Properties

Label 285.2.i.c.106.1
Level $285$
Weight $2$
Character 285.106
Analytic conductor $2.276$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 285.106
Dual form 285.2.i.c.121.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-1.00000 - 1.73205i) q^{6} -2.00000 q^{7} +(-0.500000 - 0.866025i) q^{9} +(-1.00000 - 1.73205i) q^{10} +1.00000 q^{11} -2.00000 q^{12} +(-1.00000 - 1.73205i) q^{13} +(-2.00000 + 3.46410i) q^{14} +(-0.500000 - 0.866025i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-1.00000 + 1.73205i) q^{17} -2.00000 q^{18} +(0.500000 + 4.33013i) q^{19} -2.00000 q^{20} +(-1.00000 + 1.73205i) q^{21} +(1.00000 - 1.73205i) q^{22} +(2.00000 + 3.46410i) q^{23} +(-0.500000 - 0.866025i) q^{25} -4.00000 q^{26} -1.00000 q^{27} +(2.00000 + 3.46410i) q^{28} +(2.50000 + 4.33013i) q^{29} -2.00000 q^{30} +9.00000 q^{31} +(-4.00000 - 6.92820i) q^{32} +(0.500000 - 0.866025i) q^{33} +(2.00000 + 3.46410i) q^{34} +(-1.00000 + 1.73205i) q^{35} +(-1.00000 + 1.73205i) q^{36} -6.00000 q^{37} +(8.00000 + 3.46410i) q^{38} -2.00000 q^{39} +(-3.00000 + 5.19615i) q^{41} +(2.00000 + 3.46410i) q^{42} +(5.00000 - 8.66025i) q^{43} +(-1.00000 - 1.73205i) q^{44} -1.00000 q^{45} +8.00000 q^{46} +(-2.00000 - 3.46410i) q^{48} -3.00000 q^{49} -2.00000 q^{50} +(1.00000 + 1.73205i) q^{51} +(-2.00000 + 3.46410i) q^{52} +(1.00000 + 1.73205i) q^{53} +(-1.00000 + 1.73205i) q^{54} +(0.500000 - 0.866025i) q^{55} +(4.00000 + 1.73205i) q^{57} +10.0000 q^{58} +(-3.50000 + 6.06218i) q^{59} +(-1.00000 + 1.73205i) q^{60} +(3.50000 + 6.06218i) q^{61} +(9.00000 - 15.5885i) q^{62} +(1.00000 + 1.73205i) q^{63} -8.00000 q^{64} -2.00000 q^{65} +(-1.00000 - 1.73205i) q^{66} +(-4.00000 - 6.92820i) q^{67} +4.00000 q^{68} +4.00000 q^{69} +(2.00000 + 3.46410i) q^{70} +(-1.50000 + 2.59808i) q^{71} +(1.00000 - 1.73205i) q^{73} +(-6.00000 + 10.3923i) q^{74} -1.00000 q^{75} +(7.00000 - 5.19615i) q^{76} -2.00000 q^{77} +(-2.00000 + 3.46410i) q^{78} +(5.50000 - 9.52628i) q^{79} +(-2.00000 - 3.46410i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(6.00000 + 10.3923i) q^{82} +6.00000 q^{83} +4.00000 q^{84} +(1.00000 + 1.73205i) q^{85} +(-10.0000 - 17.3205i) q^{86} +5.00000 q^{87} +(-7.50000 - 12.9904i) q^{89} +(-1.00000 + 1.73205i) q^{90} +(2.00000 + 3.46410i) q^{91} +(4.00000 - 6.92820i) q^{92} +(4.50000 - 7.79423i) q^{93} +(4.00000 + 1.73205i) q^{95} -8.00000 q^{96} +(-4.00000 + 6.92820i) q^{97} +(-3.00000 + 5.19615i) q^{98} +(-0.500000 - 0.866025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} - 2 q^{4} + q^{5} - 2 q^{6} - 4 q^{7} - q^{9} - 2 q^{10} + 2 q^{11} - 4 q^{12} - 2 q^{13} - 4 q^{14} - q^{15} + 4 q^{16} - 2 q^{17} - 4 q^{18} + q^{19} - 4 q^{20} - 2 q^{21} + 2 q^{22}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) −1.00000 1.73205i −0.408248 0.707107i
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.00000 1.73205i −0.316228 0.547723i
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) −2.00000 −0.577350
\(13\) −1.00000 1.73205i −0.277350 0.480384i 0.693375 0.720577i \(-0.256123\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) −2.00000 + 3.46410i −0.534522 + 0.925820i
\(15\) −0.500000 0.866025i −0.129099 0.223607i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) −1.00000 + 1.73205i −0.242536 + 0.420084i −0.961436 0.275029i \(-0.911312\pi\)
0.718900 + 0.695113i \(0.244646\pi\)
\(18\) −2.00000 −0.471405
\(19\) 0.500000 + 4.33013i 0.114708 + 0.993399i
\(20\) −2.00000 −0.447214
\(21\) −1.00000 + 1.73205i −0.218218 + 0.377964i
\(22\) 1.00000 1.73205i 0.213201 0.369274i
\(23\) 2.00000 + 3.46410i 0.417029 + 0.722315i 0.995639 0.0932891i \(-0.0297381\pi\)
−0.578610 + 0.815604i \(0.696405\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −4.00000 −0.784465
\(27\) −1.00000 −0.192450
\(28\) 2.00000 + 3.46410i 0.377964 + 0.654654i
\(29\) 2.50000 + 4.33013i 0.464238 + 0.804084i 0.999167 0.0408130i \(-0.0129948\pi\)
−0.534928 + 0.844897i \(0.679661\pi\)
\(30\) −2.00000 −0.365148
\(31\) 9.00000 1.61645 0.808224 0.588875i \(-0.200429\pi\)
0.808224 + 0.588875i \(0.200429\pi\)
\(32\) −4.00000 6.92820i −0.707107 1.22474i
\(33\) 0.500000 0.866025i 0.0870388 0.150756i
\(34\) 2.00000 + 3.46410i 0.342997 + 0.594089i
\(35\) −1.00000 + 1.73205i −0.169031 + 0.292770i
\(36\) −1.00000 + 1.73205i −0.166667 + 0.288675i
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 8.00000 + 3.46410i 1.29777 + 0.561951i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) 2.00000 + 3.46410i 0.308607 + 0.534522i
\(43\) 5.00000 8.66025i 0.762493 1.32068i −0.179069 0.983836i \(-0.557309\pi\)
0.941562 0.336840i \(-0.109358\pi\)
\(44\) −1.00000 1.73205i −0.150756 0.261116i
\(45\) −1.00000 −0.149071
\(46\) 8.00000 1.17954
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) −2.00000 3.46410i −0.288675 0.500000i
\(49\) −3.00000 −0.428571
\(50\) −2.00000 −0.282843
\(51\) 1.00000 + 1.73205i 0.140028 + 0.242536i
\(52\) −2.00000 + 3.46410i −0.277350 + 0.480384i
\(53\) 1.00000 + 1.73205i 0.137361 + 0.237915i 0.926497 0.376303i \(-0.122805\pi\)
−0.789136 + 0.614218i \(0.789471\pi\)
\(54\) −1.00000 + 1.73205i −0.136083 + 0.235702i
\(55\) 0.500000 0.866025i 0.0674200 0.116775i
\(56\) 0 0
\(57\) 4.00000 + 1.73205i 0.529813 + 0.229416i
\(58\) 10.0000 1.31306
\(59\) −3.50000 + 6.06218i −0.455661 + 0.789228i −0.998726 0.0504625i \(-0.983930\pi\)
0.543065 + 0.839691i \(0.317264\pi\)
\(60\) −1.00000 + 1.73205i −0.129099 + 0.223607i
\(61\) 3.50000 + 6.06218i 0.448129 + 0.776182i 0.998264 0.0588933i \(-0.0187572\pi\)
−0.550135 + 0.835076i \(0.685424\pi\)
\(62\) 9.00000 15.5885i 1.14300 1.97974i
\(63\) 1.00000 + 1.73205i 0.125988 + 0.218218i
\(64\) −8.00000 −1.00000
\(65\) −2.00000 −0.248069
\(66\) −1.00000 1.73205i −0.123091 0.213201i
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) 4.00000 0.485071
\(69\) 4.00000 0.481543
\(70\) 2.00000 + 3.46410i 0.239046 + 0.414039i
\(71\) −1.50000 + 2.59808i −0.178017 + 0.308335i −0.941201 0.337846i \(-0.890302\pi\)
0.763184 + 0.646181i \(0.223635\pi\)
\(72\) 0 0
\(73\) 1.00000 1.73205i 0.117041 0.202721i −0.801553 0.597924i \(-0.795992\pi\)
0.918594 + 0.395203i \(0.129326\pi\)
\(74\) −6.00000 + 10.3923i −0.697486 + 1.20808i
\(75\) −1.00000 −0.115470
\(76\) 7.00000 5.19615i 0.802955 0.596040i
\(77\) −2.00000 −0.227921
\(78\) −2.00000 + 3.46410i −0.226455 + 0.392232i
\(79\) 5.50000 9.52628i 0.618798 1.07179i −0.370907 0.928670i \(-0.620953\pi\)
0.989705 0.143120i \(-0.0457135\pi\)
