Properties

Label 285.2.i.b.121.1
Level $285$
Weight $2$
Character 285.121
Analytic conductor $2.276$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 285.121
Dual form 285.2.i.b.106.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-0.500000 - 0.866025i) q^{5} +2.00000 q^{7} +(-0.500000 + 0.866025i) q^{9} -3.00000 q^{11} -2.00000 q^{12} +(2.00000 - 3.46410i) q^{13} +(-0.500000 + 0.866025i) q^{15} +(-2.00000 - 3.46410i) q^{16} +(-3.50000 + 2.59808i) q^{19} -2.00000 q^{20} +(-1.00000 - 1.73205i) q^{21} +(3.00000 - 5.19615i) q^{23} +(-0.500000 + 0.866025i) q^{25} +1.00000 q^{27} +(2.00000 - 3.46410i) q^{28} +(-1.50000 + 2.59808i) q^{29} +5.00000 q^{31} +(1.50000 + 2.59808i) q^{33} +(-1.00000 - 1.73205i) q^{35} +(1.00000 + 1.73205i) q^{36} +8.00000 q^{37} -4.00000 q^{39} +(3.00000 + 5.19615i) q^{41} +(2.00000 + 3.46410i) q^{43} +(-3.00000 + 5.19615i) q^{44} +1.00000 q^{45} +(-3.00000 + 5.19615i) q^{47} +(-2.00000 + 3.46410i) q^{48} -3.00000 q^{49} +(-4.00000 - 6.92820i) q^{52} +(3.00000 - 5.19615i) q^{53} +(1.50000 + 2.59808i) q^{55} +(4.00000 + 1.73205i) q^{57} +(4.50000 + 7.79423i) q^{59} +(1.00000 + 1.73205i) q^{60} +(3.50000 - 6.06218i) q^{61} +(-1.00000 + 1.73205i) q^{63} -8.00000 q^{64} -4.00000 q^{65} +(-1.00000 + 1.73205i) q^{67} -6.00000 q^{69} +(4.50000 + 7.79423i) q^{71} +(2.00000 + 3.46410i) q^{73} +1.00000 q^{75} +(1.00000 + 8.66025i) q^{76} -6.00000 q^{77} +(3.50000 + 6.06218i) q^{79} +(-2.00000 + 3.46410i) q^{80} +(-0.500000 - 0.866025i) q^{81} -4.00000 q^{84} +3.00000 q^{87} +(-1.50000 + 2.59808i) q^{89} +(4.00000 - 6.92820i) q^{91} +(-6.00000 - 10.3923i) q^{92} +(-2.50000 - 4.33013i) q^{93} +(4.00000 + 1.73205i) q^{95} +(5.00000 + 8.66025i) q^{97} +(1.50000 - 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 2 q^{4} - q^{5} + 4 q^{7} - q^{9} - 6 q^{11} - 4 q^{12} + 4 q^{13} - q^{15} - 4 q^{16} - 7 q^{19} - 4 q^{20} - 2 q^{21} + 6 q^{23} - q^{25} + 2 q^{27} + 4 q^{28} - 3 q^{29} + 10 q^{31}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) −2.00000 −0.577350
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) 0 0
\(15\) −0.500000 + 0.866025i −0.129099 + 0.223607i
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −3.50000 + 2.59808i −0.802955 + 0.596040i
\(20\) −2.00000 −0.447214
\(21\) −1.00000 1.73205i −0.218218 0.377964i
\(22\) 0 0
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 2.00000 3.46410i 0.377964 0.654654i
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) 0 0
\(33\) 1.50000 + 2.59808i 0.261116 + 0.452267i
\(34\) 0 0
\(35\) −1.00000 1.73205i −0.169031 0.292770i
\(36\) 1.00000 + 1.73205i 0.166667 + 0.288675i
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 3.00000 + 5.19615i 0.468521 + 0.811503i 0.999353 0.0359748i \(-0.0114536\pi\)
−0.530831 + 0.847477i \(0.678120\pi\)
\(42\) 0 0
\(43\) 2.00000 + 3.46410i 0.304997 + 0.528271i 0.977261 0.212041i \(-0.0680112\pi\)
−0.672264 + 0.740312i \(0.734678\pi\)
\(44\) −3.00000 + 5.19615i −0.452267 + 0.783349i
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) −2.00000 + 3.46410i −0.288675 + 0.500000i
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) −4.00000 6.92820i −0.554700 0.960769i
\(53\) 3.00000 5.19615i 0.412082 0.713746i −0.583036 0.812447i \(-0.698135\pi\)
0.995117 + 0.0987002i \(0.0314685\pi\)
\(54\) 0 0
\(55\) 1.50000 + 2.59808i 0.202260 + 0.350325i
\(56\) 0 0
\(57\) 4.00000 + 1.73205i 0.529813 + 0.229416i
\(58\) 0 0
\(59\) 4.50000 + 7.79423i 0.585850 + 1.01472i 0.994769 + 0.102151i \(0.0325726\pi\)
−0.408919 + 0.912571i \(0.634094\pi\)
\(60\) 1.00000 + 1.73205i 0.129099 + 0.223607i
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) 0 0
\(63\) −1.00000 + 1.73205i −0.125988 + 0.218218i
\(64\) −8.00000 −1.00000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −1.00000 + 1.73205i −0.122169 + 0.211604i −0.920623 0.390453i \(-0.872318\pi\)
0.798454 + 0.602056i \(0.205652\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 4.50000 + 7.79423i 0.534052 + 0.925005i 0.999209 + 0.0397765i \(0.0126646\pi\)
−0.465157 + 0.885228i \(0.654002\pi\)
\(72\) 0 0
\(73\) 2.00000 + 3.46410i 0.234082 + 0.405442i 0.959006 0.283387i \(-0.0914581\pi\)
−0.724923 + 0.688830i \(0.758125\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 1.00000 + 8.66025i 0.114708 + 0.993399i
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) 3.50000 + 6.06218i 0.393781 + 0.682048i 0.992945 0.118578i \(-0.0378336\pi\)
−0.599164 + 0.800626i \(0.704500\pi\)
\(80\) −2.00000 + 3.46410i −0.223607 + 0.387298i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) −4.00000 −0.436436
\(85\) 0 0
\(86\) 0 0
\(87\) 3.00000 0.321634
\(88\) 0 0
\(89\) −1.50000 + 2.59808i −0.159000 + 0.275396i −0.934508 0.355942i \(-0.884160\pi\)
0.775509 + 0.631337i \(0.217494\pi\)
\(90\) 0 0
\(91\) 4.00000 6.92820i 0.419314 0.726273i
\(92\) −6.00000 10.3923i −0.625543 1.08347i
\(93\) −2.50000 4.33013i −0.259238 0.449013i
\(94\) 0 0
\(95\) 4.00000 + 1.73205i 0.410391 + 0.177705i
\(96\) 0 0
\(97\) 5.00000 + 8.66025i 0.507673 + 0.879316i 0.999961 + 0.00888289i \(0.00282755\pi\)
