.00000 10.3923i 0.322562 0.558694i
\(347\) 11.0000 + 19.0526i 0.590511 + 1.02279i 0.994164 + 0.107883i \(0.0344071\pi\)
−0.403653 + 0.914912i \(0.632260\pi\)
\(348\) −5.00000 + 8.66025i −0.268028 + 0.464238i
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 4.00000 0.213809
\(351\) 1.00000 1.73205i 0.0533761 0.0924500i
\(352\) −4.00000 + 6.92820i −0.213201 + 0.369274i
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 14.0000 0.744092
\(355\) 1.50000 2.59808i 0.0796117 0.137892i
\(356\) −15.0000 25.9808i −0.794998 1.37698i
\(357\) −2.00000 + 3.46410i −0.105851 + 0.183340i
\(358\) −3.00000 5.19615i −0.158555 0.274625i
\(359\) 4.00000 + 6.92820i 0.211112 + 0.365657i 0.952063 0.305903i \(-0.0989582\pi\)
−0.740951 + 0.671559i \(0.765625\pi\)
\(360\) 0 0
\(361\) −18.5000 4.33013i −0.973684 0.227901i
\(362\) −20.0000 −1.05118
\(363\) −5.00000 8.66025i −0.262432 0.454545i
\(364\) 4.00000 + 6.92820i 0.209657 + 0.363137i
\(365\) −1.00000 + 1.73205i −0.0523424 + 0.0906597i
\(366\) 7.00000 + 12.1244i 0.365896 + 0.633750i
\(367\) 10.0000 17.3205i 0.521996 0.904123i −0.477677 0.878536i \(-0.658521\pi\)
0.999673 0.0255875i \(-0.00814566\pi\)
\(368\) 16.0000 0.834058
\(369\) 6.00000 0.312348
\(370\) 6.00000 10.3923i 0.311925 0.540270i
\(371\) −2.00000 + 3.46410i −0.103835 + 0.179847i
\(372\) −18.0000 −0.933257
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 2.00000 3.46410i 0.103418 0.179124i
\(375\) −0.500000 0.866025i −0.0258199 0.0447214i
\(376\) 0 0
\(377\) 5.00000 + 8.66025i 0.257513 + 0.446026i
\(378\) 2.00000 + 3.46410i 0.102869 + 0.178174i
\(379\) 31.0000 1.59236 0.796182 0.605058i \(-0.206850\pi\)
0.796182 + 0.605058i \(0.206850\pi\)
\(380\) −1.00000 + 8.66025i −0.0512989 + 0.444262i
\(381\) −4.00000 −0.204926
\(382\) 15.0000 + 25.9808i 0.767467 + 1.32929i
\(383\) −13.0000 22.5167i −0.664269 1.15055i −0.979483 0.201527i \(-0.935410\pi\)
0.315214 0.949021i \(-0.397924\pi\)
\(384\) 0 0
\(385\) −1.00000 1.73205i −0.0509647 0.0882735i
\(386\) −26.0000 + 45.0333i −1.32337 + 2.29214i
\(387\) −10.0000 −0.508329
\(388\) 16.0000 0.812277
\(389\) −16.5000 + 28.5788i −0.836583 + 1.44900i 0.0561516 + 0.998422i \(0.482117\pi\)
−0.892735 + 0.450582i \(0.851216\pi\)
\(390\) 2.00000 3.46410i 0.101274 0.175412i
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) 8.00000 13.8564i 0.403547 0.698963i
\(394\) 10.0000 + 17.3205i 0.503793 + 0.872595i
\(395\) −5.50000 + 9.52628i −0.276735 + 0.479319i
\(396\) −1.00000 1.73205i −0.0502519 0.0870388i
\(397\) 10.0000 + 17.3205i 0.501886 + 0.869291i 0.999998 + 0.00217869i \(0.000693499\pi\)
−0.498112 + 0.867113i \(0.665973\pi\)
\(398\) 6.00000 0.300753
\(399\) −8.00000 + 3.46410i −0.400501 + 0.173422i
\(400\) −4.00000 −0.200000
\(401\) 13.5000 + 23.3827i 0.674158 + 1.16768i 0.976714 + 0.214544i \(0.0688266\pi\)
−0.302556 + 0.953131i \(0.597840\pi\)
\(402\) −8.00000 13.8564i −0.399004 0.691095i
\(403\) −9.00000 + 15.5885i −0.448322 + 0.776516i
\(404\) 7.00000 + 12.1244i 0.348263 + 0.603209i
\(405\) 0.500000 0.866025i 0.0248452 0.0430331i
\(406\) −20.0000 −0.992583
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) 14.5000 25.1147i 0.716979 1.24184i −0.245212 0.969469i \(-0.578858\pi\)
0.962191 0.272374i \(-0.0878089\pi\)
\(410\) 12.0000 0.592638
\(411\) 6.00000 0.295958
\(412\) 8.00000 13.8564i 0.394132 0.682656i
\(413\) 7.00000 + 12.1244i 0.344447 + 0.596601i
\(414\) −4.00000 + 6.92820i −0.196589 + 0.340503i
\(415\) 3.00000 + 5.19615i 0.147264 + 0.255069i
\(416\) −8.00000 13.8564i −0.392232 0.679366i
\(417\) −20.0000 −0.979404
\(418\) 8.00000 3.46410i 0.391293 0.169435i
\(419\) −5.00000 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(420\) 2.00000 + 3.46410i 0.0975900 + 0.169031i
\(421\) 3.50000 + 6.06218i 0.170580 + 0.295452i 0.938623 0.344946i \(-0.112103\pi\)
−0.768043 + 0.640398i \(0.778769\pi\)
\(422\) −27.0000 + 46.7654i −1.31434 + 2.27650i
\(423\) 0 0
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 6.00000 0.290701
\(427\) −7.00000 + 12.1244i −0.338754 + 0.586739i
\(428\) 0 0