\(80\) −2.00000 3.46410i −0.223607 0.387298i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 6.00000 + 10.3923i 0.662589 + 1.14764i
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 4.00000 0.436436
\(85\) 1.00000 + 1.73205i 0.108465 + 0.187867i
\(86\) −10.0000 17.3205i −1.07833 1.86772i
\(87\) 5.00000 0.536056
\(88\) 0 0
\(89\) −7.50000 12.9904i −0.794998 1.37698i −0.922840 0.385183i \(-0.874138\pi\)
0.127842 0.991795i \(-0.459195\pi\)
\(90\) −1.00000 + 1.73205i −0.105409 + 0.182574i
\(91\) 2.00000 + 3.46410i 0.209657 + 0.363137i
\(92\) 4.00000 6.92820i 0.417029 0.722315i
\(93\) 4.50000 7.79423i 0.466628 0.808224i
\(94\) 0 0
\(95\) 4.00000 + 1.73205i 0.410391 + 0.177705i
\(96\) −8.00000 −0.816497
\(97\) −4.00000 + 6.92820i −0.406138 + 0.703452i −0.994453 0.105180i \(-0.966458\pi\)
0.588315 + 0.808632i \(0.299792\pi\)
\(98\) −3.00000 + 5.19615i −0.303046 + 0.524891i
\(99\) −0.500000 0.866025i −0.0502519 0.0870388i
\(100\) −1.00000 + 1.73205i −0.100000 + 0.173205i
\(101\) 3.50000 + 6.06218i 0.348263 + 0.603209i 0.985941 0.167094i \(-0.0534383\pi\)
−0.637678 + 0.770303i \(0.720105\pi\)
\(102\) 4.00000 0.396059
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 1.00000 + 1.73205i 0.0975900 + 0.169031i
\(106\) 4.00000 0.388514
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 1.00000 + 1.73205i 0.0962250 + 0.166667i
\(109\) −9.50000 + 16.4545i −0.909935 + 1.57605i −0.0957826 + 0.995402i \(0.530535\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) −1.00000 1.73205i −0.0953463 0.165145i
\(111\) −3.00000 + 5.19615i −0.284747 + 0.493197i
\(112\) −4.00000 + 6.92820i −0.377964 + 0.654654i
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 7.00000 5.19615i 0.655610 0.486664i
\(115\) 4.00000 0.373002
\(116\) 5.00000 8.66025i 0.464238 0.804084i
\(117\) −1.00000 + 1.73205i −0.0924500 + 0.160128i
\(118\) 7.00000 + 12.1244i 0.644402 + 1.11614i
\(119\) 2.00000 3.46410i 0.183340 0.317554i
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 14.0000 1.26750
\(123\) 3.00000 + 5.19615i 0.270501 + 0.468521i
\(124\) −9.00000 15.5885i −0.808224 1.39988i
\(125\) −1.00000 −0.0894427
\(126\) 4.00000 0.356348
\(127\) −2.00000 3.46410i −0.177471 0.307389i 0.763542 0.645758i \(-0.223458\pi\)
−0.941014 + 0.338368i \(0.890125\pi\)
\(128\) 0 0
\(129\) −5.00000 8.66025i −0.440225 0.762493i
\(130\) −2.00000 + 3.46410i −0.175412 + 0.303822i
\(131\) −8.00000 + 13.8564i −0.698963 + 1.21064i 0.269863 + 0.962899i \(0.413022\pi\)
−0.968826 + 0.247741i \(0.920312\pi\)
\(132\) −2.00000 −0.174078
\(133\) −1.00000 8.66025i −0.0867110 0.750939i
\(134\) −16.0000 −1.38219
\(135\) −0.500000 + 0.866025i −0.0430331 + 0.0745356i
\(136\) 0 0
\(137\) 3.00000 + 5.19615i 0.256307 + 0.443937i 0.965250 0.261329i \(-0.0841608\pi\)
−0.708942 + 0.705266i \(0.750827\pi\)
\(138\) 4.00000 6.92820i 0.340503 0.589768i
\(139\) −10.0000 17.3205i −0.848189 1.46911i −0.882823 0.469706i \(-0.844360\pi\)
0.0346338 0.999400i \(-0.488974\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) 3.00000 + 5.19615i 0.251754 + 0.436051i
\(143\) −1.00000 1.73205i −0.0836242 0.144841i
\(144\) −4.00000 −0.333333
\(145\) 5.00000 0.415227
\(146\) −2.00000 3.46410i −0.165521 0.286691i
\(147\) −1.50000 + 2.59808i −0.123718 + 0.214286i
\(148\) 6.00000 + 10.3923i 0.493197 + 0.854242i
\(149\) −4.50000 + 7.79423i −0.368654 + 0.638528i −0.989355 0.145519i \(-0.953515\pi\)
0.620701 + 0.784047i \(0.286848\pi\)
\(150\) −1.00000 + 1.73205i −0.0816497 + 0.141421i
\(151\) −3.00000 −0.244137 −0.122068 0.992522i \(-0.538953\pi\)
−0.122068 + 0.992522i \(0.538953\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) −2.00000 + 3.46410i −0.161165 + 0.279145i
\(155\) 4.50000 7.79423i 0.361449 0.626048i
\(156\) 2.00000 + 3.46410i 0.160128 + 0.277350i
\(157\) −6.00000 + 10.3923i −0.478852 + 0.829396i −0.999706 0.0242497i \(-0.992280\pi\)
0.520854 + 0.853646i \(0.325614\pi\)
\(158\) −11.0000 19.0526i −0.875113 1.51574i
\(159\) 2.00000 0.158610
\(160\) −8.00000 −0.632456
\(161\) −4.00000 6.92820i −0.315244 0.546019i
\(162\) 1.00000 + 1.73205i 0.0785674 + 0.136083i
\(163\) −18.0000 −1.40987 −0.704934 0.709273i \(-0.749024\pi\)
−0.704934 + 0.709273i \(0.749024\pi\)
\(164\) 12.0000 0.937043
\(165\) −0.500000 0.866025i −0.0389249 0.0674200i
\(166\) 6.00000 10.3923i 0.465690 0.806599i
\(167\) 1.00000 + 1.73205i 0.0773823 + 0.134030i 0.902120 0.431486i \(-0.142010\pi\)
−0.824737 + 0.565516i \(0.808677\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 4.00000 0.306786
\(171\) 3.50000 2.59808i 0.267652 0.198680i
\(172\) −20.0000 −1.52499
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 5.00000 8.66025i 0.379049 0.656532i
\(175\) 1.00000 + 1.73205i 0.0755929 + 0.130931i
\(176\) 2.00000 3.46410i 0.150756 0.261116i
\(177\) 3.50000 + 6.06218i 0.263076 + 0.455661i
\(178\) −30.0000 −2.24860
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) 1.00000 + 1.73205i 0.0745356 + 0.129099i
\(181\) −5.00000 8.66025i −0.371647 0.643712i 0.618172 0.786043i \(-0.287874\pi\)
−0.989819 + 0.142331i \(0.954540\pi\)
\(182\) 8.00000 0.592999
\(183\) 7.00000 0.517455
\(184\) 0 0
\(185\) −3.00000 + 5.19615i −0.220564 + 0.382029i
\(186\) −9.00000 15.5885i −0.659912 1.14300i
\(187\) −1.00000 + 1.73205i −0.0731272 + 0.126660i
\(188\) 0 0
\(189\) 2.00000 0.145479
\(190\) 7.00000 5.19615i 0.507833 0.376969i
\(191\) 15.0000 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(192\) −4.00000 + 6.92820i −0.288675 + 0.500000i
\(193\) 13.0000 22.5167i 0.935760 1.62078i 0.162488 0.986710i \(-0.448048\pi\)
0.773272 0.634074i \(-0.218619\pi\)
\(194\) 8.00000 + 13.8564i 0.574367 + 0.994832i
\(195\) −1.00000 + 1.73205i −0.0716115 + 0.124035i
\(196\) 3.00000 + 5.19615i 0.214286 + 0.371154i
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) −2.00000 −0.142134
\(199\) 1.50000 + 2.59808i 0.106332 + 0.184173i 0.914282 0.405079i \(-0.132756\pi\)
−0.807950 + 0.589252i \(0.799423\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 14.0000 0.985037
\(203\) −5.00000 8.66025i −0.350931 0.607831i
\(204\) 2.00000 3.46410i 0.140028 0.242536i
\(205\) 3.00000 + 5.19615i 0.209529 + 0.362915i
\(206\) −8.00000 + 13.8564i −0.557386 + 0.965422i
\(207\) 2.00000 3.46410i 0.139010 0.240772i
\(208\) −8.00000 −0.554700
\(209\) 0.500000 + 4.33013i 0.0345857 + 0.299521i
\(210\) 4.00000 0.276026
\(211\) 13.5000 23.3827i 0.929378 1.60973i 0.145014 0.989430i \(-0.453677\pi\)
0.784364 0.620301i \(-0.212990\pi\)