−0.492287 + 0.870433i \(0.663839\pi\)
\(98\) 0 0
\(99\) 1.50000 2.59808i 0.150756 0.261116i
\(100\) 1.00000 + 1.73205i 0.100000 + 0.173205i
\(101\) 7.50000 12.9904i 0.746278 1.29259i −0.203317 0.979113i \(-0.565172\pi\)
0.949595 0.313478i \(-0.101494\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) −1.00000 + 1.73205i −0.0975900 + 0.169031i
\(106\) 0 0
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 1.00000 1.73205i 0.0962250 0.166667i
\(109\) −5.50000 9.52628i −0.526804 0.912452i −0.999512 0.0312328i \(-0.990057\pi\)
0.472708 0.881219i \(-0.343277\pi\)
\(110\) 0 0
\(111\) −4.00000 6.92820i −0.379663 0.657596i
\(112\) −4.00000 6.92820i −0.377964 0.654654i
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) 3.00000 + 5.19615i 0.278543 + 0.482451i
\(117\) 2.00000 + 3.46410i 0.184900 + 0.320256i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 3.00000 5.19615i 0.270501 0.468521i
\(124\) 5.00000 8.66025i 0.449013 0.777714i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −1.00000 + 1.73205i −0.0887357 + 0.153695i −0.906977 0.421180i \(-0.861616\pi\)
0.818241 + 0.574875i \(0.194949\pi\)
\(128\) 0 0
\(129\) 2.00000 3.46410i 0.176090 0.304997i
\(130\) 0 0
\(131\) −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i \(-0.991023\pi\)
0.475380 0.879781i \(-0.342311\pi\)
\(132\) 6.00000 0.522233
\(133\) −7.00000 + 5.19615i −0.606977 + 0.450564i
\(134\) 0 0
\(135\) −0.500000 0.866025i −0.0430331 0.0745356i
\(136\) 0 0
\(137\) 9.00000 15.5885i 0.768922 1.33181i −0.169226 0.985577i \(-0.554127\pi\)
0.938148 0.346235i \(-0.112540\pi\)
\(138\) 0 0
\(139\) −10.0000 + 17.3205i −0.848189 + 1.46911i 0.0346338 + 0.999400i \(0.488974\pi\)
−0.882823 + 0.469706i \(0.844360\pi\)
\(140\) −4.00000 −0.338062
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) −6.00000 + 10.3923i −0.501745 + 0.869048i
\(144\) 4.00000 0.333333
\(145\) 3.00000 0.249136
\(146\) 0 0
\(147\) 1.50000 + 2.59808i 0.123718 + 0.214286i
\(148\) 8.00000 13.8564i 0.657596 1.13899i
\(149\) −4.50000 7.79423i −0.368654 0.638528i 0.620701 0.784047i \(-0.286848\pi\)
−0.989355 + 0.145519i \(0.953515\pi\)
\(150\) 0 0
\(151\) −19.0000 −1.54620 −0.773099 0.634285i \(-0.781294\pi\)
−0.773099 + 0.634285i \(0.781294\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.50000 4.33013i −0.200805 0.347804i
\(156\) −4.00000 + 6.92820i −0.320256 + 0.554700i
\(157\) 8.00000 + 13.8564i 0.638470 + 1.10586i 0.985769 + 0.168107i \(0.0537655\pi\)
−0.347299 + 0.937754i \(0.612901\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 6.00000 10.3923i 0.472866 0.819028i
\(162\) 0 0
\(163\) −22.0000 −1.72317 −0.861586 0.507611i \(-0.830529\pi\)
−0.861586 + 0.507611i \(0.830529\pi\)
\(164\) 12.0000 0.937043
\(165\) 1.50000 2.59808i 0.116775 0.202260i
\(166\) 0 0
\(167\) 3.00000 5.19615i 0.232147 0.402090i −0.726293 0.687386i \(-0.758758\pi\)
0.958440 + 0.285295i \(0.0920916\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 0 0
\(171\) −0.500000 4.33013i −0.0382360 0.331133i
\(172\) 8.00000 0.609994
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 0 0
\(175\) −1.00000 + 1.73205i −0.0755929 + 0.130931i
\(176\) 6.00000 + 10.3923i 0.452267 + 0.783349i
\(177\) 4.50000 7.79423i 0.338241 0.585850i
\(178\) 0 0
\(179\) 21.0000 1.56961 0.784807 0.619740i \(-0.212762\pi\)
0.784807 + 0.619740i \(0.212762\pi\)
\(180\) 1.00000 1.73205i 0.0745356 0.129099i
\(181\) −1.00000 + 1.73205i −0.0743294 + 0.128742i −0.900794 0.434246i \(-0.857015\pi\)
0.826465 + 0.562988i \(0.190348\pi\)
\(182\) 0 0
\(183\) −7.00000 −0.517455
\(184\) 0 0
\(185\) −4.00000 6.92820i −0.294086 0.509372i
\(186\) 0 0
\(187\) 0 0
\(188\) 6.00000 + 10.3923i 0.437595 + 0.757937i
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) −21.0000 −1.51951 −0.759753 0.650211i \(-0.774680\pi\)
−0.759753 + 0.650211i \(0.774680\pi\)
\(192\) 4.00000 + 6.92820i 0.288675 + 0.500000i
\(193\) −7.00000 12.1244i −0.503871 0.872730i −0.999990 0.00447566i \(-0.998575\pi\)
0.496119 0.868255i \(-0.334758\pi\)
\(194\) 0 0
\(195\) 2.00000 + 3.46410i 0.143223 + 0.248069i
\(196\) −3.00000 + 5.19615i −0.214286 + 0.371154i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −2.50000 + 4.33013i −0.177220 + 0.306955i −0.940927 0.338608i \(-0.890044\pi\)
0.763707 + 0.645563i \(0.223377\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 0 0
\(203\) −3.00000 + 5.19615i −0.210559 + 0.364698i
\(204\) 0 0
\(205\) 3.00000 5.19615i 0.209529 0.362915i
\(206\) 0 0
\(207\) 3.00000 + 5.19615i 0.208514 + 0.361158i
\(208\) −16.0000 −1.10940
\(209\) 10.5000 7.79423i 0.726300 0.539138i
\(210\) 0 0
\(211\) −8.50000 14.7224i −0.585164 1.01353i −0.994855 0.101310i \(-0.967697\pi\)
0.409691 0.912224i \(-0.365637\pi\)
\(212\) −6.00000 10.3923i −0.412082 0.713746i
\(213\) 4.50000 7.79423i 0.308335 0.534052i
\(214\) 0 0
\(215\) 2.00000 3.46410i 0.136399 0.236250i
\(216\) 0 0
\(217\) 10.0000 0.678844
\(218\) 0 0
\(219\) 2.00000 3.46410i 0.135147 0.234082i
\(220\) 6.00000 0.404520
\(221\) 0 0
\(222\) 0 0
\(223\) 5.00000 + 8.66025i 0.334825 + 0.579934i 0.983451 0.181173i \(-0.0579895\pi\)