\(429\) −2.00000 −0.0965609
\(430\) −20.0000 −0.964486
\(431\) −11.5000 + 19.9186i −0.553936 + 0.959444i 0.444050 + 0.896002i \(0.353541\pi\)
−0.997985 + 0.0634424i \(0.979792\pi\)
\(432\) −2.00000 3.46410i −0.0962250 0.166667i
\(433\) −3.00000 + 5.19615i −0.144171 + 0.249711i −0.929063 0.369921i \(-0.879385\pi\)
0.784892 + 0.619632i \(0.212718\pi\)
\(434\) −18.0000 31.1769i −0.864028 1.49654i
\(435\) 2.50000 + 4.33013i 0.119866 + 0.207614i
\(436\) 38.0000 1.81987
\(437\) −14.0000 10.3923i −0.669711 0.497131i
\(438\) −4.00000 −0.191127
\(439\) 12.5000 + 21.6506i 0.596592 + 1.03333i 0.993320 + 0.115392i \(0.0368124\pi\)
−0.396728 + 0.917936i \(0.629854\pi\)
\(440\) 0 0
\(441\) 1.50000 2.59808i 0.0714286 0.123718i
\(442\) 4.00000 + 6.92820i 0.190261 + 0.329541i
\(443\) 4.00000 6.92820i 0.190046 0.329169i −0.755219 0.655472i \(-0.772470\pi\)
0.945265 + 0.326303i \(0.105803\pi\)
\(444\) 12.0000 0.569495
\(445\) −15.0000 −0.711068
\(446\) −12.0000 + 20.7846i −0.568216 + 0.984180i
\(447\) 4.50000 7.79423i 0.212843 0.368654i
\(448\) 16.0000 0.755929
\(449\) −39.0000 −1.84052 −0.920262 0.391303i \(-0.872024\pi\)
−0.920262 + 0.391303i \(0.872024\pi\)
\(450\) 1.00000 1.73205i 0.0471405 0.0816497i
\(451\) −3.00000 5.19615i −0.141264 0.244677i
\(452\) 10.0000 17.3205i 0.470360 0.814688i
\(453\) −1.50000 2.59808i −0.0704761 0.122068i
\(454\) 18.0000 + 31.1769i 0.844782 + 1.46321i
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) −8.00000 −0.374224 −0.187112 0.982339i \(-0.559913\pi\)
−0.187112 + 0.982339i \(0.559913\pi\)
\(458\) −11.0000 19.0526i −0.513996 0.890268i
\(459\) 1.00000 + 1.73205i 0.0466760 + 0.0808452i
\(460\) −4.00000 + 6.92820i −0.186501 + 0.323029i
\(461\) 1.50000 + 2.59808i 0.0698620 + 0.121004i 0.898840 0.438276i \(-0.144411\pi\)
−0.828978 + 0.559281i \(0.811077\pi\)
\(462\) 2.00000 3.46410i 0.0930484 0.161165i
\(463\) −10.0000 −0.464739 −0.232370 0.972628i \(-0.574648\pi\)
−0.232370 + 0.972628i \(0.574648\pi\)
\(464\) 20.0000 0.928477
\(465\) −4.50000 + 7.79423i −0.208683 + 0.361449i
\(466\) −24.0000 + 41.5692i −1.11178 + 1.92566i
\(467\) −38.0000 −1.75843 −0.879215 0.476425i \(-0.841932\pi\)
−0.879215 + 0.476425i \(0.841932\pi\)
\(468\) 4.00000 0.184900
\(469\) 8.00000 13.8564i 0.369406 0.639829i
\(470\) 0 0
\(471\) 6.00000 10.3923i 0.276465 0.478852i
\(472\) 0 0
\(473\) 5.00000 + 8.66025i 0.229900 + 0.398199i
\(474\) −22.0000 −1.01049
\(475\) 3.50000 + 2.59808i 0.160591 + 0.119208i
\(476\) −8.00000 −0.366679
\(477\) 1.00000 + 1.73205i 0.0457869 + 0.0793052i
\(478\) 27.0000 + 46.7654i 1.23495 + 2.13900i
\(479\) −2.50000 + 4.33013i −0.114228 + 0.197849i −0.917471 0.397803i \(-0.869773\pi\)
0.803243 + 0.595652i \(0.203106\pi\)
\(480\) −4.00000 6.92820i −0.182574 0.316228i
\(481\) 6.00000 10.3923i 0.273576 0.473848i
\(482\) −10.0000 −0.455488
\(483\) −8.00000 −0.364013
\(484\) 10.0000 17.3205i 0.454545 0.787296i
\(485\) 4.00000 6.92820i 0.181631 0.314594i
\(486\) 2.00000 0.0907218
\(487\) 14.0000 0.634401 0.317200 0.948359i \(-0.397257\pi\)
0.317200 + 0.948359i \(0.397257\pi\)
\(488\) 0 0
\(489\) −9.00000 15.5885i −0.406994 0.704934i
\(490\) 3.00000 5.19615i 0.135526 0.234738i
\(491\) 16.5000 + 28.5788i 0.744635 + 1.28974i 0.950365 + 0.311136i \(0.100710\pi\)
−0.205731 + 0.978609i \(0.565957\pi\)
\(492\) 6.00000 + 10.3923i 0.270501 + 0.468521i
\(493\) −10.0000 −0.450377
\(494\) −2.00000 + 17.3205i −0.0899843 + 0.779287i
\(495\) −1.00000 −0.0449467
\(496\) 18.0000 + 31.1769i 0.808224 + 1.39988i
\(497\) 3.00000 + 5.19615i 0.134568 + 0.233079i
\(498\) −6.00000 + 10.3923i −0.268866 + 0.465690i
\(499\) −10.0000 17.3205i −0.447661 0.775372i 0.550572 0.834788i \(-0.314410\pi\)
−0.998233 + 0.0594153i \(0.981076\pi\)
\(500\) 1.00000 1.73205i 0.0447214 0.0774597i
\(501\) 2.00000 0.0893534
\(502\) 34.0000 1.51749
\(503\) 22.0000 38.1051i 0.980932 1.69902i 0.322151 0.946688i \(-0.395594\pi\)
0.658781 0.752335i \(-0.271072\pi\)
\(504\) 0 0
\(505\) 7.00000 0.311496
\(506\) 8.00000 0.355643
\(507\) −4.50000 + 7.79423i −0.199852 + 0.346154i