\(212\) 2.00000 3.46410i 0.137361 0.237915i
\(213\) 1.50000 + 2.59808i 0.102778 + 0.178017i
\(214\) 0 0
\(215\) −5.00000 8.66025i −0.340997 0.590624i
\(216\) 0 0
\(217\) −18.0000 −1.22192
\(218\) 19.0000 + 32.9090i 1.28684 + 2.22888i
\(219\) −1.00000 1.73205i −0.0675737 0.117041i
\(220\) −2.00000 −0.134840
\(221\) 4.00000 0.269069
\(222\) 6.00000 + 10.3923i 0.402694 + 0.697486i
\(223\) 6.00000 10.3923i 0.401790 0.695920i −0.592152 0.805826i \(-0.701722\pi\)
0.993942 + 0.109906i \(0.0350549\pi\)
\(224\) 8.00000 + 13.8564i 0.534522 + 0.925820i
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) −10.0000 + 17.3205i −0.665190 + 1.15214i
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) −1.00000 8.66025i −0.0662266 0.573539i
\(229\) −11.0000 −0.726900 −0.363450 0.931614i \(-0.618401\pi\)
−0.363450 + 0.931614i \(0.618401\pi\)
\(230\) 4.00000 6.92820i 0.263752 0.456832i
\(231\) −1.00000 + 1.73205i −0.0657952 + 0.113961i
\(232\) 0 0
\(233\) 12.0000 20.7846i 0.786146 1.36165i −0.142166 0.989843i \(-0.545407\pi\)
0.928312 0.371802i \(-0.121260\pi\)
\(234\) 2.00000 + 3.46410i 0.130744 + 0.226455i
\(235\) 0 0
\(236\) 14.0000 0.911322
\(237\) −5.50000 9.52628i −0.357263 0.618798i
\(238\) −4.00000 6.92820i −0.259281 0.449089i
\(239\) 27.0000 1.74648 0.873242 0.487286i \(-0.162013\pi\)
0.873242 + 0.487286i \(0.162013\pi\)
\(240\) −4.00000 −0.258199
\(241\) −2.50000 4.33013i −0.161039 0.278928i 0.774202 0.632938i \(-0.218151\pi\)
−0.935242 + 0.354010i \(0.884818\pi\)
\(242\) −10.0000 + 17.3205i −0.642824 + 1.11340i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 7.00000 12.1244i 0.448129 0.776182i
\(245\) −1.50000 + 2.59808i −0.0958315 + 0.165985i
\(246\) 12.0000 0.765092
\(247\) 7.00000 5.19615i 0.445399 0.330623i
\(248\) 0 0
\(249\) 3.00000 5.19615i 0.190117 0.329293i
\(250\) −1.00000 + 1.73205i −0.0632456 + 0.109545i
\(251\) 8.50000 + 14.7224i 0.536515 + 0.929272i 0.999088 + 0.0426905i \(0.0135929\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(252\) 2.00000 3.46410i 0.125988 0.218218i
\(253\) 2.00000 + 3.46410i 0.125739 + 0.217786i
\(254\) −8.00000 −0.501965
\(255\) 2.00000 0.125245
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −11.0000 19.0526i −0.686161 1.18847i −0.973070 0.230508i \(-0.925961\pi\)
0.286909 0.957958i \(-0.407372\pi\)
\(258\) −20.0000 −1.24515
\(259\) 12.0000 0.745644
\(260\) 2.00000 + 3.46410i 0.124035 + 0.214834i
\(261\) 2.50000 4.33013i 0.154746 0.268028i
\(262\) 16.0000 + 27.7128i 0.988483 + 1.71210i
\(263\) −10.0000 + 17.3205i −0.616626 + 1.06803i 0.373470 + 0.927642i \(0.378168\pi\)
−0.990097 + 0.140386i \(0.955166\pi\)
\(264\) 0 0
\(265\) 2.00000 0.122859
\(266\) −16.0000 6.92820i −0.981023 0.424795i
\(267\) −15.0000 −0.917985
\(268\) −8.00000 + 13.8564i −0.488678 + 0.846415i
\(269\) −0.500000 + 0.866025i −0.0304855 + 0.0528025i −0.880866 0.473366i \(-0.843039\pi\)
0.850380 + 0.526169i \(0.176372\pi\)
\(270\) 1.00000 + 1.73205i 0.0608581 + 0.105409i
\(271\) −13.5000 + 23.3827i −0.820067 + 1.42040i 0.0855654 + 0.996333i \(0.472730\pi\)
−0.905632 + 0.424064i \(0.860603\pi\)
\(272\) 4.00000 + 6.92820i 0.242536 + 0.420084i
\(273\) 4.00000 0.242091
\(274\) 12.0000 0.724947
\(275\) −0.500000 0.866025i −0.0301511 0.0522233i
\(276\) −4.00000 6.92820i −0.240772 0.417029i
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) −40.0000 −2.39904
\(279\) −4.50000 7.79423i −0.269408 0.466628i
\(280\) 0 0
\(281\) 13.0000 + 22.5167i 0.775515 + 1.34323i 0.934505 + 0.355951i \(0.115843\pi\)
−0.158990 + 0.987280i \(0.550824\pi\)
\(282\) 0 0
\(283\) −1.00000 + 1.73205i −0.0594438 + 0.102960i −0.894216 0.447636i \(-0.852266\pi\)
0.834772 + 0.550596i \(0.185599\pi\)
\(284\) 6.00000 0.356034
\(285\) 3.50000 2.59808i 0.207322 0.153897i
\(286\) −4.00000 −0.236525
\(287\) 6.00000 10.3923i 0.354169 0.613438i
\(288\) −4.00000 + 6.92820i −0.235702 + 0.408248i
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 5.00000 8.66025i 0.293610 0.508548i
\(291\) 4.00000 + 6.92820i 0.234484 + 0.406138i
\(292\) −4.00000 −0.234082
\(293\) −4.00000 −0.233682 −0.116841 0.993151i \(-0.537277\pi\)
−0.116841 + 0.993151i \(0.537277\pi\)
\(294\) 3.00000 + 5.19615i 0.174964 + 0.303046i
\(295\) 3.50000 + 6.06218i 0.203778 + 0.352954i
\(296\) 0 0
\(297\) −1.00000 −0.0580259
\(298\) 9.00000 + 15.5885i 0.521356 + 0.903015i
\(299\) 4.00000 6.92820i 0.231326 0.400668i
\(300\) 1.00000 + 1.73205i 0.0577350 + 0.100000i
\(301\) −10.0000 + 17.3205i −0.576390 + 0.998337i
\(302\) −3.00000 + 5.19615i −0.172631 + 0.299005i
\(303\) 7.00000 0.402139
\(304\) 16.0000 + 6.92820i 0.917663 + 0.397360i
\(305\) 7.00000 0.400819
\(306\) 2.00000 3.46410i 0.114332 0.198030i
\(307\) 12.0000 20.7846i 0.684876 1.18624i −0.288600 0.957450i \(-0.593190\pi\)
0.973476 0.228790i \(-0.0734771\pi\)
\(308\) 2.00000 + 3.46410i 0.113961 + 0.197386i
\(309\) −4.00000 + 6.92820i −0.227552 + 0.394132i
\(310\) −9.00000 15.5885i −0.511166 0.885365i
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 10.0000 + 17.3205i 0.565233 + 0.979013i 0.997028 + 0.0770410i \(0.0245472\pi\)
−0.431795 + 0.901972i \(0.642119\pi\)
\(314\) 12.0000 + 20.7846i 0.677199 + 1.17294i
\(315\) 2.00000 0.112687
\(316\) −22.0000 −1.23760
\(317\) −16.0000 27.7128i −0.898650 1.55651i −0.829222 0.558920i \(-0.811216\pi\)
−0.0694277 0.997587i \(-0.522117\pi\)
\(318\) 2.00000 3.46410i 0.112154 0.194257i
\(319\) 2.50000 + 4.33013i 0.139973 + 0.242441i
\(320\) −4.00000 + 6.92820i −0.223607 + 0.387298i
\(321\) 0 0
\(322\) −16.0000 −0.891645
\(323\) −8.00000 3.46410i −0.445132 0.192748i
\(324\) 2.00000 0.111111
\(325\) −1.00000 + 1.73205i −0.0554700 + 0.0960769i
\(326\) −18.0000 + 31.1769i −0.996928 + 1.72673i
\(327\) 9.50000 + 16.4545i 0.525351 + 0.909935i
\(328\) 0 0
\(329\) 0 0
\(330\) −2.00000 −0.110096
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −6.00000 10.3923i −0.329293 0.570352i
\(333\) 3.00000 + 5.19615i 0.164399 + 0.284747i
\(334\) 4.00000 0.218870
\(335\) −8.00000 −0.437087
\(336\) 4.00000 + 6.92820i 0.218218 + 0.377964i
\(337\) 4.00000 6.92820i 0.217894 0.377403i −0.736270 0.676688i \(-0.763415\pi\)
0.954164 + 0.299285i \(0.0967480\pi\)
\(338\) −9.00000 15.5885i −0.489535 0.847900i
\(339\) −5.00000 + 8.66025i −0.271563 + 0.470360i
\(340\) 2.00000 3.46410i 0.108465 0.187867i
\(341\) 9.00000 0.487377
\(342\) −1.00000 8.66025i −0.0540738 0.468293i
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 2.00000 3.46410i 0.107676 0.186501i