−0.648626 + 0.761107i \(0.724656\pi\)
\(224\) 0 0
\(225\) −0.500000 0.866025i −0.0333333 0.0577350i
\(226\) 0 0
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 7.00000 5.19615i 0.463586 0.344124i
\(229\) −19.0000 −1.25556 −0.627778 0.778393i \(-0.716035\pi\)
−0.627778 + 0.778393i \(0.716035\pi\)
\(230\) 0 0
\(231\) 3.00000 + 5.19615i 0.197386 + 0.341882i
\(232\) 0 0
\(233\) 12.0000 + 20.7846i 0.786146 + 1.36165i 0.928312 + 0.371802i \(0.121260\pi\)
−0.142166 + 0.989843i \(0.545407\pi\)
\(234\) 0 0
\(235\) 6.00000 0.391397
\(236\) 18.0000 1.17170
\(237\) 3.50000 6.06218i 0.227349 0.393781i
\(238\) 0 0
\(239\) 15.0000 0.970269 0.485135 0.874439i \(-0.338771\pi\)
0.485135 + 0.874439i \(0.338771\pi\)
\(240\) 4.00000 0.258199
\(241\) −8.50000 + 14.7224i −0.547533 + 0.948355i 0.450910 + 0.892570i \(0.351100\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −7.00000 12.1244i −0.448129 0.776182i
\(245\) 1.50000 + 2.59808i 0.0958315 + 0.165985i
\(246\) 0 0
\(247\) 2.00000 + 17.3205i 0.127257 + 1.10208i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.50000 + 12.9904i −0.473396 + 0.819946i −0.999536 0.0304521i \(-0.990305\pi\)
0.526140 + 0.850398i \(0.323639\pi\)
\(252\) 2.00000 + 3.46410i 0.125988 + 0.218218i
\(253\) −9.00000 + 15.5885i −0.565825 + 0.980038i
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −12.0000 + 20.7846i −0.748539 + 1.29651i 0.199983 + 0.979799i \(0.435911\pi\)
−0.948523 + 0.316709i \(0.897422\pi\)
\(258\) 0 0
\(259\) 16.0000 0.994192
\(260\) −4.00000 + 6.92820i −0.248069 + 0.429669i
\(261\) −1.50000 2.59808i −0.0928477 0.160817i
\(262\) 0 0
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 3.00000 0.183597
\(268\) 2.00000 + 3.46410i 0.122169 + 0.211604i
\(269\) 13.5000 + 23.3827i 0.823110 + 1.42567i 0.903356 + 0.428892i \(0.141096\pi\)
−0.0802460 + 0.996775i \(0.525571\pi\)
\(270\) 0 0
\(271\) 12.5000 + 21.6506i 0.759321 + 1.31518i 0.943197 + 0.332233i \(0.107802\pi\)
−0.183876 + 0.982949i \(0.558865\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) 1.50000 2.59808i 0.0904534 0.156670i
\(276\) −6.00000 + 10.3923i −0.361158 + 0.625543i
\(277\) −28.0000 −1.68236 −0.841178 0.540758i \(-0.818138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) −2.50000 + 4.33013i −0.149671 + 0.259238i
\(280\) 0 0
\(281\) 9.00000 15.5885i 0.536895 0.929929i −0.462174 0.886789i \(-0.652930\pi\)
0.999069 0.0431402i \(-0.0137362\pi\)
\(282\) 0 0
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) 18.0000 1.06810
\(285\) −0.500000 4.33013i −0.0296174 0.256495i
\(286\) 0 0
\(287\) 6.00000 + 10.3923i 0.354169 + 0.613438i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 5.00000 8.66025i 0.293105 0.507673i
\(292\) 8.00000 0.468165
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 4.50000 7.79423i 0.262000 0.453798i
\(296\) 0 0
\(297\) −3.00000 −0.174078
\(298\) 0 0
\(299\) −12.0000 20.7846i −0.693978 1.20201i
\(300\) 1.00000 1.73205i 0.0577350 0.100000i
\(301\) 4.00000 + 6.92820i 0.230556 + 0.399335i
\(302\) 0 0
\(303\) −15.0000 −0.861727
\(304\) 16.0000 + 6.92820i 0.917663 + 0.397360i
\(305\) −7.00000 −0.400819
\(306\) 0 0
\(307\) 8.00000 + 13.8564i 0.456584 + 0.790827i 0.998778 0.0494267i \(-0.0157394\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) −6.00000 + 10.3923i −0.341882 + 0.592157i
\(309\) −4.00000 6.92820i −0.227552 0.394132i
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 5.00000 8.66025i 0.282617 0.489506i −0.689412 0.724370i \(-0.742131\pi\)
0.972028 + 0.234863i \(0.0754642\pi\)
\(314\) 0 0
\(315\) 2.00000 0.112687
\(316\) 14.0000 0.787562
\(317\) 9.00000 15.5885i 0.505490 0.875535i −0.494489 0.869184i \(-0.664645\pi\)
0.999980 0.00635137i \(-0.00202172\pi\)
\(318\) 0 0
\(319\) 4.50000 7.79423i 0.251952 0.436393i
\(320\) 4.00000 + 6.92820i 0.223607 + 0.387298i
\(321\) 9.00000 + 15.5885i 0.502331 + 0.870063i
\(322\) 0 0
\(323\) 0 0
\(324\) −2.00000 −0.111111
\(325\) 2.00000 + 3.46410i 0.110940 + 0.192154i
\(326\) 0 0
\(327\) −5.50000 + 9.52628i −0.304151 + 0.526804i
\(328\) 0 0
\(329\) −6.00000 + 10.3923i −0.330791 + 0.572946i
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) −4.00000 + 6.92820i −0.219199 + 0.379663i
\(334\) 0 0
\(335\) 2.00000 0.109272
\(336\) −4.00000 + 6.92820i −0.218218 + 0.377964i
\(337\) −7.00000 12.1244i −0.381314 0.660456i 0.609936 0.792451i \(-0.291195\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(338\) 0 0
\(339\) −9.00000 15.5885i −0.488813 0.846649i
\(340\) 0 0
\(341\) −15.0000 −0.812296
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 3.00000 + 5.19615i 0.161515 + 0.279751i
\(346\) 0 0
\(347\) −15.0000 25.9808i −0.805242 1.39472i −0.916127 0.400887i \(-0.868702\pi\)
0.110885 0.993833i \(-0.464631\pi\)
\(348\) 3.00000 5.19615i 0.160817 0.278543i
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 2.00000 3.46410i 0.106752 0.184900i
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 4.50000 7.79423i 0.238835 0.413675i
\(356\) 3.00000 + 5.19615i 0.159000 + 0.275396i
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0000 + 20.7846i 0.633336 + 1.09697i 0.986865 + 0.161546i \(0.0516481\pi\)