\(508\) −4.00000 6.92820i −0.177471 0.307389i
\(509\) 15.0000 25.9808i 0.664863 1.15158i −0.314459 0.949271i \(-0.601823\pi\)
0.979322 0.202306i \(-0.0648436\pi\)
\(510\) 2.00000 + 3.46410i 0.0885615 + 0.153393i
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) −32.0000 −1.41421
\(513\) −0.500000 + 4.33013i −0.0220755 + 0.191180i
\(514\) −44.0000 −1.94076
\(515\) −4.00000 6.92820i −0.176261 0.305293i
\(516\) −10.0000 17.3205i −0.440225 0.762493i
\(517\) 0 0
\(518\) 12.0000 + 20.7846i 0.527250 + 0.913223i
\(519\) 3.00000 5.19615i 0.131685 0.228086i
\(520\) 0 0
\(521\) 21.0000 0.920027 0.460013 0.887912i \(-0.347845\pi\)
0.460013 + 0.887912i \(0.347845\pi\)
\(522\) −5.00000 + 8.66025i −0.218844 + 0.379049i
\(523\) 11.0000 19.0526i 0.480996 0.833110i −0.518766 0.854916i \(-0.673608\pi\)
0.999762 + 0.0218062i \(0.00694167\pi\)
\(524\) 32.0000 1.39793
\(525\) 2.00000 0.0872872
\(526\) 20.0000 34.6410i 0.872041 1.51042i
\(527\) −9.00000 15.5885i −0.392046 0.679044i
\(528\) −2.00000 + 3.46410i −0.0870388 + 0.150756i
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 2.00000 + 3.46410i 0.0868744 + 0.150471i
\(531\) 7.00000 0.303774
\(532\) −14.0000 10.3923i −0.606977 0.450564i
\(533\) 12.0000 0.519778
\(534\) −15.0000 25.9808i −0.649113 1.12430i
\(535\) 0 0
\(536\) 0 0
\(537\) −1.50000 2.59808i −0.0647298 0.112115i
\(538\) 1.00000 1.73205i 0.0431131 0.0746740i
\(539\) −3.00000 −0.129219
\(540\) 2.00000 0.0860663
\(541\) −7.50000 + 12.9904i −0.322450 + 0.558500i −0.980993 0.194043i \(-0.937840\pi\)
0.658543 + 0.752543i \(0.271173\pi\)
\(542\) 27.0000 46.7654i 1.15975 2.00874i
\(543\) −10.0000 −0.429141
\(544\) 16.0000 0.685994
\(545\) 9.50000 16.4545i 0.406935 0.704833i
\(546\) 4.00000 + 6.92820i 0.171184 + 0.296500i
\(547\) 4.00000 6.92820i 0.171028 0.296229i −0.767752 0.640747i \(-0.778625\pi\)
0.938779 + 0.344519i \(0.111958\pi\)
\(548\) 6.00000 + 10.3923i 0.256307 + 0.443937i
\(549\) 3.50000 + 6.06218i 0.149376 + 0.258727i
\(550\) −2.00000 −0.0852803
\(551\) −17.5000 12.9904i −0.745525 0.553409i
\(552\) 0 0
\(553\) −11.0000 19.0526i −0.467768 0.810197i
\(554\) −8.00000 13.8564i −0.339887 0.588702i
\(555\) 3.00000 5.19615i 0.127343 0.220564i
\(556\) −20.0000 34.6410i −0.848189 1.46911i
\(557\) 16.0000 27.7128i 0.677942 1.17423i −0.297658 0.954673i \(-0.596205\pi\)
0.975600 0.219557i \(-0.0704612\pi\)
\(558\) −18.0000 −0.762001
\(559\) −20.0000 −0.845910
\(560\) 4.00000 6.92820i 0.169031 0.292770i
\(561\) 1.00000 1.73205i 0.0422200 0.0731272i
\(562\) 52.0000 2.19349
\(563\) −42.0000 −1.77009 −0.885044 0.465506i \(-0.845872\pi\)
−0.885044 + 0.465506i \(0.845872\pi\)
\(564\) 0 0
\(565\) −5.00000 8.66025i −0.210352 0.364340i
\(566\) 2.00000 3.46410i 0.0840663 0.145607i
\(567\) 1.00000 + 1.73205i 0.0419961 + 0.0727393i
\(568\) 0 0
\(569\) −39.0000 −1.63497 −0.817483 0.575953i \(-0.804631\pi\)
−0.817483 + 0.575953i \(0.804631\pi\)
\(570\) −1.00000 + 8.66025i −0.0418854 + 0.362738i
\(571\) −15.0000 −0.627730 −0.313865 0.949468i \(-0.601624\pi\)
−0.313865 + 0.949468i \(0.601624\pi\)
\(572\) −2.00000 3.46410i −0.0836242 0.144841i
\(573\) 7.50000 + 12.9904i 0.313317 + 0.542681i
\(574\) −12.0000 + 20.7846i −0.500870 + 0.867533i
\(575\) 2.00000 + 3.46410i 0.0834058 + 0.144463i
\(576\) 4.00000 6.92820i 0.166667 0.288675i
\(577\) 12.0000 0.499567 0.249783 0.968302i \(-0.419641\pi\)
0.249783 + 0.968302i \(0.419641\pi\)
\(578\) 26.0000 1.08146
\(579\) −13.0000 + 22.5167i −0.540262 + 0.935760i
\(580\) −5.00000 + 8.66025i −0.207614 + 0.359597i
\(581\) −12.0000 −0.497844
\(582\) 16.0000 0.663221
\(583\) 1.00000 1.73205i 0.0414158 0.0717342i
\(584\) 0 0
\(585\) 1.00000 1.73205i 0.0413449 0.0716115i
\(586\) −4.00000 6.92820i −0.165238 0.286201i
\(587\) −11.0000 19.0526i −0.454019 0.786383i 0.544613 0.838688i \(-0.316677\pi\)
−0.998631 + 0.0523045i \(0.983343\pi\)
\(588\) 6.00000 0.247436
\(589\) 4.50000 38.9711i 0.185419 1.60578i
\(590\) 14.0000 0.576371
\(591\) 5.00000 + 8.66025i 0.205673 + 0.356235i
\(592\) −12.0000 20.7846i −0.493197 0.854242i