\(346\) 6.00000 + 10.3923i 0.322562 + 0.558694i
\(347\) 11.0000 19.0526i 0.590511 1.02279i −0.403653 0.914912i \(-0.632260\pi\)
0.994164 0.107883i \(-0.0344071\pi\)
\(348\) −5.00000 8.66025i −0.268028 0.464238i
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 4.00000 0.213809
\(351\) 1.00000 + 1.73205i 0.0533761 + 0.0924500i
\(352\) −4.00000 6.92820i −0.213201 0.369274i
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 14.0000 0.744092
\(355\) 1.50000 + 2.59808i 0.0796117 + 0.137892i
\(356\) −15.0000 + 25.9808i −0.794998 + 1.37698i
\(357\) −2.00000 3.46410i −0.105851 0.183340i
\(358\) −3.00000 + 5.19615i −0.158555 + 0.274625i
\(359\) 4.00000 6.92820i 0.211112 0.365657i −0.740951 0.671559i \(-0.765625\pi\)
0.952063 + 0.305903i \(0.0989582\pi\)
\(360\) 0 0
\(361\) −18.5000 + 4.33013i −0.973684 + 0.227901i
\(362\) −20.0000 −1.05118
\(363\) −5.00000 + 8.66025i −0.262432 + 0.454545i
\(364\) 4.00000 6.92820i 0.209657 0.363137i
\(365\) −1.00000 1.73205i −0.0523424 0.0906597i
\(366\) 7.00000 12.1244i 0.365896 0.633750i
\(367\) 10.0000 + 17.3205i 0.521996 + 0.904123i 0.999673 + 0.0255875i \(0.00814566\pi\)
−0.477677 + 0.878536i \(0.658521\pi\)
\(368\) 16.0000 0.834058
\(369\) 6.00000 0.312348
\(370\) 6.00000 + 10.3923i 0.311925 + 0.540270i
\(371\) −2.00000 3.46410i −0.103835 0.179847i
\(372\) −18.0000 −0.933257
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 2.00000 + 3.46410i 0.103418 + 0.179124i
\(375\) −0.500000 + 0.866025i −0.0258199 + 0.0447214i
\(376\) 0 0
\(377\) 5.00000 8.66025i 0.257513 0.446026i
\(378\) 2.00000 3.46410i 0.102869 0.178174i
\(379\) 31.0000 1.59236 0.796182 0.605058i \(-0.206850\pi\)
0.796182 + 0.605058i \(0.206850\pi\)
\(380\) −1.00000 8.66025i −0.0512989 0.444262i
\(381\) −4.00000 −0.204926
\(382\) 15.0000 25.9808i 0.767467 1.32929i
\(383\) −13.0000 + 22.5167i −0.664269 + 1.15055i 0.315214 + 0.949021i \(0.397924\pi\)
−0.979483 + 0.201527i \(0.935410\pi\)
\(384\) 0 0
\(385\) −1.00000 + 1.73205i −0.0509647 + 0.0882735i
\(386\) −26.0000 45.0333i −1.32337 2.29214i
\(387\) −10.0000 −0.508329
\(388\) 16.0000 0.812277
\(389\) −16.5000 28.5788i −0.836583 1.44900i −0.892735 0.450582i \(-0.851216\pi\)
0.0561516 0.998422i \(-0.482117\pi\)
\(390\) 2.00000 + 3.46410i 0.101274 + 0.175412i
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) 8.00000 + 13.8564i 0.403547 + 0.698963i
\(394\) 10.0000 17.3205i 0.503793 0.872595i
\(395\) −5.50000 9.52628i −0.276735 0.479319i
\(396\) −1.00000 + 1.73205i −0.0502519 + 0.0870388i
\(397\) 10.0000 17.3205i 0.501886 0.869291i −0.498112 0.867113i \(-0.665973\pi\)
0.999998 0.00217869i \(-0.000693499\pi\)
\(398\) 6.00000 0.300753
\(399\) −8.00000 3.46410i −0.400501 0.173422i
\(400\) −4.00000 −0.200000
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) −8.00000 + 13.8564i −0.399004 + 0.691095i
\(403\) −9.00000 15.5885i −0.448322 0.776516i
\(404\) 7.00000 12.1244i 0.348263 0.603209i
\(405\) 0.500000 + 0.866025i 0.0248452 + 0.0430331i
\(406\) −20.0000 −0.992583
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) 14.5000 + 25.1147i 0.716979 + 1.24184i 0.962191 + 0.272374i \(0.0878089\pi\)
−0.245212 + 0.969469i \(0.578858\pi\)
\(410\) 12.0000 0.592638
\(411\) 6.00000 0.295958
\(412\) 8.00000 + 13.8564i 0.394132 + 0.682656i
\(413\) 7.00000 12.1244i 0.344447 0.596601i
\(414\) −4.00000 6.92820i −0.196589 0.340503i
\(415\) 3.00000 5.19615i 0.147264 0.255069i
\(416\) −8.00000 + 13.8564i −0.392232 + 0.679366i
\(417\) −20.0000 −0.979404
\(418\) 8.00000 + 3.46410i 0.391293 + 0.169435i
\(419\) −5.00000 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(420\) 2.00000 3.46410i 0.0975900 0.169031i
\(421\) 3.50000 6.06218i 0.170580 0.295452i −0.768043 0.640398i \(-0.778769\pi\)
0.938623 + 0.344946i \(0.112103\pi\)
\(422\) −27.0000 46.7654i −1.31434 2.27650i
\(423\) 0 0
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 6.00000 0.290701
\(427\) −7.00000 12.1244i −0.338754 0.586739i
\(428\) 0 0
\(429\) −2.00000 −0.0965609
\(430\) −20.0000 −0.964486
\(431\) −11.5000 19.9186i −0.553936 0.959444i −0.997985 0.0634424i \(-0.979792\pi\)
0.444050 0.896002i \(-0.353541\pi\)
\(432\) −2.00000 + 3.46410i −0.0962250 + 0.166667i
\(433\) −3.00000 5.19615i −0.144171 0.249711i 0.784892 0.619632i \(-0.212718\pi\)
−0.929063 + 0.369921i \(0.879385\pi\)
\(434\) −18.0000 + 31.1769i −0.864028 + 1.49654i
\(435\) 2.50000 4.33013i 0.119866 0.207614i
\(436\) 38.0000 1.81987
\(437\) −14.0000 + 10.3923i −0.669711 + 0.497131i
\(438\) −4.00000 −0.191127
\(439\) 12.5000 21.6506i 0.596592 1.03333i −0.396728 0.917936i \(-0.629854\pi\)
0.993320 0.115392i \(-0.0368124\pi\)
\(440\) 0 0
\(441\) 1.50000 + 2.59808i 0.0714286 + 0.123718i
\(442\) 4.00000 6.92820i 0.190261 0.329541i
\(443\) 4.00000 + 6.92820i 0.190046 + 0.329169i 0.945265 0.326303i \(-0.105803\pi\)
−0.755219 + 0.655472i \(0.772470\pi\)
\(444\) 12.0000 0.569495
\(445\) −15.0000 −0.711068
\(446\) −12.0000 20.7846i −0.568216 0.984180i
\(447\) 4.50000 + 7.79423i 0.212843 + 0.368654i
\(448\) 16.0000 0.755929
\(449\) −39.0000 −1.84052 −0.920262 0.391303i \(-0.872024\pi\)
−0.920262 + 0.391303i \(0.872024\pi\)
\(450\) 1.00000 + 1.73205i 0.0471405 + 0.0816497i
\(451\) −3.00000 + 5.19615i −0.141264 + 0.244677i
\(452\) 10.0000 + 17.3205i 0.470360 + 0.814688i
\(453\) −1.50000 + 2.59808i −0.0704761 + 0.122068i
\(454\) 18.0000 31.1769i 0.844782 1.46321i
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) −8.00000 −0.374224 −0.187112 0.982339i \(-0.559913\pi\)
−0.187112 + 0.982339i \(0.559913\pi\)
\(458\) −11.0000 + 19.0526i −0.513996 + 0.890268i
\(459\) 1.00000 1.73205i 0.0466760 0.0808452i
\(460\) −4.00000 6.92820i −0.186501 0.323029i
\(461\) 1.50000 2.59808i 0.0698620 0.121004i −0.828978 0.559281i \(-0.811077\pi\)
0.898840 + 0.438276i \(0.144411\pi\)
\(462\) 2.00000 + 3.46410i 0.0930484 + 0.161165i
\(463\) −10.0000 −0.464739 −0.232370 0.972628i \(-0.574648\pi\)
−0.232370 + 0.972628i \(0.574648\pi\)
\(464\) 20.0000 0.928477
\(465\) −4.50000 7.79423i −0.208683 0.361449i
\(466\) −24.0000 41.5692i −1.11178 1.92566i
\(467\) −38.0000 −1.75843 −0.879215 0.476425i \(-0.841932\pi\)
−0.879215 + 0.476425i \(0.841932\pi\)
\(468\) 4.00000 0.184900
\(469\) 8.00000 + 13.8564i 0.369406 + 0.639829i
\(470\) 0 0
\(471\) 6.00000 + 10.3923i 0.276465 + 0.478852i
\(472\) 0 0
\(473\) 5.00000 8.66025i 0.229900 0.398199i
\(474\) −22.0000 −1.01049
\(475\) 3.50000 2.59808i 0.160591 0.119208i
\(476\) −8.00000 −0.366679