−0.353529 + 0.935423i \(0.615019\pi\)
\(360\) 0 0
\(361\) 5.50000 18.1865i 0.289474 0.957186i
\(362\) 0 0
\(363\) 1.00000 + 1.73205i 0.0524864 + 0.0909091i
\(364\) −8.00000 13.8564i −0.419314 0.726273i
\(365\) 2.00000 3.46410i 0.104685 0.181319i
\(366\) 0 0
\(367\) 2.00000 3.46410i 0.104399 0.180825i −0.809093 0.587680i \(-0.800041\pi\)
0.913493 + 0.406855i \(0.133375\pi\)
\(368\) −24.0000 −1.25109
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 6.00000 10.3923i 0.311504 0.539542i
\(372\) −10.0000 −0.518476
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) −0.500000 0.866025i −0.0258199 0.0447214i
\(376\) 0 0
\(377\) 6.00000 + 10.3923i 0.309016 + 0.535231i
\(378\) 0 0
\(379\) 11.0000 0.565032 0.282516 0.959263i \(-0.408831\pi\)
0.282516 + 0.959263i \(0.408831\pi\)
\(380\) 7.00000 5.19615i 0.359092 0.266557i
\(381\) 2.00000 0.102463
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 3.00000 + 5.19615i 0.152894 + 0.264820i
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 20.0000 1.01535
\(389\) 13.5000 23.3827i 0.684477 1.18555i −0.289124 0.957292i \(-0.593364\pi\)
0.973601 0.228257i \(-0.0733028\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −6.00000 + 10.3923i −0.302660 + 0.524222i
\(394\) 0 0
\(395\) 3.50000 6.06218i 0.176104 0.305021i
\(396\) −3.00000 5.19615i −0.150756 0.261116i
\(397\) −10.0000 17.3205i −0.501886 0.869291i −0.999998 0.00217869i \(-0.999307\pi\)
0.498112 0.867113i \(-0.334027\pi\)
\(398\) 0 0
\(399\) 8.00000 + 3.46410i 0.400501 + 0.173422i
\(400\) 4.00000 0.200000
\(401\) −4.50000 7.79423i −0.224719 0.389225i 0.731516 0.681824i \(-0.238813\pi\)
−0.956235 + 0.292599i \(0.905480\pi\)
\(402\) 0 0
\(403\) 10.0000 17.3205i 0.498135 0.862796i
\(404\) −15.0000 25.9808i −0.746278 1.29259i
\(405\) −0.500000 + 0.866025i −0.0248452 + 0.0430331i
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) 6.50000 11.2583i 0.321404 0.556689i −0.659374 0.751815i \(-0.729178\pi\)
0.980778 + 0.195127i \(0.0625118\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 8.00000 13.8564i 0.394132 0.682656i
\(413\) 9.00000 + 15.5885i 0.442861 + 0.767058i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 20.0000 0.979404
\(418\) 0 0
\(419\) −9.00000 −0.439679 −0.219839 0.975536i \(-0.570553\pi\)
−0.219839 + 0.975536i \(0.570553\pi\)
\(420\) 2.00000 + 3.46410i 0.0975900 + 0.169031i
\(421\) −8.50000 14.7224i −0.414265 0.717527i 0.581086 0.813842i \(-0.302628\pi\)
−0.995351 + 0.0963145i \(0.969295\pi\)
\(422\) 0 0
\(423\) −3.00000 5.19615i −0.145865 0.252646i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.00000 12.1244i 0.338754 0.586739i
\(428\) −18.0000 + 31.1769i −0.870063 + 1.50699i
\(429\) 12.0000 0.579365
\(430\) 0 0
\(431\) −7.50000 + 12.9904i −0.361262 + 0.625725i −0.988169 0.153370i \(-0.950987\pi\)
0.626907 + 0.779094i \(0.284321\pi\)
\(432\) −2.00000 3.46410i −0.0962250 0.166667i
\(433\) −13.0000 + 22.5167i −0.624740 + 1.08208i 0.363851 + 0.931457i \(0.381462\pi\)
−0.988591 + 0.150624i \(0.951872\pi\)
\(434\) 0 0
\(435\) −1.50000 2.59808i −0.0719195 0.124568i
\(436\) −22.0000 −1.05361
\(437\) 3.00000 + 25.9808i 0.143509 + 1.24283i
\(438\) 0 0
\(439\) 0.500000 + 0.866025i 0.0238637 + 0.0413331i 0.877711 0.479191i \(-0.159070\pi\)
−0.853847 + 0.520524i \(0.825737\pi\)
\(440\) 0 0
\(441\) 1.50000 2.59808i 0.0714286 0.123718i
\(442\) 0 0
\(443\) 18.0000 31.1769i 0.855206 1.48126i −0.0212481 0.999774i \(-0.506764\pi\)
0.876454 0.481486i \(-0.159903\pi\)
\(444\) −16.0000 −0.759326
\(445\) 3.00000 0.142214
\(446\) 0 0
\(447\) −4.50000 + 7.79423i −0.212843 + 0.368654i
\(448\) −16.0000 −0.755929
\(449\) −15.0000 −0.707894 −0.353947 0.935266i \(-0.615161\pi\)
−0.353947 + 0.935266i \(0.615161\pi\)
\(450\) 0 0
\(451\) −9.00000 15.5885i −0.423793 0.734032i
\(452\) 18.0000 31.1769i 0.846649 1.46644i
\(453\) 9.50000 + 16.4545i 0.446349 + 0.773099i
\(454\) 0 0
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −6.00000 + 10.3923i −0.279751 + 0.484544i
\(461\) 7.50000 + 12.9904i 0.349310 + 0.605022i 0.986127 0.165992i \(-0.0530827\pi\)
−0.636817 + 0.771015i \(0.719749\pi\)
\(462\) 0 0
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) 12.0000 0.557086
\(465\) −2.50000 + 4.33013i −0.115935 + 0.200805i
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 8.00000 0.369800
\(469\) −2.00000 + 3.46410i −0.0923514 + 0.159957i
\(470\) 0 0
\(471\) 8.00000 13.8564i 0.368621 0.638470i
\(472\) 0 0
\(473\) −6.00000 10.3923i −0.275880 0.477839i
\(474\) 0 0
\(475\) −0.500000 4.33013i −0.0229416 0.198680i
\(476\) 0 0
\(477\) 3.00000 + 5.19615i 0.137361 + 0.237915i
\(478\) 0 0
\(479\) 1.50000 2.59808i 0.0685367 0.118709i −0.829721 0.558179i \(-0.811500\pi\)
0.898257 + 0.439470i \(0.144834\pi\)
\(480\) 0 0
\(481\) 16.0000 27.7128i 0.729537 1.26360i
\(482\) 0 0
\(483\) −12.0000 −0.546019
\(484\) −2.00000 + 3.46410i −0.0909091 + 0.157459i
\(485\) 5.00000 8.66025i 0.227038 0.393242i
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 0 0
\(489\) 11.0000 + 19.0526i 0.497437 + 0.861586i