\(593\) −3.00000 + 5.19615i −0.123195 + 0.213380i −0.921026 0.389501i \(-0.872647\pi\)
0.797831 + 0.602881i \(0.205981\pi\)
\(594\) −1.00000 1.73205i −0.0410305 0.0710669i
\(595\) −2.00000 + 3.46410i −0.0819920 + 0.142014i
\(596\) 18.0000 0.737309
\(597\) 3.00000 0.122782
\(598\) −8.00000 + 13.8564i −0.327144 + 0.566631i
\(599\) 18.0000 31.1769i 0.735460 1.27385i −0.219061 0.975711i \(-0.570299\pi\)
0.954521 0.298143i \(-0.0963673\pi\)
\(600\) 0 0
\(601\) −15.0000 −0.611863 −0.305931 0.952054i \(-0.598968\pi\)
−0.305931 + 0.952054i \(0.598968\pi\)
\(602\) 20.0000 34.6410i 0.815139 1.41186i
\(603\) −4.00000 6.92820i −0.162893 0.282138i
\(604\) 3.00000 5.19615i 0.122068 0.211428i
\(605\) −5.00000 8.66025i −0.203279 0.352089i
\(606\) 7.00000 + 12.1244i 0.284356 + 0.492518i
\(607\) −10.0000 −0.405887 −0.202944 0.979190i \(-0.565051\pi\)
−0.202944 + 0.979190i \(0.565051\pi\)
\(608\) 28.0000 + 20.7846i 1.13555 + 0.842927i
\(609\) −10.0000 −0.405220
\(610\) 7.00000 + 12.1244i 0.283422 + 0.490901i
\(611\) 0 0
\(612\) −2.00000 + 3.46410i −0.0808452 + 0.140028i
\(613\) 3.00000 + 5.19615i 0.121169 + 0.209871i 0.920229 0.391381i \(-0.128002\pi\)
−0.799060 + 0.601251i \(0.794669\pi\)
\(614\) −24.0000 + 41.5692i −0.968561 + 1.67760i
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) 12.0000 20.7846i 0.483102 0.836757i −0.516710 0.856161i \(-0.672843\pi\)
0.999812 + 0.0194037i \(0.00617676\pi\)
\(618\) 8.00000 13.8564i 0.321807 0.557386i
\(619\) −32.0000 −1.28619 −0.643094 0.765787i \(-0.722350\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) −18.0000 −0.722897
\(621\) −2.00000 + 3.46410i −0.0802572 + 0.139010i
\(622\) 24.0000 + 41.5692i 0.962312 + 1.66677i
\(623\) 15.0000 25.9808i 0.600962 1.04090i
\(624\) −4.00000 6.92820i −0.160128 0.277350i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 40.0000 1.59872
\(627\) 4.00000 1.73205i 0.159745 0.0691714i
\(628\) 24.0000 0.957704
\(629\) 6.00000 + 10.3923i 0.239236 + 0.414368i
\(630\) 2.00000 + 3.46410i 0.0796819 + 0.138013i
\(631\) 1.50000 2.59808i 0.0597141 0.103428i −0.834623 0.550822i \(-0.814314\pi\)
0.894337 + 0.447394i \(0.147648\pi\)
\(632\) 0 0
\(633\) −13.5000 + 23.3827i −0.536577 + 0.929378i
\(634\) −64.0000 −2.54176
\(635\) −4.00000 −0.158735
\(636\) −2.00000 + 3.46410i −0.0793052 + 0.137361i
\(637\) 3.00000 5.19615i 0.118864 0.205879i
\(638\) 10.0000 0.395904
\(639\) 3.00000 0.118678
\(640\) 0 0
\(641\) 16.5000 + 28.5788i 0.651711 + 1.12880i 0.982708 + 0.185164i \(0.0592817\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(642\) 0 0
\(643\) −22.0000 38.1051i −0.867595 1.50272i −0.864447 0.502724i \(-0.832331\pi\)
−0.00314839 0.999995i \(-0.501002\pi\)
\(644\) −8.00000 13.8564i −0.315244 0.546019i
\(645\) −10.0000 −0.393750
\(646\) −14.0000 10.3923i −0.550823 0.408880i
\(647\) 6.00000 0.235884 0.117942 0.993020i \(-0.462370\pi\)
0.117942 + 0.993020i \(0.462370\pi\)
\(648\) 0 0
\(649\) −3.50000 6.06218i −0.137387 0.237961i
\(650\) 2.00000 3.46410i 0.0784465 0.135873i
\(651\) −9.00000 15.5885i −0.352738 0.610960i
\(652\) 18.0000 31.1769i 0.704934 1.22098i
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 38.0000 1.48592
\(655\) 8.00000 13.8564i 0.312586 0.541415i
\(656\) 12.0000 20.7846i 0.468521 0.811503i
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) −20.0000 + 34.6410i −0.779089 + 1.34942i 0.153378 + 0.988168i \(0.450985\pi\)
−0.932467 + 0.361255i \(0.882348\pi\)
\(660\) −1.00000 1.73205i −0.0389249 0.0674200i
\(661\) −4.50000 + 7.79423i −0.175030 + 0.303160i −0.940172 0.340701i \(-0.889335\pi\)
0.765142 + 0.643862i \(0.222669\pi\)
\(662\) 8.00000 + 13.8564i 0.310929 + 0.538545i
\(663\) 2.00000 + 3.46410i 0.0776736 + 0.134535i
\(664\) 0 0
\(665\) −8.00000 + 3.46410i −0.310227 + 0.134332i
\(666\) 12.0000 0.464991
\(667\) −10.0000 17.3205i −0.387202 0.670653i
\(668\) 2.00000 + 3.46410i 0.0773823 + 0.134030i
\(669\) −6.00000 + 10.3923i −0.231973 + 0.401790i
\(670\) −8.00000 13.8564i −0.309067 0.535320i
\(671\) 3.50000 6.06218i 0.135116 0.234028i