\(477\) 1.00000 1.73205i 0.0457869 0.0793052i
\(478\) 27.0000 46.7654i 1.23495 2.13900i
\(479\) −2.50000 4.33013i −0.114228 0.197849i 0.803243 0.595652i \(-0.203106\pi\)
−0.917471 + 0.397803i \(0.869773\pi\)
\(480\) −4.00000 + 6.92820i −0.182574 + 0.316228i
\(481\) 6.00000 + 10.3923i 0.273576 + 0.473848i
\(482\) −10.0000 −0.455488
\(483\) −8.00000 −0.364013
\(484\) 10.0000 + 17.3205i 0.454545 + 0.787296i
\(485\) 4.00000 + 6.92820i 0.181631 + 0.314594i
\(486\) 2.00000 0.0907218
\(487\) 14.0000 0.634401 0.317200 0.948359i \(-0.397257\pi\)
0.317200 + 0.948359i \(0.397257\pi\)
\(488\) 0 0
\(489\) −9.00000 + 15.5885i −0.406994 + 0.704934i
\(490\) 3.00000 + 5.19615i 0.135526 + 0.234738i
\(491\) 16.5000 28.5788i 0.744635 1.28974i −0.205731 0.978609i \(-0.565957\pi\)
0.950365 0.311136i \(-0.100710\pi\)
\(492\) 6.00000 10.3923i 0.270501 0.468521i
\(493\) −10.0000 −0.450377
\(494\) −2.00000 17.3205i −0.0899843 0.779287i
\(495\) −1.00000 −0.0449467
\(496\) 18.0000 31.1769i 0.808224 1.39988i
\(497\) 3.00000 5.19615i 0.134568 0.233079i
\(498\) −6.00000 10.3923i −0.268866 0.465690i
\(499\) −10.0000 + 17.3205i −0.447661 + 0.775372i −0.998233 0.0594153i \(-0.981076\pi\)
0.550572 + 0.834788i \(0.314410\pi\)
\(500\) 1.00000 + 1.73205i 0.0447214 + 0.0774597i
\(501\) 2.00000 0.0893534
\(502\) 34.0000 1.51749
\(503\) 22.0000 + 38.1051i 0.980932 + 1.69902i 0.658781 + 0.752335i \(0.271072\pi\)
0.322151 + 0.946688i \(0.395594\pi\)
\(504\) 0 0
\(505\) 7.00000 0.311496
\(506\) 8.00000 0.355643
\(507\) −4.50000 7.79423i −0.199852 0.346154i
\(508\) −4.00000 + 6.92820i −0.177471 + 0.307389i
\(509\) 15.0000 + 25.9808i 0.664863 + 1.15158i 0.979322 + 0.202306i \(0.0648436\pi\)
−0.314459 + 0.949271i \(0.601823\pi\)
\(510\) 2.00000 3.46410i 0.0885615 0.153393i
\(511\) −2.00000 + 3.46410i −0.0884748 + 0.153243i
\(512\) −32.0000 −1.41421
\(513\) −0.500000 4.33013i −0.0220755 0.191180i
\(514\) −44.0000 −1.94076
\(515\) −4.00000 + 6.92820i −0.176261 + 0.305293i
\(516\) −10.0000 + 17.3205i −0.440225 + 0.762493i
\(517\) 0 0
\(518\) 12.0000 20.7846i 0.527250 0.913223i
\(519\) 3.00000 + 5.19615i 0.131685 + 0.228086i
\(520\) 0 0
\(521\) 21.0000 0.920027 0.460013 0.887912i \(-0.347845\pi\)
0.460013 + 0.887912i \(0.347845\pi\)
\(522\) −5.00000 8.66025i −0.218844 0.379049i
\(523\) 11.0000 + 19.0526i 0.480996 + 0.833110i 0.999762 0.0218062i \(-0.00694167\pi\)
−0.518766 + 0.854916i \(0.673608\pi\)
\(524\) 32.0000 1.39793
\(525\) 2.00000 0.0872872
\(526\) 20.0000 + 34.6410i 0.872041 + 1.51042i
\(527\) −9.00000 + 15.5885i −0.392046 + 0.679044i
\(528\) −2.00000 3.46410i −0.0870388 0.150756i
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 2.00000 3.46410i 0.0868744 0.150471i
\(531\) 7.00000 0.303774
\(532\) −14.0000 + 10.3923i −0.606977 + 0.450564i
\(533\) 12.0000 0.519778
\(534\) −15.0000 + 25.9808i −0.649113 + 1.12430i
\(535\) 0 0
\(536\) 0 0
\(537\) −1.50000 + 2.59808i −0.0647298 + 0.112115i
\(538\) 1.00000 + 1.73205i 0.0431131 + 0.0746740i
\(539\) −3.00000 −0.129219
\(540\) 2.00000 0.0860663
\(541\) −7.50000 12.9904i −0.322450 0.558500i 0.658543 0.752543i \(-0.271173\pi\)
−0.980993 + 0.194043i \(0.937840\pi\)
\(542\) 27.0000 + 46.7654i 1.15975 + 2.00874i
\(543\) −10.0000 −0.429141
\(544\) 16.0000 0.685994
\(545\) 9.50000 + 16.4545i 0.406935 + 0.704833i
\(546\) 4.00000 6.92820i 0.171184 0.296500i
\(547\) 4.00000 + 6.92820i 0.171028 + 0.296229i 0.938779 0.344519i \(-0.111958\pi\)
−0.767752 + 0.640747i \(0.778625\pi\)
\(548\) 6.00000 10.3923i 0.256307 0.443937i
\(549\) 3.50000 6.06218i 0.149376 0.258727i
\(550\) −2.00000 −0.0852803
\(551\) −17.5000 + 12.9904i −0.745525 + 0.553409i
\(552\) 0 0
\(553\) −11.0000 + 19.0526i −0.467768 + 0.810197i
\(554\) −8.00000 + 13.8564i −0.339887 + 0.588702i
\(555\) 3.00000 + 5.19615i 0.127343 + 0.220564i
\(556\) −20.0000 + 34.6410i −0.848189 + 1.46911i
\(557\) 16.0000 + 27.7128i 0.677942 + 1.17423i 0.975600 + 0.219557i \(0.0704612\pi\)
−0.297658 + 0.954673i \(0.596205\pi\)
\(558\) −18.0000 −0.762001
\(559\) −20.0000 −0.845910
\(560\) 4.00000 + 6.92820i 0.169031 + 0.292770i
\(561\) 1.00000 + 1.73205i 0.0422200 + 0.0731272i
\(562\) 52.0000 2.19349
\(563\) −42.0000 −1.77009 −0.885044 0.465506i \(-0.845872\pi\)
−0.885044 + 0.465506i \(0.845872\pi\)
\(564\) 0 0
\(565\) −5.00000 + 8.66025i −0.210352 + 0.364340i
\(566\) 2.00000 + 3.46410i 0.0840663 + 0.145607i
\(567\) 1.00000 1.73205i 0.0419961 0.0727393i
\(568\) 0 0
\(569\) −39.0000 −1.63497 −0.817483 0.575953i \(-0.804631\pi\)
−0.817483 + 0.575953i \(0.804631\pi\)
\(570\) −1.00000 8.66025i −0.0418854 0.362738i
\(571\) −15.0000 −0.627730 −0.313865 0.949468i \(-0.601624\pi\)
−0.313865 + 0.949468i \(0.601624\pi\)
\(572\) −2.00000 + 3.46410i −0.0836242 + 0.144841i
\(573\) 7.50000 12.9904i 0.313317 0.542681i
\(574\) −12.0000 20.7846i −0.500870 0.867533i
\(575\) 2.00000 3.46410i 0.0834058 0.144463i
\(576\) 4.00000 + 6.92820i 0.166667 + 0.288675i
\(577\) 12.0000 0.499567 0.249783 0.968302i \(-0.419641\pi\)
0.249783 + 0.968302i \(0.419641\pi\)
\(578\) 26.0000 1.08146
\(579\) −13.0000 22.5167i −0.540262 0.935760i
\(580\) −5.00000 8.66025i −0.207614 0.359597i
\(581\) −12.0000 −0.497844
\(582\) 16.0000 0.663221
\(583\) 1.00000 + 1.73205i 0.0414158 + 0.0717342i
\(584\) 0 0
\(585\) 1.00000 + 1.73205i 0.0413449 + 0.0716115i
\(586\) −4.00000 + 6.92820i −0.165238 + 0.286201i
\(587\) −11.0000 + 19.0526i −0.454019 + 0.786383i −0.998631 0.0523045i \(-0.983343\pi\)
0.544613 + 0.838688i \(0.316677\pi\)
\(588\) 6.00000 0.247436
\(589\) 4.50000 + 38.9711i 0.185419 + 1.60578i
\(590\) 14.0000 0.576371
\(591\) 5.00000 8.66025i 0.205673 0.356235i
\(592\) −12.0000 + 20.7846i −0.493197 + 0.854242i
\(593\) −3.00000 5.19615i −0.123195 0.213380i 0.797831 0.602881i \(-0.205981\pi\)
−0.921026 + 0.389501i \(0.872647\pi\)
\(594\) −1.00000 + 1.73205i −0.0410305 + 0.0710669i
\(595\) −2.00000 3.46410i −0.0819920 0.142014i
\(596\) 18.0000 0.737309
\(597\) 3.00000 0.122782
\(598\) −8.00000 13.8564i −0.327144 0.566631i
\(599\) 18.0000 + 31.1769i 0.735460 + 1.27385i 0.954521 + 0.298143i \(0.0963673\pi\)
−0.219061 + 0.975711i \(0.570299\pi\)
\(600\) 0 0
\(601\) −15.0000 −0.611863 −0.305931 0.952054i \(-0.598968\pi\)
−0.305931 + 0.952054i \(0.598968\pi\)
\(602\) 20.0000 + 34.6410i 0.815139 + 1.41186i
\(603\) −4.00000 + 6.92820i −0.162893 + 0.282138i
\(604\) 3.00000 + 5.19615i 0.122068 + 0.211428i
\(605\) −5.00000 + 8.66025i −0.203279 + 0.352089i
\(606\) 7.00000 12.1244i 0.284356 0.492518i