\(490\) 0 0
\(491\) 16.5000 + 28.5788i 0.744635 + 1.28974i 0.950365 + 0.311136i \(0.100710\pi\)
−0.205731 + 0.978609i \(0.565957\pi\)
\(492\) −6.00000 10.3923i −0.270501 0.468521i
\(493\) 0 0
\(494\) 0 0
\(495\) −3.00000 −0.134840
\(496\) −10.0000 17.3205i −0.449013 0.777714i
\(497\) 9.00000 + 15.5885i 0.403705 + 0.699238i
\(498\) 0 0
\(499\) 2.00000 + 3.46410i 0.0895323 + 0.155074i 0.907314 0.420455i \(-0.138129\pi\)
−0.817781 + 0.575529i \(0.804796\pi\)
\(500\) 1.00000 1.73205i 0.0447214 0.0774597i
\(501\) −6.00000 −0.268060
\(502\) 0 0
\(503\) 3.00000 5.19615i 0.133763 0.231685i −0.791361 0.611349i \(-0.790627\pi\)
0.925124 + 0.379664i \(0.123960\pi\)
\(504\) 0 0
\(505\) −15.0000 −0.667491
\(506\) 0 0
\(507\) −1.50000 + 2.59808i −0.0666173 + 0.115385i
\(508\) 2.00000 + 3.46410i 0.0887357 + 0.153695i
\(509\) −9.00000 + 15.5885i −0.398918 + 0.690946i −0.993593 0.113020i \(-0.963948\pi\)
0.594675 + 0.803966i \(0.297281\pi\)
\(510\) 0 0
\(511\) 4.00000 + 6.92820i 0.176950 + 0.306486i
\(512\) 0 0
\(513\) −3.50000 + 2.59808i −0.154529 + 0.114708i
\(514\) 0 0
\(515\) −4.00000 6.92820i −0.176261 0.305293i
\(516\) −4.00000 6.92820i −0.176090 0.304997i
\(517\) 9.00000 15.5885i 0.395820 0.685580i
\(518\) 0 0
\(519\) −3.00000 + 5.19615i −0.131685 + 0.228086i
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 0 0
\(523\) 11.0000 19.0526i 0.480996 0.833110i −0.518766 0.854916i \(-0.673608\pi\)
0.999762 + 0.0218062i \(0.00694167\pi\)
\(524\) −24.0000 −1.04844
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) 0 0
\(528\) 6.00000 10.3923i 0.261116 0.452267i
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) −9.00000 −0.390567
\(532\) 2.00000 + 17.3205i 0.0867110 + 0.750939i
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 9.00000 + 15.5885i 0.389104 + 0.673948i
\(536\) 0 0
\(537\) −10.5000 18.1865i −0.453108 0.784807i
\(538\) 0 0
\(539\) 9.00000 0.387657
\(540\) −2.00000 −0.0860663
\(541\) 12.5000 21.6506i 0.537417 0.930834i −0.461625 0.887075i \(-0.652733\pi\)
0.999042 0.0437584i \(-0.0139332\pi\)
\(542\) 0 0
\(543\) 2.00000 0.0858282
\(544\) 0 0
\(545\) −5.50000 + 9.52628i −0.235594 + 0.408061i
\(546\) 0 0
\(547\) −13.0000 + 22.5167i −0.555840 + 0.962743i 0.441998 + 0.897016i \(0.354270\pi\)
−0.997838 + 0.0657267i \(0.979063\pi\)
\(548\) −18.0000 31.1769i −0.768922 1.33181i
\(549\) 3.50000 + 6.06218i 0.149376 + 0.258727i
\(550\) 0 0
\(551\) −1.50000 12.9904i −0.0639021 0.553409i
\(552\) 0 0
\(553\) 7.00000 + 12.1244i 0.297670 + 0.515580i
\(554\) 0 0
\(555\) −4.00000 + 6.92820i −0.169791 + 0.294086i
\(556\) 20.0000 + 34.6410i 0.848189 + 1.46911i
\(557\) −15.0000 + 25.9808i −0.635570 + 1.10084i 0.350824 + 0.936442i \(0.385902\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) −4.00000 + 6.92820i −0.169031 + 0.292770i
\(561\) 0 0
\(562\) 0 0
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 6.00000 10.3923i 0.252646 0.437595i
\(565\) −9.00000 15.5885i −0.378633 0.655811i
\(566\) 0 0
\(567\) −1.00000 1.73205i −0.0419961 0.0727393i
\(568\) 0 0
\(569\) 9.00000 0.377300 0.188650 0.982044i \(-0.439589\pi\)
0.188650 + 0.982044i \(0.439589\pi\)
\(570\) 0 0
\(571\) −31.0000 −1.29731 −0.648655 0.761083i \(-0.724668\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) 12.0000 + 20.7846i 0.501745 + 0.869048i
\(573\) 10.5000 + 18.1865i 0.438644 + 0.759753i
\(574\) 0 0
\(575\) 3.00000 + 5.19615i 0.125109 + 0.216695i
\(576\) 4.00000 6.92820i 0.166667 0.288675i
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) −7.00000 + 12.1244i −0.290910 + 0.503871i
\(580\) 3.00000 5.19615i 0.124568 0.215758i
\(581\) 0 0
\(582\) 0 0
\(583\) −9.00000 + 15.5885i −0.372742 + 0.645608i
\(584\) 0 0
\(585\) 2.00000 3.46410i 0.0826898 0.143223i
\(586\) 0 0
\(587\) −3.00000 5.19615i −0.123823 0.214468i 0.797449 0.603386i \(-0.206182\pi\)
−0.921272 + 0.388918i \(0.872849\pi\)
\(588\) 6.00000 0.247436
\(589\) −17.5000 + 12.9904i −0.721075 + 0.535259i
\(590\) 0 0
\(591\) 0 0
\(592\) −16.0000 27.7128i −0.657596 1.13899i
\(593\) 9.00000 15.5885i 0.369586 0.640141i −0.619915 0.784669i \(-0.712833\pi\)
0.989501 + 0.144528i \(0.0461663\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18.0000 −0.737309
\(597\) 5.00000 0.204636
\(598\) 0 0
\(599\) −18.0000 + 31.1769i −0.735460 + 1.27385i 0.219061 + 0.975711i \(0.429701\pi\)
−0.954521 + 0.298143i \(0.903633\pi\)
\(600\) 0 0
\(601\) 5.00000 0.203954 0.101977 0.994787i \(-0.467483\pi\)
0.101977 + 0.994787i \(0.467483\pi\)
\(602\) 0 0
\(603\) −1.00000 1.73205i −0.0407231 0.0705346i
\(604\) −19.0000 + 32.9090i −0.773099 + 1.33905i
\(605\) 1.00000 + 1.73205i 0.0406558 + 0.0704179i
\(606\) 0 0
\(607\) 20.0000 0.811775 0.405887 0.913923i \(-0.366962\pi\)
0.405887 + 0.913923i \(0.366962\pi\)
\(608\) 0 0
\(609\) 6.00000 0.243132
\(610\) 0 0
\(611\) 12.0000 + 20.7846i 0.485468 + 0.840855i
\(612\) 0 0
\(613\) −1.00000 1.73205i −0.0403896 0.0699569i 0.845124 0.534570i \(-0.179527\pi\)
−0.885514 + 0.464614i \(0.846193\pi\)
\(614\) 0 0
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) −9.00000 + 15.5885i −0.362326 + 0.627568i −0.988343 0.152242i \(-0.951351\pi\)