\(672\) 16.0000 0.617213
\(673\) 36.0000 1.38770 0.693849 0.720121i \(-0.255914\pi\)
0.693849 + 0.720121i \(0.255914\pi\)
\(674\) −8.00000 + 13.8564i −0.308148 + 0.533729i
\(675\) 0.500000 0.866025i 0.0192450 0.0333333i
\(676\) −18.0000 −0.692308
\(677\) 46.0000 1.76792 0.883962 0.467559i \(-0.154866\pi\)
0.883962 + 0.467559i \(0.154866\pi\)
\(678\) 10.0000 17.3205i 0.384048 0.665190i
\(679\) 8.00000 + 13.8564i 0.307012 + 0.531760i
\(680\) 0 0
\(681\) 9.00000 + 15.5885i 0.344881 + 0.597351i
\(682\) 9.00000 + 15.5885i 0.344628 + 0.596913i
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) −8.00000 + 3.46410i −0.305888 + 0.132453i
\(685\) 6.00000 0.229248
\(686\) 20.0000 + 34.6410i 0.763604 + 1.32260i
\(687\) −5.50000 9.52628i −0.209838 0.363450i
\(688\) −20.0000 + 34.6410i −0.762493 + 1.32068i
\(689\) 2.00000 + 3.46410i 0.0761939 + 0.131972i
\(690\) −4.00000 + 6.92820i −0.152277 + 0.263752i
\(691\) 23.0000 0.874961 0.437481 0.899228i \(-0.355871\pi\)
0.437481 + 0.899228i \(0.355871\pi\)
\(692\) 12.0000 0.456172
\(693\) 1.00000 1.73205i 0.0379869 0.0657952i
\(694\) −22.0000 + 38.1051i −0.835109 + 1.44645i
\(695\) −20.0000 −0.758643
\(696\) 0 0
\(697\) −6.00000 + 10.3923i −0.227266 + 0.393637i
\(698\) 6.00000 + 10.3923i 0.227103 + 0.393355i
\(699\) −12.0000 + 20.7846i −0.453882 + 0.786146i
\(700\) 2.00000 + 3.46410i 0.0755929 + 0.130931i
\(701\) 11.0000 + 19.0526i 0.415464 + 0.719605i 0.995477 0.0950021i \(-0.0302858\pi\)
−0.580013 + 0.814607i \(0.696952\pi\)
\(702\) 4.00000 0.150970
\(703\) −3.00000 + 25.9808i −0.113147 + 0.979883i
\(704\) −8.00000 −0.301511
\(705\) 0 0
\(706\) −14.0000 24.2487i −0.526897 0.912612i
\(707\) −7.00000 + 12.1244i −0.263262 + 0.455983i
\(708\) 7.00000 + 12.1244i 0.263076 + 0.455661i
\(709\) 13.5000 23.3827i 0.507003 0.878155i −0.492964 0.870050i \(-0.664087\pi\)
0.999967 0.00810550i \(-0.00258009\pi\)
\(710\) 6.00000 0.225176
\(711\) −11.0000 −0.412532
\(712\) 0 0
\(713\) 18.0000 31.1769i 0.674105 1.16758i
\(714\) −8.00000 −0.299392
\(715\) −2.00000 −0.0747958
\(716\) 3.00000 5.19615i 0.112115 0.194189i
\(717\) 13.5000 + 23.3827i 0.504167 + 0.873242i
\(718\) −8.00000 + 13.8564i −0.298557 + 0.517116i
\(719\) 13.5000 + 23.3827i 0.503465 + 0.872027i 0.999992 + 0.00400572i \(0.00127506\pi\)
−0.496527 + 0.868021i \(0.665392\pi\)
\(720\) −2.00000 3.46410i −0.0745356 0.129099i
\(721\) 16.0000 0.595871
\(722\) −11.0000 36.3731i −0.409378 1.35367i
\(723\) −5.00000 −0.185952
\(724\) −10.0000 17.3205i −0.371647 0.643712i
\(725\) 2.50000 + 4.33013i 0.0928477 + 0.160817i
\(726\) 10.0000 17.3205i 0.371135 0.642824i
\(727\) 1.00000 + 1.73205i 0.0370879 + 0.0642382i 0.883974 0.467537i \(-0.154858\pi\)
−0.846886 + 0.531775i \(0.821525\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −4.00000 −0.148047
\(731\) 10.0000 17.3205i 0.369863 0.640622i
\(732\) −7.00000 + 12.1244i −0.258727 + 0.448129i
\(733\) 10.0000 0.369358 0.184679 0.982799i \(-0.440875\pi\)
0.184679 + 0.982799i \(0.440875\pi\)
\(734\) 40.0000 1.47643
\(735\) 1.50000 2.59808i 0.0553283 0.0958315i
\(736\) 16.0000 + 27.7128i 0.589768 + 1.02151i
\(737\) −4.00000 + 6.92820i −0.147342 + 0.255204i
\(738\) 6.00000 + 10.3923i 0.220863 + 0.382546i
\(739\) 26.5000 + 45.8993i 0.974818 + 1.68843i 0.680534 + 0.732717i \(0.261748\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 12.0000 0.441129
\(741\) −1.00000 + 8.66025i −0.0367359 + 0.318142i
\(742\) −8.00000 −0.293689
\(743\) −11.0000 19.0526i −0.403551 0.698971i 0.590601 0.806964i \(-0.298891\pi\)
−0.994152 + 0.107993i \(0.965557\pi\)
\(744\) 0 0
\(745\) 4.50000 7.79423i 0.164867 0.285558i
\(746\) −32.0000 55.4256i −1.17160 2.02928i
\(747\) −3.00000 + 5.19615i −0.109764 + 0.190117i
\(748\) 4.00000 0.146254
\(749\) 0 0
\(750\) 1.00000 1.73205i 0.0365148 0.0632456i
\(751\) 1.50000 2.59808i 0.0547358 0.0948051i −0.837359 0.546653i \(-0.815902\pi\)
0.892095 + 0.451848i \(0.149235\pi\)
\(752\) 0 0
\(753\) 17.0000 0.619514
\(754\) −10.0000 + 17.3205i −0.364179 + 0.630776i
\(755\) −1.50000 2.59808i −0.0545906 0.0945537i