\(607\) −10.0000 −0.405887 −0.202944 0.979190i \(-0.565051\pi\)
−0.202944 + 0.979190i \(0.565051\pi\)
\(608\) 28.0000 20.7846i 1.13555 0.842927i
\(609\) −10.0000 −0.405220
\(610\) 7.00000 12.1244i 0.283422 0.490901i
\(611\) 0 0
\(612\) −2.00000 3.46410i −0.0808452 0.140028i
\(613\) 3.00000 5.19615i 0.121169 0.209871i −0.799060 0.601251i \(-0.794669\pi\)
0.920229 + 0.391381i \(0.128002\pi\)
\(614\) −24.0000 41.5692i −0.968561 1.67760i
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) 12.0000 + 20.7846i 0.483102 + 0.836757i 0.999812 0.0194037i \(-0.00617676\pi\)
−0.516710 + 0.856161i \(0.672843\pi\)
\(618\) 8.00000 + 13.8564i 0.321807 + 0.557386i
\(619\) −32.0000 −1.28619 −0.643094 0.765787i \(-0.722350\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) −18.0000 −0.722897
\(621\) −2.00000 3.46410i −0.0802572 0.139010i
\(622\) 24.0000 41.5692i 0.962312 1.66677i
\(623\) 15.0000 + 25.9808i 0.600962 + 1.04090i
\(624\) −4.00000 + 6.92820i −0.160128 + 0.277350i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 40.0000 1.59872
\(627\) 4.00000 + 1.73205i 0.159745 + 0.0691714i
\(628\) 24.0000 0.957704
\(629\) 6.00000 10.3923i 0.239236 0.414368i
\(630\) 2.00000 3.46410i 0.0796819 0.138013i
\(631\) 1.50000 + 2.59808i 0.0597141 + 0.103428i 0.894337 0.447394i \(-0.147648\pi\)
−0.834623 + 0.550822i \(0.814314\pi\)
\(632\) 0 0
\(633\) −13.5000 23.3827i −0.536577 0.929378i
\(634\) −64.0000 −2.54176
\(635\) −4.00000 −0.158735
\(636\) −2.00000 3.46410i −0.0793052 0.137361i
\(637\) 3.00000 + 5.19615i 0.118864 + 0.205879i
\(638\) 10.0000 0.395904
\(639\) 3.00000 0.118678
\(640\) 0 0
\(641\) 16.5000 28.5788i 0.651711 1.12880i −0.330997 0.943632i \(-0.607385\pi\)
0.982708 0.185164i \(-0.0592817\pi\)
\(642\) 0 0
\(643\) −22.0000 + 38.1051i −0.867595 + 1.50272i −0.00314839 + 0.999995i \(0.501002\pi\)
−0.864447 + 0.502724i \(0.832331\pi\)
\(644\) −8.00000 + 13.8564i −0.315244 + 0.546019i
\(645\) −10.0000 −0.393750
\(646\) −14.0000 + 10.3923i −0.550823 + 0.408880i
\(647\) 6.00000 0.235884 0.117942 0.993020i \(-0.462370\pi\)
0.117942 + 0.993020i \(0.462370\pi\)
\(648\) 0 0
\(649\) −3.50000 + 6.06218i −0.137387 + 0.237961i
\(650\) 2.00000 + 3.46410i 0.0784465 + 0.135873i
\(651\) −9.00000 + 15.5885i −0.352738 + 0.610960i
\(652\) 18.0000 + 31.1769i 0.704934 + 1.22098i
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 38.0000 1.48592
\(655\) 8.00000 + 13.8564i 0.312586 + 0.541415i
\(656\) 12.0000 + 20.7846i 0.468521 + 0.811503i
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) −20.0000 34.6410i −0.779089 1.34942i −0.932467 0.361255i \(-0.882348\pi\)
0.153378 0.988168i \(-0.450985\pi\)
\(660\) −1.00000 + 1.73205i −0.0389249 + 0.0674200i
\(661\) −4.50000 7.79423i −0.175030 0.303160i 0.765142 0.643862i \(-0.222669\pi\)
−0.940172 + 0.340701i \(0.889335\pi\)
\(662\) 8.00000 13.8564i 0.310929 0.538545i
\(663\) 2.00000 3.46410i 0.0776736 0.134535i
\(664\) 0 0
\(665\) −8.00000 3.46410i −0.310227 0.134332i
\(666\) 12.0000 0.464991
\(667\) −10.0000 + 17.3205i −0.387202 + 0.670653i
\(668\) 2.00000 3.46410i 0.0773823 0.134030i
\(669\) −6.00000 10.3923i −0.231973 0.401790i
\(670\) −8.00000 + 13.8564i −0.309067 + 0.535320i
\(671\) 3.50000 + 6.06218i 0.135116 + 0.234028i
\(672\) 16.0000 0.617213
\(673\) 36.0000 1.38770 0.693849 0.720121i \(-0.255914\pi\)
0.693849 + 0.720121i \(0.255914\pi\)
\(674\) −8.00000 13.8564i −0.308148 0.533729i
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) −18.0000 −0.692308
\(677\) 46.0000 1.76792 0.883962 0.467559i \(-0.154866\pi\)
0.883962 + 0.467559i \(0.154866\pi\)
\(678\) 10.0000 + 17.3205i 0.384048 + 0.665190i
\(679\) 8.00000 13.8564i 0.307012 0.531760i
\(680\) 0 0
\(681\) 9.00000 15.5885i 0.344881 0.597351i
\(682\) 9.00000 15.5885i 0.344628 0.596913i
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) −8.00000 3.46410i −0.305888 0.132453i
\(685\) 6.00000 0.229248
\(686\) 20.0000 34.6410i 0.763604 1.32260i
\(687\) −5.50000 + 9.52628i −0.209838 + 0.363450i
\(688\) −20.0000 34.6410i −0.762493 1.32068i
\(689\) 2.00000 3.46410i 0.0761939 0.131972i
\(690\) −4.00000 6.92820i −0.152277 0.263752i
\(691\) 23.0000 0.874961 0.437481 0.899228i \(-0.355871\pi\)
0.437481 + 0.899228i \(0.355871\pi\)
\(692\) 12.0000 0.456172
\(693\) 1.00000 + 1.73205i 0.0379869 + 0.0657952i
\(694\) −22.0000 38.1051i −0.835109 1.44645i
\(695\) −20.0000 −0.758643
\(696\) 0 0
\(697\) −6.00000 10.3923i −0.227266 0.393637i
\(698\) 6.00000 10.3923i 0.227103 0.393355i
\(699\) −12.0000 20.7846i −0.453882 0.786146i
\(700\) 2.00000 3.46410i 0.0755929 0.130931i
\(701\) 11.0000 19.0526i 0.415464 0.719605i −0.580013 0.814607i \(-0.696952\pi\)
0.995477 + 0.0950021i \(0.0302858\pi\)
\(702\) 4.00000 0.150970
\(703\) −3.00000 25.9808i −0.113147 0.979883i
\(704\) −8.00000 −0.301511
\(705\) 0 0
\(706\) −14.0000 + 24.2487i −0.526897 + 0.912612i
\(707\) −7.00000 12.1244i −0.263262 0.455983i
\(708\) 7.00000 12.1244i 0.263076 0.455661i
\(709\) 13.5000 + 23.3827i 0.507003 + 0.878155i 0.999967 + 0.00810550i \(0.00258009\pi\)
−0.492964 + 0.870050i \(0.664087\pi\)
\(710\) 6.00000 0.225176
\(711\) −11.0000 −0.412532
\(712\) 0 0
\(713\) 18.0000 + 31.1769i 0.674105 + 1.16758i
\(714\) −8.00000 −0.299392
\(715\) −2.00000 −0.0747958
\(716\) 3.00000 + 5.19615i 0.112115 + 0.194189i
\(717\) 13.5000 23.3827i 0.504167 0.873242i
\(718\) −8.00000 13.8564i −0.298557 0.517116i
\(719\) 13.5000 23.3827i 0.503465 0.872027i −0.496527 0.868021i \(-0.665392\pi\)
0.999992 0.00400572i \(-0.00127506\pi\)
\(720\) −2.00000 + 3.46410i −0.0745356 + 0.129099i
\(721\) 16.0000 0.595871
\(722\) −11.0000 + 36.3731i −0.409378 + 1.35367i
\(723\) −5.00000 −0.185952
\(724\) −10.0000 + 17.3205i −0.371647 + 0.643712i
\(725\) 2.50000 4.33013i 0.0928477 0.160817i
\(726\) 10.0000 + 17.3205i 0.371135 + 0.642824i
\(727\) 1.00000 1.73205i 0.0370879 0.0642382i −0.846886 0.531775i \(-0.821525\pi\)
0.883974 + 0.467537i \(0.154858\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −4.00000 −0.148047
\(731\) 10.0000 + 17.3205i 0.369863 + 0.640622i
\(732\) −7.00000 12.1244i −0.258727 0.448129i
\(733\) 10.0000 0.369358 0.184679 0.982799i \(-0.440875\pi\)
0.184679 + 0.982799i \(0.440875\pi\)
\(734\) 40.0000 1.47643
\(735\) 1.50000 + 2.59808i 0.0553283 + 0.0958315i
\(736\) 16.0000 27.7128i 0.589768 1.02151i
\(737\) −4.00000 6.92820i −0.147342 0.255204i
\(738\) 6.00000 10.3923i 0.220863 0.382546i
\(739\) 26.5000 45.8993i 0.974818 1.68843i 0.294285 0.955718i \(-0.404919\pi\)