0.626017 + 0.779809i \(0.284684\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) −10.0000 −0.401610
\(621\) 3.00000 5.19615i 0.120386 0.208514i
\(622\) 0 0
\(623\) −3.00000 + 5.19615i −0.120192 + 0.208179i
\(624\) 8.00000 + 13.8564i 0.320256 + 0.554700i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −12.0000 5.19615i −0.479234 0.207514i
\(628\) 32.0000 1.27694
\(629\) 0 0
\(630\) 0 0
\(631\) −2.50000 + 4.33013i −0.0995234 + 0.172380i −0.911487 0.411328i \(-0.865065\pi\)
0.811964 + 0.583707i \(0.198398\pi\)
\(632\) 0 0
\(633\) −8.50000 + 14.7224i −0.337845 + 0.585164i
\(634\) 0 0
\(635\) 2.00000 0.0793676
\(636\) −6.00000 + 10.3923i −0.237915 + 0.412082i
\(637\) −6.00000 + 10.3923i −0.237729 + 0.411758i
\(638\) 0 0
\(639\) −9.00000 −0.356034
\(640\) 0 0
\(641\) −1.50000 2.59808i −0.0592464 0.102618i 0.834881 0.550431i \(-0.185536\pi\)
−0.894127 + 0.447813i \(0.852203\pi\)
\(642\) 0 0
\(643\) −1.00000 1.73205i −0.0394362 0.0683054i 0.845634 0.533764i \(-0.179223\pi\)
−0.885070 + 0.465458i \(0.845890\pi\)
\(644\) −12.0000 20.7846i −0.472866 0.819028i
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) −13.5000 23.3827i −0.529921 0.917851i
\(650\) 0 0
\(651\) −5.00000 8.66025i −0.195965 0.339422i
\(652\) −22.0000 + 38.1051i −0.861586 + 1.49231i
\(653\) 12.0000 0.469596 0.234798 0.972044i \(-0.424557\pi\)
0.234798 + 0.972044i \(0.424557\pi\)
\(654\) 0 0
\(655\) −6.00000 + 10.3923i −0.234439 + 0.406061i
\(656\) 12.0000 20.7846i 0.468521 0.811503i
\(657\) −4.00000 −0.156055
\(658\) 0 0
\(659\) −18.0000 + 31.1769i −0.701180 + 1.21448i 0.266872 + 0.963732i \(0.414010\pi\)
−0.968052 + 0.250748i \(0.919323\pi\)
\(660\) −3.00000 5.19615i −0.116775 0.202260i
\(661\) −20.5000 + 35.5070i −0.797358 + 1.38106i 0.123974 + 0.992286i \(0.460436\pi\)
−0.921331 + 0.388778i \(0.872897\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.00000 + 3.46410i 0.310227 + 0.134332i
\(666\) 0 0
\(667\) 9.00000 + 15.5885i 0.348481 + 0.603587i
\(668\) −6.00000 10.3923i −0.232147 0.402090i
\(669\) 5.00000 8.66025i 0.193311 0.334825i
\(670\) 0 0
\(671\) −10.5000 + 18.1865i −0.405348 + 0.702083i
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) 0 0
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) −6.00000 −0.230769
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) 10.0000 + 17.3205i 0.383765 + 0.664700i
\(680\) 0 0
\(681\) 12.0000 + 20.7846i 0.459841 + 0.796468i
\(682\) 0 0
\(683\) 30.0000 1.14792 0.573959 0.818884i \(-0.305407\pi\)
0.573959 + 0.818884i \(0.305407\pi\)
\(684\) −8.00000 3.46410i −0.305888 0.132453i
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) 9.50000 + 16.4545i 0.362448 + 0.627778i
\(688\) 8.00000 13.8564i 0.304997 0.528271i
\(689\) −12.0000 20.7846i −0.457164 0.791831i
\(690\) 0 0
\(691\) 35.0000 1.33146 0.665731 0.746191i \(-0.268120\pi\)
0.665731 + 0.746191i \(0.268120\pi\)
\(692\) −12.0000 −0.456172
\(693\) 3.00000 5.19615i 0.113961 0.197386i
\(694\) 0 0
\(695\) 20.0000 0.758643
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 12.0000 20.7846i 0.453882 0.786146i
\(700\) 2.00000 + 3.46410i 0.0755929 + 0.130931i
\(701\) 15.0000 + 25.9808i 0.566542 + 0.981280i 0.996904 + 0.0786236i \(0.0250525\pi\)
−0.430362 + 0.902656i \(0.641614\pi\)
\(702\) 0 0
\(703\) −28.0000 + 20.7846i −1.05604 + 0.783906i
\(704\) 24.0000 0.904534
\(705\) −3.00000 5.19615i −0.112987 0.195698i
\(706\) 0 0
\(707\) 15.0000 25.9808i 0.564133 0.977107i
\(708\) −9.00000 15.5885i −0.338241 0.585850i
\(709\) −20.5000 + 35.5070i −0.769894 + 1.33349i 0.167727 + 0.985834i \(0.446357\pi\)
−0.937620 + 0.347661i \(0.886976\pi\)
\(710\) 0 0
\(711\) −7.00000 −0.262521
\(712\) 0 0
\(713\) 15.0000 25.9808i 0.561754 0.972987i
\(714\) 0 0
\(715\) 12.0000 0.448775
\(716\) 21.0000 36.3731i 0.784807 1.35933i
\(717\) −7.50000 12.9904i −0.280093 0.485135i
\(718\) 0 0
\(719\) −10.5000 18.1865i −0.391584 0.678243i 0.601075 0.799193i \(-0.294739\pi\)
−0.992659 + 0.120950i \(0.961406\pi\)
\(720\) −2.00000 3.46410i −0.0745356 0.129099i
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 17.0000 0.632237
\(724\) 2.00000 + 3.46410i 0.0743294 + 0.128742i
\(725\) −1.50000 2.59808i −0.0557086 0.0964901i
\(726\) 0 0
\(727\) −19.0000 32.9090i −0.704671 1.22053i −0.966810 0.255496i \(-0.917761\pi\)
0.262139 0.965030i \(-0.415572\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) −7.00000 + 12.1244i −0.258727 + 0.448129i
\(733\) 32.0000 1.18195 0.590973 0.806691i \(-0.298744\pi\)
0.590973 + 0.806691i \(0.298744\pi\)
\(734\) 0 0
\(735\) 1.50000 2.59808i 0.0553283 0.0958315i
\(736\) 0 0
\(737\) 3.00000 5.19615i 0.110506 0.191403i
\(738\) 0 0
\(739\) −5.50000 9.52628i −0.202321 0.350430i 0.746955 0.664875i \(-0.231515\pi\)
−0.949276 + 0.314445i \(0.898182\pi\)
\(740\) −16.0000 −0.588172
\(741\) 14.0000 10.3923i 0.514303 0.381771i
\(742\) 0 0
\(743\) −12.0000 20.7846i −0.440237 0.762513i 0.557470 0.830197i \(-0.311772\pi\)
−0.997707 + 0.0676840i \(0.978439\pi\)
\(744\) 0 0