\(756\) −2.00000 + 3.46410i −0.0727393 + 0.125988i
\(757\) 7.00000 + 12.1244i 0.254419 + 0.440667i 0.964738 0.263213i \(-0.0847823\pi\)
−0.710318 + 0.703881i \(0.751449\pi\)
\(758\) 31.0000 + 53.6936i 1.12597 + 1.95024i
\(759\) 4.00000 0.145191
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) −4.00000 6.92820i −0.144905 0.250982i
\(763\) 19.0000 + 32.9090i 0.687846 + 1.19138i
\(764\) −15.0000 + 25.9808i −0.542681 + 0.939951i
\(765\) 1.00000 + 1.73205i 0.0361551 + 0.0626224i
\(766\) 26.0000 45.0333i 0.939418 1.62712i
\(767\) 14.0000 0.505511
\(768\) −16.0000 −0.577350
\(769\) 21.5000 37.2391i 0.775310 1.34288i −0.159310 0.987229i \(-0.550927\pi\)
0.934620 0.355647i \(-0.115740\pi\)
\(770\) 2.00000 3.46410i 0.0720750 0.124838i
\(771\) −22.0000 −0.792311
\(772\) −52.0000 −1.87152
\(773\) −10.0000 + 17.3205i −0.359675 + 0.622975i −0.987906 0.155051i \(-0.950446\pi\)
0.628231 + 0.778027i \(0.283779\pi\)
\(774\) −10.0000 17.3205i −0.359443 0.622573i
\(775\) −4.50000 + 7.79423i −0.161645 + 0.279977i
\(776\) 0 0
\(777\) 6.00000 + 10.3923i 0.215249 + 0.372822i
\(778\) −66.0000 −2.36621
\(779\) −24.0000 + 10.3923i −0.859889 + 0.372343i
\(780\) 4.00000 0.143223
\(781\) −1.50000 2.59808i −0.0536742 0.0929665i
\(782\) −8.00000 13.8564i −0.286079 0.495504i
\(783\) −2.50000 + 4.33013i −0.0893427 + 0.154746i
\(784\) −6.00000 10.3923i −0.214286 0.371154i
\(785\) 6.00000 10.3923i 0.214149 0.370917i
\(786\) 32.0000 1.14140
\(787\) −8.00000 −0.285169 −0.142585 0.989783i \(-0.545541\pi\)
−0.142585 + 0.989783i \(0.545541\pi\)
\(788\) −10.0000 + 17.3205i −0.356235 + 0.617018i
\(789\) 10.0000 17.3205i 0.356009 0.616626i
\(790\) −22.0000 −0.782725
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) 7.00000 + 12.1244i 0.248577 + 0.430548i
\(794\) −20.0000 + 34.6410i −0.709773 + 1.22936i
\(795\) 1.00000 + 1.73205i 0.0354663 + 0.0614295i
\(796\) 3.00000 + 5.19615i 0.106332 + 0.184173i
\(797\) 10.0000 0.354218 0.177109 0.984191i \(-0.443325\pi\)
0.177109 + 0.984191i \(0.443325\pi\)
\(798\) −14.0000 10.3923i −0.495595 0.367884i
\(799\) 0 0
\(800\) −4.00000 6.92820i −0.141421 0.244949i
\(801\) −7.50000 12.9904i −0.264999 0.458993i
\(802\) −27.0000 + 46.7654i −0.953403 + 1.65134i
\(803\) 1.00000 + 1.73205i 0.0352892 + 0.0611227i
\(804\) 8.00000 13.8564i 0.282138 0.488678i
\(805\) −8.00000 −0.281963
\(806\) −36.0000 −1.26805
\(807\) 0.500000 0.866025i 0.0176008 0.0304855i
\(808\) 0 0
\(809\) −1.00000 −0.0351581 −0.0175791 0.999845i \(-0.505596\pi\)
−0.0175791 + 0.999845i \(0.505596\pi\)
\(810\) 2.00000 0.0702728
\(811\) −24.5000 + 42.4352i −0.860311 + 1.49010i 0.0113172 + 0.999936i \(0.496398\pi\)
−0.871629 + 0.490167i \(0.836936\pi\)
\(812\) −10.0000 17.3205i −0.350931 0.607831i
\(813\) 13.5000 23.3827i 0.473466 0.820067i
\(814\) −6.00000 10.3923i −0.210300 0.364250i
\(815\) −9.00000 15.5885i −0.315256 0.546040i
\(816\) 8.00000 0.280056
\(817\) 40.0000 17.3205i 1.39942 0.605968i
\(818\) 58.0000 2.02792
\(819\) 2.00000 + 3.46410i 0.0698857 + 0.121046i
\(820\) 6.00000 + 10.3923i 0.209529 + 0.362915i
\(821\) 22.5000 38.9711i 0.785255 1.36010i −0.143591 0.989637i \(-0.545865\pi\)
0.928846 0.370465i \(-0.120802\pi\)
\(822\) 6.00000 + 10.3923i 0.209274 + 0.362473i
\(823\) 10.0000 17.3205i 0.348578 0.603755i −0.637419 0.770517i \(-0.719998\pi\)
0.985997 + 0.166762i \(0.0533313\pi\)
\(824\) 0 0
\(825\) −1.00000 −0.0348155
\(826\) −14.0000 + 24.2487i −0.487122 + 0.843721i
\(827\) −6.00000 + 10.3923i −0.208640 + 0.361376i −0.951286 0.308308i \(-0.900237\pi\)
0.742646 + 0.669684i \(0.233571\pi\)
\(828\) −8.00000 −0.278019
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) −6.00000 + 10.3923i −0.208263 + 0.360722i
\(831\) −4.00000 6.92820i −0.138758 0.240337i
\(832\) 8.00000 13.8564i 0.277350 0.480384i
\(833\) 3.00000 + 5.19615i 0.103944 + 0.180036i
\(834\) −20.0000 34.6410i −0.692543 1.19952i
\(835\) 2.00000 0.0692129
\(836\) 7.00000 + 5.19615i 0.242100 + 0.179713i
\(837\) −9.00000 −0.311086
\(838\) −5.00000 8.66025i −0.172722 0.299164i