0.680534 0.732717i \(-0.261748\pi\)
\(740\) 12.0000 0.441129
\(741\) −1.00000 8.66025i −0.0367359 0.318142i
\(742\) −8.00000 −0.293689
\(743\) −11.0000 + 19.0526i −0.403551 + 0.698971i −0.994152 0.107993i \(-0.965557\pi\)
0.590601 + 0.806964i \(0.298891\pi\)
\(744\) 0 0
\(745\) 4.50000 + 7.79423i 0.164867 + 0.285558i
\(746\) −32.0000 + 55.4256i −1.17160 + 2.02928i
\(747\) −3.00000 5.19615i −0.109764 0.190117i
\(748\) 4.00000 0.146254
\(749\) 0 0
\(750\) 1.00000 + 1.73205i 0.0365148 + 0.0632456i
\(751\) 1.50000 + 2.59808i 0.0547358 + 0.0948051i 0.892095 0.451848i \(-0.149235\pi\)
−0.837359 + 0.546653i \(0.815902\pi\)
\(752\) 0 0
\(753\) 17.0000 0.619514
\(754\) −10.0000 17.3205i −0.364179 0.630776i
\(755\) −1.50000 + 2.59808i −0.0545906 + 0.0945537i
\(756\) −2.00000 3.46410i −0.0727393 0.125988i
\(757\) 7.00000 12.1244i 0.254419 0.440667i −0.710318 0.703881i \(-0.751449\pi\)
0.964738 + 0.263213i \(0.0847823\pi\)
\(758\) 31.0000 53.6936i 1.12597 1.95024i
\(759\) 4.00000 0.145191
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) −4.00000 + 6.92820i −0.144905 + 0.250982i
\(763\) 19.0000 32.9090i 0.687846 1.19138i
\(764\) −15.0000 25.9808i −0.542681 0.939951i
\(765\) 1.00000 1.73205i 0.0361551 0.0626224i
\(766\) 26.0000 + 45.0333i 0.939418 + 1.62712i
\(767\) 14.0000 0.505511
\(768\) −16.0000 −0.577350
\(769\) 21.5000 + 37.2391i 0.775310 + 1.34288i 0.934620 + 0.355647i \(0.115740\pi\)
−0.159310 + 0.987229i \(0.550927\pi\)
\(770\) 2.00000 + 3.46410i 0.0720750 + 0.124838i
\(771\) −22.0000 −0.792311
\(772\) −52.0000 −1.87152
\(773\) −10.0000 17.3205i −0.359675 0.622975i 0.628231 0.778027i \(-0.283779\pi\)
−0.987906 + 0.155051i \(0.950446\pi\)
\(774\) −10.0000 + 17.3205i −0.359443 + 0.622573i
\(775\) −4.50000 7.79423i −0.161645 0.279977i
\(776\) 0 0
\(777\) 6.00000 10.3923i 0.215249 0.372822i
\(778\) −66.0000 −2.36621
\(779\) −24.0000 10.3923i −0.859889 0.372343i
\(780\) 4.00000 0.143223
\(781\) −1.50000 + 2.59808i −0.0536742 + 0.0929665i
\(782\) −8.00000 + 13.8564i −0.286079 + 0.495504i
\(783\) −2.50000 4.33013i −0.0893427 0.154746i
\(784\) −6.00000 + 10.3923i −0.214286 + 0.371154i
\(785\) 6.00000 + 10.3923i 0.214149 + 0.370917i
\(786\) 32.0000 1.14140
\(787\) −8.00000 −0.285169 −0.142585 0.989783i \(-0.545541\pi\)
−0.142585 + 0.989783i \(0.545541\pi\)
\(788\) −10.0000 17.3205i −0.356235 0.617018i
\(789\) 10.0000 + 17.3205i 0.356009 + 0.616626i
\(790\) −22.0000 −0.782725
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) 7.00000 12.1244i 0.248577 0.430548i
\(794\) −20.0000 34.6410i −0.709773 1.22936i
\(795\) 1.00000 1.73205i 0.0354663 0.0614295i
\(796\) 3.00000 5.19615i 0.106332 0.184173i
\(797\) 10.0000 0.354218 0.177109 0.984191i \(-0.443325\pi\)
0.177109 + 0.984191i \(0.443325\pi\)
\(798\) −14.0000 + 10.3923i −0.495595 + 0.367884i
\(799\) 0 0
\(800\) −4.00000 + 6.92820i −0.141421 + 0.244949i
\(801\) −7.50000 + 12.9904i −0.264999 + 0.458993i
\(802\) −27.0000 46.7654i −0.953403 1.65134i
\(803\) 1.00000 1.73205i 0.0352892 0.0611227i
\(804\) 8.00000 + 13.8564i 0.282138 + 0.488678i
\(805\) −8.00000 −0.281963
\(806\) −36.0000 −1.26805
\(807\) 0.500000 + 0.866025i 0.0176008 + 0.0304855i
\(808\) 0 0
\(809\) −1.00000 −0.0351581 −0.0175791 0.999845i \(-0.505596\pi\)
−0.0175791 + 0.999845i \(0.505596\pi\)
\(810\) 2.00000 0.0702728
\(811\) −24.5000 42.4352i −0.860311 1.49010i −0.871629 0.490167i \(-0.836936\pi\)
0.0113172 0.999936i \(-0.496398\pi\)
\(812\) −10.0000 + 17.3205i −0.350931 + 0.607831i
\(813\) 13.5000 + 23.3827i 0.473466 + 0.820067i
\(814\) −6.00000 + 10.3923i −0.210300 + 0.364250i
\(815\) −9.00000 + 15.5885i −0.315256 + 0.546040i
\(816\) 8.00000 0.280056
\(817\) 40.0000 + 17.3205i 1.39942 + 0.605968i
\(818\) 58.0000 2.02792
\(819\) 2.00000 3.46410i 0.0698857 0.121046i
\(820\) 6.00000 10.3923i 0.209529 0.362915i
\(821\) 22.5000 + 38.9711i 0.785255 + 1.36010i 0.928846 + 0.370465i \(0.120802\pi\)
−0.143591 + 0.989637i \(0.545865\pi\)
\(822\) 6.00000 10.3923i 0.209274 0.362473i
\(823\) 10.0000 + 17.3205i 0.348578 + 0.603755i 0.985997 0.166762i \(-0.0533313\pi\)
−0.637419 + 0.770517i \(0.719998\pi\)
\(824\) 0 0
\(825\) −1.00000 −0.0348155
\(826\) −14.0000 24.2487i −0.487122 0.843721i
\(827\) −6.00000 10.3923i −0.208640 0.361376i 0.742646 0.669684i \(-0.233571\pi\)
−0.951286 + 0.308308i \(0.900237\pi\)
\(828\) −8.00000 −0.278019
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) −6.00000 10.3923i −0.208263 0.360722i
\(831\) −4.00000 + 6.92820i −0.138758 + 0.240337i
\(832\) 8.00000 + 13.8564i 0.277350 + 0.480384i
\(833\) 3.00000 5.19615i 0.103944 0.180036i
\(834\) −20.0000 + 34.6410i −0.692543 + 1.19952i
\(835\) 2.00000 0.0692129
\(836\) 7.00000 5.19615i 0.242100 0.179713i
\(837\) −9.00000 −0.311086
\(838\) −5.00000 + 8.66025i −0.172722 + 0.299164i
\(839\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0 0
\(841\) 2.00000 3.46410i 0.0689655 0.119452i
\(842\) −7.00000 12.1244i −0.241236 0.417833i
\(843\) 26.0000 0.895488
\(844\) −54.0000 −1.85876
\(845\) −4.50000 7.79423i −0.154805 0.268130i
\(846\) 0 0
\(847\) 20.0000 0.687208
\(848\) 8.00000 0.274721
\(849\) 1.00000 + 1.73205i 0.0343199 + 0.0594438i
\(850\) 2.00000 3.46410i 0.0685994 0.118818i
\(851\) −12.0000 20.7846i −0.411355 0.712487i
\(852\) 3.00000 5.19615i 0.102778 0.178017i
\(853\) 1.00000 1.73205i 0.0342393 0.0593043i −0.848398 0.529359i \(-0.822432\pi\)
0.882637 + 0.470055i \(0.155766\pi\)
\(854\) −28.0000 −0.958140
\(855\) −0.500000 4.33013i −0.0170996 0.148087i
\(856\) 0 0
\(857\) −5.00000 + 8.66025i −0.170797 + 0.295829i −0.938699 0.344739i \(-0.887967\pi\)
0.767902 + 0.640567i \(0.221301\pi\)
\(858\) −2.00000 + 3.46410i −0.0682789 + 0.118262i
\(859\) −22.5000 38.9711i −0.767690 1.32968i −0.938813 0.344428i \(-0.888073\pi\)
0.171122 0.985250i \(-0.445261\pi\)
\(860\) −10.0000 + 17.3205i −0.340997 + 0.590624i
\(861\) −6.00000 10.3923i −0.204479 0.354169i
\(862\) −46.0000 −1.56677
\(863\) −38.0000 −1.29354 −0.646768 0.762687i \(-0.723880\pi\)
−0.646768 + 0.762687i \(0.723880\pi\)
\(864\) 4.00000 + 6.92820i 0.136083 + 0.235702i
\(865\) 3.00000 + 5.19615i 0.102003 + 0.176674i
\(866\) −12.0000 −0.407777
\(867\) 13.0000 0.441503
\(868\) 18.0000 + 31.1769i 0.610960 + 1.05821i
\(869\) 5.50000 9.52628i 0.186575 0.323157i
\(870\) −5.00000 8.66025i −0.169516 0.293610i
\(871\) −8.00000 + 13.8564i −0.271070 + 0.469506i
\(872\) 0 0
\(873\) 8.00000 0.270759