\(745\) −4.50000 + 7.79423i −0.164867 + 0.285558i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −36.0000 −1.31541
\(750\) 0 0
\(751\) 3.50000 6.06218i 0.127717 0.221212i −0.795075 0.606511i \(-0.792568\pi\)
0.922792 + 0.385299i \(0.125902\pi\)
\(752\) 24.0000 0.875190
\(753\) 15.0000 0.546630
\(754\) 0 0
\(755\) 9.50000 + 16.4545i 0.345740 + 0.598840i
\(756\) 2.00000 3.46410i 0.0727393 0.125988i
\(757\) −16.0000 27.7128i −0.581530 1.00724i −0.995298 0.0968571i \(-0.969121\pi\)
0.413768 0.910382i \(-0.364212\pi\)
\(758\) 0 0
\(759\) 18.0000 0.653359
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) −11.0000 19.0526i −0.398227 0.689749i
\(764\) −21.0000 + 36.3731i −0.759753 + 1.31593i
\(765\) 0 0
\(766\) 0 0
\(767\) 36.0000 1.29988
\(768\) 16.0000 0.577350
\(769\) −20.5000 + 35.5070i −0.739249 + 1.28042i 0.213585 + 0.976924i \(0.431486\pi\)
−0.952834 + 0.303492i \(0.901847\pi\)
\(770\) 0 0
\(771\) 24.0000 0.864339
\(772\) −28.0000 −1.00774
\(773\) 9.00000 15.5885i 0.323708 0.560678i −0.657542 0.753418i \(-0.728404\pi\)
0.981250 + 0.192740i \(0.0617373\pi\)
\(774\) 0 0
\(775\) −2.50000 + 4.33013i −0.0898027 + 0.155543i
\(776\) 0 0
\(777\) −8.00000 13.8564i −0.286998 0.497096i
\(778\) 0 0
\(779\) −24.0000 10.3923i −0.859889 0.372343i
\(780\) 8.00000 0.286446
\(781\) −13.5000 23.3827i −0.483068 0.836698i
\(782\) 0 0
\(783\) −1.50000 + 2.59808i −0.0536056 + 0.0928477i
\(784\) 6.00000 + 10.3923i 0.214286 + 0.371154i
\(785\) 8.00000 13.8564i 0.285532 0.494556i
\(786\) 0 0
\(787\) −46.0000 −1.63972 −0.819861 0.572562i \(-0.805950\pi\)
−0.819861 + 0.572562i \(0.805950\pi\)
\(788\) 0 0
\(789\) −6.00000 + 10.3923i −0.213606 + 0.369976i
\(790\) 0 0
\(791\) 36.0000 1.28001
\(792\) 0 0
\(793\) −14.0000 24.2487i −0.497155 0.861097i
\(794\) 0 0
\(795\) 3.00000 + 5.19615i 0.106399 + 0.184289i
\(796\) 5.00000 + 8.66025i 0.177220 + 0.306955i
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −1.50000 2.59808i −0.0529999 0.0917985i
\(802\) 0 0
\(803\) −6.00000 10.3923i −0.211735 0.366736i
\(804\) 2.00000 3.46410i 0.0705346 0.122169i
\(805\) −12.0000 −0.422944
\(806\) 0 0
\(807\) 13.5000 23.3827i 0.475223 0.823110i
\(808\) 0 0
\(809\) −45.0000 −1.58212 −0.791058 0.611741i \(-0.790469\pi\)
−0.791058 + 0.611741i \(0.790469\pi\)
\(810\) 0 0
\(811\) 3.50000 6.06218i 0.122902 0.212872i −0.798009 0.602645i \(-0.794113\pi\)
0.920911 + 0.389774i \(0.127447\pi\)
\(812\) 6.00000 + 10.3923i 0.210559 + 0.364698i
\(813\) 12.5000 21.6506i 0.438394 0.759321i
\(814\) 0 0
\(815\) 11.0000 + 19.0526i 0.385313 + 0.667382i
\(816\) 0 0
\(817\) −16.0000 6.92820i −0.559769 0.242387i
\(818\) 0 0
\(819\) 4.00000 + 6.92820i 0.139771 + 0.242091i
\(820\) −6.00000 10.3923i −0.209529 0.362915i
\(821\) −13.5000 + 23.3827i −0.471153 + 0.816061i −0.999456 0.0329950i \(-0.989495\pi\)
0.528302 + 0.849056i \(0.322829\pi\)
\(822\) 0 0
\(823\) 11.0000 19.0526i 0.383436 0.664130i −0.608115 0.793849i \(-0.708074\pi\)
0.991551 + 0.129719i \(0.0414074\pi\)
\(824\) 0 0
\(825\) −3.00000 −0.104447
\(826\) 0 0
\(827\) 15.0000 25.9808i 0.521601 0.903440i −0.478083 0.878315i \(-0.658668\pi\)
0.999684 0.0251251i \(-0.00799840\pi\)
\(828\) 12.0000 0.417029
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) 14.0000 + 24.2487i 0.485655 + 0.841178i
\(832\) −16.0000 + 27.7128i −0.554700 + 0.960769i
\(833\) 0 0
\(834\) 0 0
\(835\) −6.00000 −0.207639
\(836\) −3.00000 25.9808i −0.103757 0.898563i
\(837\) 5.00000 0.172825
\(838\) 0 0
\(839\) 12.0000 + 20.7846i 0.414286 + 0.717564i 0.995353 0.0962912i \(-0.0306980\pi\)
−0.581067 + 0.813856i \(0.697365\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 0 0
\(843\) −18.0000 −0.619953
\(844\) −34.0000 −1.17033
\(845\) −1.50000 + 2.59808i −0.0516016 + 0.0893765i
\(846\) 0 0
\(847\) −4.00000 −0.137442
\(848\) −24.0000 −0.824163
\(849\) 2.00000 3.46410i 0.0686398 0.118888i
\(850\) 0 0
\(851\) 24.0000 41.5692i 0.822709 1.42497i
\(852\) −9.00000 15.5885i −0.308335 0.534052i
\(853\) −7.00000 12.1244i −0.239675 0.415130i 0.720946 0.692992i \(-0.243708\pi\)
−0.960621 + 0.277862i \(0.910374\pi\)
\(854\) 0 0
\(855\) −3.50000 + 2.59808i −0.119697 + 0.0888523i
\(856\) 0 0
\(857\) 24.0000 + 41.5692i 0.819824 + 1.41998i 0.905811 + 0.423681i \(0.139262\pi\)
−0.0859870 + 0.996296i \(0.527404\pi\)
\(858\) 0 0
\(859\) 21.5000 37.2391i 0.733571 1.27058i −0.221777 0.975097i \(-0.571186\pi\)
0.955348 0.295484i \(-0.0954809\pi\)
\(860\) −4.00000 6.92820i −0.136399 0.236250i
\(861\) 6.00000 10.3923i 0.204479 0.354169i
\(862\) 0 0
\(863\) −18.0000 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(864\) 0 0
\(865\) −3.00000 + 5.19615i −0.102003 + 0.176674i
\(866\) 0 0
\(867\) −17.0000 −0.577350
\(868\) 10.0000 17.3205i 0.339422 0.587896i
\(869\) −10.5000 18.1865i −0.356188 0.616936i
\(870\) 0 0
\(871\) 4.00000 + 6.92820i 0.135535 + 0.234753i
\(872\) 0 0
\(873\) −10.0000 −0.338449
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) −4.00000 6.92820i −0.135147 0.234082i
\(877\) −25.0000 43.3013i −0.844190 1.46218i −0.886323 0.463068i \(-0.846749\pi\)