\(839\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 0 0
\(841\) 2.00000 + 3.46410i 0.0689655 + 0.119452i
\(842\) −7.00000 + 12.1244i −0.241236 + 0.417833i
\(843\) 26.0000 0.895488
\(844\) −54.0000 −1.85876
\(845\) −4.50000 + 7.79423i −0.154805 + 0.268130i
\(846\) 0 0
\(847\) 20.0000 0.687208
\(848\) 8.00000 0.274721
\(849\) 1.00000 1.73205i 0.0343199 0.0594438i
\(850\) 2.00000 + 3.46410i 0.0685994 + 0.118818i
\(851\) −12.0000 + 20.7846i −0.411355 + 0.712487i
\(852\) 3.00000 + 5.19615i 0.102778 + 0.178017i
\(853\) 1.00000 + 1.73205i 0.0342393 + 0.0593043i 0.882637 0.470055i \(-0.155766\pi\)
−0.848398 + 0.529359i \(0.822432\pi\)
\(854\) −28.0000 −0.958140
\(855\) −0.500000 + 4.33013i −0.0170996 + 0.148087i
\(856\) 0 0
\(857\) −5.00000 8.66025i −0.170797 0.295829i 0.767902 0.640567i \(-0.221301\pi\)
−0.938699 + 0.344739i \(0.887967\pi\)
\(858\) −2.00000 3.46410i −0.0682789 0.118262i
\(859\) −22.5000 + 38.9711i −0.767690 + 1.32968i 0.171122 + 0.985250i \(0.445261\pi\)
−0.938813 + 0.344428i \(0.888073\pi\)
\(860\) −10.0000 17.3205i −0.340997 0.590624i
\(861\) −6.00000 + 10.3923i −0.204479 + 0.354169i
\(862\) −46.0000 −1.56677
\(863\) −38.0000 −1.29354 −0.646768 0.762687i \(-0.723880\pi\)
−0.646768 + 0.762687i \(0.723880\pi\)
\(864\) 4.00000 6.92820i 0.136083 0.235702i
\(865\) 3.00000 5.19615i 0.102003 0.176674i
\(866\) −12.0000 −0.407777
\(867\) 13.0000 0.441503
\(868\) 18.0000 31.1769i 0.610960 1.05821i
\(869\) 5.50000 + 9.52628i 0.186575 + 0.323157i
\(870\) −5.00000 + 8.66025i −0.169516 + 0.293610i
\(871\) −8.00000 13.8564i −0.271070 0.469506i
\(872\) 0 0
\(873\) 8.00000 0.270759
\(874\) 4.00000 34.6410i 0.135302 1.17175i
\(875\) 2.00000 0.0676123
\(876\) −2.00000 3.46410i −0.0675737 0.117041i
\(877\) −12.0000 20.7846i −0.405211 0.701846i 0.589135 0.808035i \(-0.299469\pi\)
−0.994346 + 0.106188i \(0.966135\pi\)
\(878\) −25.0000 + 43.3013i −0.843709 + 1.46135i
\(879\) −2.00000 3.46410i −0.0674583 0.116841i
\(880\) −2.00000 + 3.46410i −0.0674200 + 0.116775i
\(881\) −1.00000 −0.0336909 −0.0168454 0.999858i \(-0.505362\pi\)
−0.0168454 + 0.999858i \(0.505362\pi\)
\(882\) 6.00000 0.202031
\(883\) 14.0000 24.2487i 0.471138 0.816034i −0.528317 0.849047i \(-0.677177\pi\)
0.999455 + 0.0330128i \(0.0105102\pi\)
\(884\) −4.00000 + 6.92820i −0.134535 + 0.233021i
\(885\) 7.00000 0.235302
\(886\) 16.0000 0.537531
\(887\) 6.00000 10.3923i 0.201460 0.348939i −0.747539 0.664218i \(-0.768765\pi\)
0.948999 + 0.315279i \(0.102098\pi\)
\(888\) 0 0
\(889\) 4.00000 6.92820i 0.134156 0.232364i
\(890\) −15.0000 25.9808i −0.502801 0.870877i
\(891\) −0.500000 0.866025i −0.0167506 0.0290129i
\(892\) −24.0000 −0.803579
\(893\) 0 0
\(894\) 18.0000 0.602010
\(895\) −1.50000 2.59808i −0.0501395 0.0868441i
\(896\) 0 0
\(897\) −4.00000 + 6.92820i −0.133556 + 0.231326i
\(898\) −39.0000 67.5500i −1.30145 2.25417i
\(899\) 22.5000 38.9711i 0.750417 1.29976i
\(900\) 2.00000 0.0666667
\(901\) −4.00000 −0.133259
\(902\) 6.00000 10.3923i 0.199778 0.346026i
\(903\) 10.0000 17.3205i 0.332779 0.576390i
\(904\) 0 0
\(905\) −10.0000 −0.332411
\(906\) 3.00000 5.19615i 0.0996683 0.172631i
\(907\) −2.00000 3.46410i −0.0664089 0.115024i 0.830909 0.556408i \(-0.187821\pi\)
−0.897318 + 0.441384i \(0.854488\pi\)
\(908\) −18.0000 + 31.1769i −0.597351 + 1.03464i
\(909\) 3.50000 + 6.06218i 0.116088 + 0.201070i
\(910\) 4.00000 + 6.92820i 0.132599 + 0.229668i
\(911\) −9.00000 −0.298183 −0.149092 0.988823i \(-0.547635\pi\)
−0.149092 + 0.988823i \(0.547635\pi\)
\(912\) 14.0000 + 10.3923i 0.463586 + 0.344124i
\(913\) 6.00000 0.198571
\(914\) −8.00000 13.8564i −0.264616 0.458329i
\(915\) 3.50000 + 6.06218i 0.115706 + 0.200409i
\(916\) 11.0000 19.0526i 0.363450 0.629514i
\(917\) 16.0000 + 27.7128i 0.528367 + 0.915158i
\(918\) −2.00000 + 3.46410i −0.0660098 + 0.114332i
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) −12.0000 + 20.7846i −0.395413 + 0.684876i
\(922\) −3.00000 + 5.19615i −0.0987997 + 0.171126i
\(923\) 6.00000 0.197492
\(924\) 4.00000 0.131590
\(925\) 3.00000 5.19615i 0.0986394 0.170848i