\(874\) 4.00000 + 34.6410i 0.135302 + 1.17175i
\(875\) 2.00000 0.0676123
\(876\) −2.00000 + 3.46410i −0.0675737 + 0.117041i
\(877\) −12.0000 + 20.7846i −0.405211 + 0.701846i −0.994346 0.106188i \(-0.966135\pi\)
0.589135 + 0.808035i \(0.299469\pi\)
\(878\) −25.0000 43.3013i −0.843709 1.46135i
\(879\) −2.00000 + 3.46410i −0.0674583 + 0.116841i
\(880\) −2.00000 3.46410i −0.0674200 0.116775i
\(881\) −1.00000 −0.0336909 −0.0168454 0.999858i \(-0.505362\pi\)
−0.0168454 + 0.999858i \(0.505362\pi\)
\(882\) 6.00000 0.202031
\(883\) 14.0000 + 24.2487i 0.471138 + 0.816034i 0.999455 0.0330128i \(-0.0105102\pi\)
−0.528317 + 0.849047i \(0.677177\pi\)
\(884\) −4.00000 6.92820i −0.134535 0.233021i
\(885\) 7.00000 0.235302
\(886\) 16.0000 0.537531
\(887\) 6.00000 + 10.3923i 0.201460 + 0.348939i 0.948999 0.315279i \(-0.102098\pi\)
−0.747539 + 0.664218i \(0.768765\pi\)
\(888\) 0 0
\(889\) 4.00000 + 6.92820i 0.134156 + 0.232364i
\(890\) −15.0000 + 25.9808i −0.502801 + 0.870877i
\(891\) −0.500000 + 0.866025i −0.0167506 + 0.0290129i
\(892\) −24.0000 −0.803579
\(893\) 0 0
\(894\) 18.0000 0.602010
\(895\) −1.50000 + 2.59808i −0.0501395 + 0.0868441i
\(896\) 0 0
\(897\) −4.00000 6.92820i −0.133556 0.231326i
\(898\) −39.0000 + 67.5500i −1.30145 + 2.25417i
\(899\) 22.5000 + 38.9711i 0.750417 + 1.29976i
\(900\) 2.00000 0.0666667
\(901\) −4.00000 −0.133259
\(902\) 6.00000 + 10.3923i 0.199778 + 0.346026i
\(903\) 10.0000 + 17.3205i 0.332779 + 0.576390i
\(904\) 0 0
\(905\) −10.0000 −0.332411
\(906\) 3.00000 + 5.19615i 0.0996683 + 0.172631i
\(907\) −2.00000 + 3.46410i −0.0664089 + 0.115024i −0.897318 0.441384i \(-0.854488\pi\)
0.830909 + 0.556408i \(0.187821\pi\)
\(908\) −18.0000 31.1769i −0.597351 1.03464i
\(909\) 3.50000 6.06218i 0.116088 0.201070i
\(910\) 4.00000 6.92820i 0.132599 0.229668i
\(911\) −9.00000 −0.298183 −0.149092 0.988823i \(-0.547635\pi\)
−0.149092 + 0.988823i \(0.547635\pi\)
\(912\) 14.0000 10.3923i 0.463586 0.344124i
\(913\) 6.00000 0.198571
\(914\) −8.00000 + 13.8564i −0.264616 + 0.458329i
\(915\) 3.50000 6.06218i 0.115706 0.200409i
\(916\) 11.0000 + 19.0526i 0.363450 + 0.629514i
\(917\) 16.0000 27.7128i 0.528367 0.915158i
\(918\) −2.00000 3.46410i −0.0660098 0.114332i
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) −12.0000 20.7846i −0.395413 0.684876i
\(922\) −3.00000 5.19615i −0.0987997 0.171126i
\(923\) 6.00000 0.197492
\(924\) 4.00000 0.131590
\(925\) 3.00000 + 5.19615i 0.0986394 + 0.170848i
\(926\) −10.0000 + 17.3205i −0.328620 + 0.569187i
\(927\) 4.00000 + 6.92820i 0.131377 + 0.227552i
\(928\) 20.0000 34.6410i 0.656532 1.13715i
\(929\) 5.50000 9.52628i 0.180449 0.312547i −0.761584 0.648066i \(-0.775578\pi\)
0.942034 + 0.335519i \(0.108912\pi\)
\(930\) −18.0000 −0.590243
\(931\) −1.50000 12.9904i −0.0491605 0.425743i
\(932\) −48.0000 −1.57229
\(933\) 12.0000 20.7846i 0.392862 0.680458i
\(934\) −38.0000 + 65.8179i −1.24340 + 2.15363i
\(935\) 1.00000 + 1.73205i 0.0327035 + 0.0566441i
\(936\) 0 0
\(937\) 9.00000 + 15.5885i 0.294017 + 0.509253i 0.974756 0.223274i \(-0.0716744\pi\)
−0.680739 + 0.732526i \(0.738341\pi\)
\(938\) 32.0000 1.04484
\(939\) 20.0000 0.652675
\(940\) 0 0
\(941\) −10.5000 18.1865i −0.342290 0.592864i 0.642567 0.766229i \(-0.277869\pi\)
−0.984858 + 0.173365i \(0.944536\pi\)
\(942\) 24.0000 0.781962
\(943\) −24.0000 −0.781548
\(944\) 14.0000 + 24.2487i 0.455661 + 0.789228i
\(945\) 1.00000 1.73205i 0.0325300 0.0563436i
\(946\) −10.0000 17.3205i −0.325128 0.563138i
\(947\) −10.0000 + 17.3205i −0.324956 + 0.562841i −0.981504 0.191444i \(-0.938683\pi\)
0.656547 + 0.754285i \(0.272016\pi\)
\(948\) −11.0000 + 19.0526i −0.357263 + 0.618798i
\(949\) −4.00000 −0.129845
\(950\) −1.00000 8.66025i −0.0324443 0.280976i
\(951\) −32.0000 −1.03767
\(952\) 0 0
\(953\) 4.00000 6.92820i 0.129573 0.224427i −0.793938 0.607998i \(-0.791973\pi\)
0.923511 + 0.383572i \(0.125306\pi\)
\(954\) −2.00000 3.46410i −0.0647524 0.112154i
\(955\) 7.50000 12.9904i 0.242694 0.420359i
\(956\) −27.0000 46.7654i −0.873242 1.51250i
\(957\) 5.00000 0.161627
\(958\) −10.0000 −0.323085
\(959\) −6.00000 10.3923i −0.193750 0.335585i
\(960\) 4.00000 + 6.92820i 0.129099 + 0.223607i
\(961\) 50.0000 1.61290
\(962\) 24.0000 0.773791
\(963\) 0 0
\(964\) −5.00000 + 8.66025i −0.161039 + 0.278928i
\(965\) −13.0000 22.5167i −0.418485 0.724837i
\(966\) −8.00000 + 13.8564i −0.257396 + 0.445823i
\(967\) −2.00000 + 3.46410i −0.0643157 + 0.111398i −0.896390 0.443266i \(-0.853820\pi\)
0.832075 + 0.554664i \(0.187153\pi\)
\(968\) 0 0
\(969\) −7.00000 + 5.19615i −0.224872 + 0.166924i
\(970\) 16.0000 0.513729
\(971\) 12.0000 20.7846i 0.385098 0.667010i −0.606685 0.794943i \(-0.707501\pi\)
0.991783 + 0.127933i \(0.0408342\pi\)
\(972\) 1.00000 1.73205i 0.0320750 0.0555556i
\(973\) 20.0000 + 34.6410i 0.641171 + 1.11054i
\(974\) 14.0000 24.2487i 0.448589 0.776979i
\(975\) 1.00000 + 1.73205i 0.0320256 + 0.0554700i
\(976\) 28.0000 0.896258
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 18.0000 + 31.1769i 0.575577 + 0.996928i
\(979\) −7.50000 12.9904i −0.239701 0.415174i
\(980\) 6.00000 0.191663
\(981\) 19.0000 0.606623
\(982\) −33.0000 57.1577i −1.05307 1.82397i
\(983\) 7.00000 12.1244i 0.223265 0.386707i −0.732532 0.680732i \(-0.761662\pi\)
0.955798 + 0.294025i \(0.0949950\pi\)
\(984\) 0 0
\(985\) 5.00000 8.66025i 0.159313 0.275939i
\(986\) −10.0000 + 17.3205i −0.318465 + 0.551597i
\(987\) 0 0
\(988\) −16.0000 6.92820i −0.509028 0.220416i
\(989\) 40.0000 1.27193
\(990\) −1.00000 + 1.73205i −0.0317821 + 0.0550482i
\(991\) 20.0000 34.6410i 0.635321 1.10041i −0.351126 0.936328i \(-0.614201\pi\)
0.986447 0.164080i \(-0.0524655\pi\)
\(992\) −36.0000 62.3538i −1.14300 1.97974i
\(993\) 4.00000 6.92820i 0.126936 0.219860i
\(994\) −6.00000 10.3923i −0.190308 0.329624i
\(995\) 3.00000 0.0951064
\(996\) −12.0000 −0.380235
\(997\) −26.0000 45.0333i −0.823428 1.42622i −0.903115 0.429400i \(-0.858725\pi\)
0.0796863 0.996820i \(-0.474608\pi\)
\(998\) 20.0000 + 34.6410i 0.633089 + 1.09654i
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.2.i.c.106.1 2
3.2 odd 2 855.2.k.a.676.1 2
19.7 even 3 inner 285.2.i.c.121.1 yes 2
19.8 odd 6 5415.2.a.l.1.1 1
19.11 even 3 5415.2.a.b.1.1 1
57.26 odd 6 855.2.k.a.406.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.c.106.1 2 1.1 even 1 trivial
285.2.i.c.121.1 yes 2 19.7 even 3 inner
855.2.k.a.406.1 2 57.26 odd 6
855.2.k.a.676.1 2 3.2 odd 2
5415.2.a.b.1.1 1 19.11 even 3
5415.2.a.l.1.1 1 19.8 odd 6