0.0421327 0.999112i \(-0.486585\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 6.00000 10.3923i 0.202260 0.350325i
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) −22.0000 + 38.1051i −0.740359 + 1.28234i 0.211973 + 0.977276i \(0.432011\pi\)
−0.952332 + 0.305064i \(0.901322\pi\)
\(884\) 0 0
\(885\) −9.00000 −0.302532
\(886\) 0 0
\(887\) 6.00000 10.3923i 0.201460 0.348939i −0.747539 0.664218i \(-0.768765\pi\)
0.948999 + 0.315279i \(0.102098\pi\)
\(888\) 0 0
\(889\) −2.00000 + 3.46410i −0.0670778 + 0.116182i
\(890\) 0 0
\(891\) 1.50000 + 2.59808i 0.0502519 + 0.0870388i
\(892\) 20.0000 0.669650
\(893\) −3.00000 25.9808i −0.100391 0.869413i
\(894\) 0 0
\(895\) −10.5000 18.1865i −0.350976 0.607909i
\(896\) 0 0
\(897\) −12.0000 + 20.7846i −0.400668 + 0.693978i
\(898\) 0 0
\(899\) −7.50000 + 12.9904i −0.250139 + 0.433253i
\(900\) −2.00000 −0.0666667
\(901\) 0 0
\(902\) 0 0
\(903\) 4.00000 6.92820i 0.133112 0.230556i
\(904\) 0 0
\(905\) 2.00000 0.0664822
\(906\) 0 0
\(907\) −4.00000 6.92820i −0.132818 0.230047i 0.791944 0.610594i \(-0.209069\pi\)
−0.924762 + 0.380547i \(0.875736\pi\)
\(908\) −24.0000 + 41.5692i −0.796468 + 1.37952i
\(909\) 7.50000 + 12.9904i 0.248759 + 0.430864i
\(910\) 0 0
\(911\) −45.0000 −1.49092 −0.745458 0.666552i \(-0.767769\pi\)
−0.745458 + 0.666552i \(0.767769\pi\)
\(912\) −2.00000 17.3205i −0.0662266 0.573539i
\(913\) 0 0
\(914\) 0 0
\(915\) 3.50000 + 6.06218i 0.115706 + 0.200409i
\(916\) −19.0000 + 32.9090i −0.627778 + 1.08734i
\(917\) −12.0000 20.7846i −0.396275 0.686368i
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) 8.00000 13.8564i 0.263609 0.456584i
\(922\) 0 0
\(923\) 36.0000 1.18495
\(924\) 12.0000 0.394771
\(925\) −4.00000 + 6.92820i −0.131519 + 0.227798i
\(926\) 0 0
\(927\) −4.00000 + 6.92820i −0.131377 + 0.227552i
\(928\) 0 0
\(929\) −28.5000 49.3634i −0.935055 1.61956i −0.774536 0.632529i \(-0.782017\pi\)
−0.160518 0.987033i \(-0.551317\pi\)
\(930\) 0 0
\(931\) 10.5000 7.79423i 0.344124 0.255446i
\(932\) 48.0000 1.57229
\(933\) 12.0000 + 20.7846i 0.392862 + 0.680458i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 17.0000 29.4449i 0.555366 0.961922i −0.442509 0.896764i \(-0.645912\pi\)
0.997875 0.0651578i \(-0.0207551\pi\)
\(938\) 0 0
\(939\) −10.0000 −0.326338
\(940\) 6.00000 10.3923i 0.195698 0.338960i
\(941\) 1.50000 2.59808i 0.0488986 0.0846949i −0.840540 0.541749i \(-0.817762\pi\)
0.889439 + 0.457054i \(0.151096\pi\)
\(942\) 0 0
\(943\) 36.0000 1.17232
\(944\) 18.0000 31.1769i 0.585850 1.01472i
\(945\) −1.00000 1.73205i −0.0325300 0.0563436i
\(946\) 0 0
\(947\) 15.0000 + 25.9808i 0.487435 + 0.844261i 0.999896 0.0144491i \(-0.00459946\pi\)
−0.512461 + 0.858710i \(0.671266\pi\)
\(948\) −7.00000 12.1244i −0.227349 0.393781i
\(949\) 16.0000 0.519382
\(950\) 0 0
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) 24.0000 + 41.5692i 0.777436 + 1.34656i 0.933415 + 0.358799i \(0.116814\pi\)
−0.155979 + 0.987760i \(0.549853\pi\)
\(954\) 0 0
\(955\) 10.5000 + 18.1865i 0.339772 + 0.588502i
\(956\) 15.0000 25.9808i 0.485135 0.840278i
\(957\) −9.00000 −0.290929
\(958\) 0 0
\(959\) 18.0000 31.1769i 0.581250 1.00676i
\(960\) 4.00000 6.92820i 0.129099 0.223607i
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 9.00000 15.5885i 0.290021 0.502331i
\(964\) 17.0000 + 29.4449i 0.547533 + 0.948355i
\(965\) −7.00000 + 12.1244i −0.225338 + 0.390297i
\(966\) 0 0
\(967\) 5.00000 + 8.66025i 0.160789 + 0.278495i 0.935152 0.354247i \(-0.115263\pi\)
−0.774363 + 0.632742i \(0.781929\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −30.0000 51.9615i −0.962746 1.66752i −0.715553 0.698558i \(-0.753825\pi\)
−0.247193 0.968966i \(-0.579508\pi\)
\(972\) 1.00000 + 1.73205i 0.0320750 + 0.0555556i
\(973\) −20.0000 + 34.6410i −0.641171 + 1.11054i
\(974\) 0 0
\(975\) 2.00000 3.46410i 0.0640513 0.110940i
\(976\) −28.0000 −0.896258
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) 4.50000 7.79423i 0.143821 0.249105i
\(980\) 6.00000 0.191663
\(981\) 11.0000 0.351203
\(982\) 0 0
\(983\) 9.00000 + 15.5885i 0.287055 + 0.497195i 0.973106 0.230360i \(-0.0739903\pi\)
−0.686050 + 0.727554i \(0.740657\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 12.0000 0.381964
\(988\) 32.0000 + 13.8564i 1.01806 + 0.440831i
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −16.0000 27.7128i −0.508257 0.880327i −0.999954 0.00956046i \(-0.996957\pi\)
0.491698 0.870766i \(-0.336377\pi\)
\(992\) 0 0
\(993\) −10.0000 17.3205i −0.317340 0.549650i
\(994\) 0 0
\(995\) 5.00000 0.158511
\(996\) 0 0
\(997\) −25.0000 + 43.3013i −0.791758 + 1.37136i 0.133120 + 0.991100i \(0.457501\pi\)
−0.924878 + 0.380265i \(0.875833\pi\)
\(998\) 0 0
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.2.i.b.121.1 yes 2
3.2 odd 2 855.2.k.c.406.1 2
19.7 even 3 5415.2.a.g.1.1 1
19.11 even 3 inner 285.2.i.b.106.1 2
19.12 odd 6 5415.2.a.f.1.1 1
57.11 odd 6 855.2.k.c.676.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.b.106.1 2 19.11 even 3 inner
285.2.i.b.121.1 yes 2 1.1 even 1 trivial
855.2.k.c.406.1 2 3.2 odd 2
855.2.k.c.676.1 2 57.11 odd 6
5415.2.a.f.1.1 1 19.12 odd 6
5415.2.a.g.1.1 1 19.7 even 3