\(926\) −10.0000 17.3205i −0.328620 0.569187i
\(927\) 4.00000 6.92820i 0.131377 0.227552i
\(928\) 20.0000 + 34.6410i 0.656532 + 1.13715i
\(929\) 5.50000 + 9.52628i 0.180449 + 0.312547i 0.942034 0.335519i \(-0.108912\pi\)
−0.761584 + 0.648066i \(0.775578\pi\)
\(930\) −18.0000 −0.590243
\(931\) −1.50000 + 12.9904i −0.0491605 + 0.425743i
\(932\) −48.0000 −1.57229
\(933\) 12.0000 + 20.7846i 0.392862 + 0.680458i
\(934\) −38.0000 65.8179i −1.24340 2.15363i
\(935\) 1.00000 1.73205i 0.0327035 0.0566441i
\(936\) 0 0
\(937\) 9.00000 15.5885i 0.294017 0.509253i −0.680739 0.732526i \(-0.738341\pi\)
0.974756 + 0.223274i \(0.0716744\pi\)
\(938\) 32.0000 1.04484
\(939\) 20.0000 0.652675
\(940\) 0 0
\(941\) −10.5000 + 18.1865i −0.342290 + 0.592864i −0.984858 0.173365i \(-0.944536\pi\)
0.642567 + 0.766229i \(0.277869\pi\)
\(942\) 24.0000 0.781962
\(943\) −24.0000 −0.781548
\(944\) 14.0000 24.2487i 0.455661 0.789228i
\(945\) 1.00000 + 1.73205i 0.0325300 + 0.0563436i
\(946\) −10.0000 + 17.3205i −0.325128 + 0.563138i
\(947\) −10.0000 17.3205i −0.324956 0.562841i 0.656547 0.754285i \(-0.272016\pi\)
−0.981504 + 0.191444i \(0.938683\pi\)
\(948\) −11.0000 19.0526i −0.357263 0.618798i
\(949\) −4.00000 −0.129845
\(950\) −1.00000 + 8.66025i −0.0324443 + 0.280976i
\(951\) −32.0000 −1.03767
\(952\) 0 0
\(953\) 4.00000 + 6.92820i 0.129573 + 0.224427i 0.923511 0.383572i \(-0.125306\pi\)
−0.793938 + 0.607998i \(0.791973\pi\)
\(954\) −2.00000 + 3.46410i −0.0647524 + 0.112154i
\(955\) 7.50000 + 12.9904i 0.242694 + 0.420359i
\(956\) −27.0000 + 46.7654i −0.873242 + 1.51250i
\(957\) 5.00000 0.161627
\(958\) −10.0000 −0.323085
\(959\) −6.00000 + 10.3923i −0.193750 + 0.335585i
\(960\) 4.00000 6.92820i 0.129099 0.223607i
\(961\) 50.0000 1.61290
\(962\) 24.0000 0.773791
\(963\) 0 0
\(964\) −5.00000 8.66025i −0.161039 0.278928i
\(965\) −13.0000 + 22.5167i −0.418485 + 0.724837i
\(966\) −8.00000 13.8564i −0.257396 0.445823i
\(967\) −2.00000 3.46410i −0.0643157 0.111398i 0.832075 0.554664i \(-0.187153\pi\)
−0.896390 + 0.443266i \(0.853820\pi\)
\(968\) 0 0
\(969\) −7.00000 5.19615i −0.224872 0.166924i
\(970\) 16.0000 0.513729
\(971\) 12.0000 + 20.7846i 0.385098 + 0.667010i 0.991783 0.127933i \(-0.0408342\pi\)
−0.606685 + 0.794943i \(0.707501\pi\)
\(972\) 1.00000 + 1.73205i 0.0320750 + 0.0555556i
\(973\) 20.0000 34.6410i 0.641171 1.11054i
\(974\) 14.0000 + 24.2487i 0.448589 + 0.776979i
\(975\) 1.00000 1.73205i 0.0320256 0.0554700i
\(976\) 28.0000 0.896258
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 18.0000 31.1769i 0.575577 0.996928i
\(979\) −7.50000 + 12.9904i −0.239701 + 0.415174i
\(980\) 6.00000 0.191663
\(981\) 19.0000 0.606623
\(982\) −33.0000 + 57.1577i −1.05307 + 1.82397i
\(983\) 7.00000 + 12.1244i 0.223265 + 0.386707i 0.955798 0.294025i \(-0.0949950\pi\)
−0.732532 + 0.680732i \(0.761662\pi\)
\(984\) 0 0
\(985\) 5.00000 + 8.66025i 0.159313 + 0.275939i
\(986\) −10.0000 17.3205i −0.318465 0.551597i
\(987\) 0 0
\(988\) −16.0000 + 6.92820i −0.509028 + 0.220416i
\(989\) 40.0000 1.27193
\(990\) −1.00000 1.73205i −0.0317821 0.0550482i
\(991\) 20.0000 + 34.6410i 0.635321 + 1.10041i 0.986447 + 0.164080i \(0.0524655\pi\)
−0.351126 + 0.936328i \(0.614201\pi\)
\(992\) −36.0000 + 62.3538i −1.14300 + 1.97974i
\(993\) 4.00000 + 6.92820i 0.126936 + 0.219860i
\(994\) −6.00000 + 10.3923i −0.190308 + 0.329624i
\(995\) 3.00000 0.0951064
\(996\) −12.0000 −0.380235
\(997\) −26.0000 + 45.0333i −0.823428 + 1.42622i 0.0796863 + 0.996820i \(0.474608\pi\)
−0.903115 + 0.429400i \(0.858725\pi\)
\(998\) 20.0000 34.6410i 0.633089 1.09654i
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.2.i.c.121.1 yes 2
3.2 odd 2 855.2.k.a.406.1 2
19.7 even 3 5415.2.a.b.1.1 1
19.11 even 3 inner 285.2.i.c.106.1 2
19.12 odd 6 5415.2.a.l.1.1 1
57.11 odd 6 855.2.k.a.676.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.c.106.1 2 19.11 even 3 inner
285.2.i.c.121.1 yes 2 1.1 even 1 trivial
855.2.k.a.406.1 2 3.2 odd 2
855.2.k.a.676.1 2 57.11 odd 6
5415.2.a.b.1.1 1 19.7 even 3
5415.2.a.l.1.1 1 19.12 odd 6