Properties

Label 285.2.i.a.121.1
Level $285$
Weight $2$
Character 285.121
Analytic conductor $2.276$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,2,Mod(106,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.27573645761\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 285.121
Dual form 285.2.i.a.106.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-1.00000 + 1.73205i) q^{6} -2.00000 q^{7} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-1.00000 - 1.73205i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-1.00000 + 1.73205i) q^{6} -2.00000 q^{7} +(-0.500000 + 0.866025i) q^{9} +(1.00000 - 1.73205i) q^{10} -3.00000 q^{11} +2.00000 q^{12} +(-3.00000 + 5.19615i) q^{13} +(2.00000 + 3.46410i) q^{14} +(0.500000 - 0.866025i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-3.00000 - 5.19615i) q^{17} +2.00000 q^{18} +(-3.50000 + 2.59808i) q^{19} -2.00000 q^{20} +(1.00000 + 1.73205i) q^{21} +(3.00000 + 5.19615i) q^{22} +(4.00000 - 6.92820i) q^{23} +(-0.500000 + 0.866025i) q^{25} +12.0000 q^{26} +1.00000 q^{27} +(2.00000 - 3.46410i) q^{28} +(-3.50000 + 6.06218i) q^{29} -2.00000 q^{30} +9.00000 q^{31} +(4.00000 - 6.92820i) q^{32} +(1.50000 + 2.59808i) q^{33} +(-6.00000 + 10.3923i) q^{34} +(-1.00000 - 1.73205i) q^{35} +(-1.00000 - 1.73205i) q^{36} -2.00000 q^{37} +(8.00000 + 3.46410i) q^{38} +6.00000 q^{39} +(-3.00000 - 5.19615i) q^{41} +(2.00000 - 3.46410i) q^{42} +(-5.00000 - 8.66025i) q^{43} +(3.00000 - 5.19615i) q^{44} -1.00000 q^{45} -16.0000 q^{46} +(-2.00000 + 3.46410i) q^{47} +(2.00000 - 3.46410i) q^{48} -3.00000 q^{49} +2.00000 q^{50} +(-3.00000 + 5.19615i) q^{51} +(-6.00000 - 10.3923i) q^{52} +(-7.00000 + 12.1244i) q^{53} +(-1.00000 - 1.73205i) q^{54} +(-1.50000 - 2.59808i) q^{55} +(4.00000 + 1.73205i) q^{57} +14.0000 q^{58} +(-1.50000 - 2.59808i) q^{59} +(1.00000 + 1.73205i) q^{60} +(3.50000 - 6.06218i) q^{61} +(-9.00000 - 15.5885i) q^{62} +(1.00000 - 1.73205i) q^{63} -8.00000 q^{64} -6.00000 q^{65} +(3.00000 - 5.19615i) q^{66} +(-2.00000 + 3.46410i) q^{67} +12.0000 q^{68} -8.00000 q^{69} +(-2.00000 + 3.46410i) q^{70} +(-3.50000 - 6.06218i) q^{71} +(-1.00000 - 1.73205i) q^{73} +(2.00000 + 3.46410i) q^{74} +1.00000 q^{75} +(-1.00000 - 8.66025i) q^{76} +6.00000 q^{77} +(-6.00000 - 10.3923i) q^{78} +(-2.50000 - 4.33013i) q^{79} +(-2.00000 + 3.46410i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-6.00000 + 10.3923i) q^{82} -6.00000 q^{83} -4.00000 q^{84} +(3.00000 - 5.19615i) q^{85} +(-10.0000 + 17.3205i) q^{86} +7.00000 q^{87} +(-1.50000 + 2.59808i) q^{89} +(1.00000 + 1.73205i) q^{90} +(6.00000 - 10.3923i) q^{91} +(8.00000 + 13.8564i) q^{92} +(-4.50000 - 7.79423i) q^{93} +8.00000 q^{94} +(-4.00000 - 1.73205i) q^{95} -8.00000 q^{96} +(6.00000 + 10.3923i) q^{97} +(3.00000 + 5.19615i) q^{98} +(1.50000 - 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - q^{3} - 2 q^{4} + q^{5} - 2 q^{6} - 4 q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - q^{3} - 2 q^{4} + q^{5} - 2 q^{6} - 4 q^{7} - q^{9} + 2 q^{10} - 6 q^{11} + 4 q^{12} - 6 q^{13} + 4 q^{14} + q^{15} + 4 q^{16} - 6 q^{17} + 4 q^{18} - 7 q^{19} - 4 q^{20} + 2 q^{21} + 6 q^{22} + 8 q^{23} - q^{25} + 24 q^{26} + 2 q^{27} + 4 q^{28} - 7 q^{29} - 4 q^{30} + 18 q^{31} + 8 q^{32} + 3 q^{33} - 12 q^{34} - 2 q^{35} - 2 q^{36} - 4 q^{37} + 16 q^{38} + 12 q^{39} - 6 q^{41} + 4 q^{42} - 10 q^{43} + 6 q^{44} - 2 q^{45} - 32 q^{46} - 4 q^{47} + 4 q^{48} - 6 q^{49} + 4 q^{50} - 6 q^{51} - 12 q^{52} - 14 q^{53} - 2 q^{54} - 3 q^{55} + 8 q^{57} + 28 q^{58} - 3 q^{59} + 2 q^{60} + 7 q^{61} - 18 q^{62} + 2 q^{63} - 16 q^{64} - 12 q^{65} + 6 q^{66} - 4 q^{67} + 24 q^{68} - 16 q^{69} - 4 q^{70} - 7 q^{71} - 2 q^{73} + 4 q^{74} + 2 q^{75} - 2 q^{76} + 12 q^{77} - 12 q^{78} - 5 q^{79} - 4 q^{80} - q^{81} - 12 q^{82} - 12 q^{83} - 8 q^{84} + 6 q^{85} - 20 q^{86} + 14 q^{87} - 3 q^{89} + 2 q^{90} + 12 q^{91} + 16 q^{92} - 9 q^{93} + 16 q^{94} - 8 q^{95} - 16 q^{96} + 12 q^{97} + 6 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) −1.00000 + 1.73205i −0.408248 + 0.707107i
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 1.00000 1.73205i 0.316228 0.547723i
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 2.00000 0.577350
\(13\) −3.00000 + 5.19615i −0.832050 + 1.44115i 0.0643593 + 0.997927i \(0.479500\pi\)
−0.896410 + 0.443227i \(0.853834\pi\)
\(14\) 2.00000 + 3.46410i 0.534522 + 0.925820i
\(15\) 0.500000 0.866025i 0.129099 0.223607i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −3.00000 5.19615i −0.727607 1.26025i −0.957892 0.287129i \(-0.907299\pi\)
0.230285 0.973123i \(-0.426034\pi\)
\(18\) 2.00000 0.471405
\(19\) −3.50000 + 2.59808i −0.802955 + 0.596040i
\(20\) −2.00000 −0.447214
\(21\) 1.00000 + 1.73205i 0.218218 + 0.377964i
\(22\) 3.00000 + 5.19615i 0.639602 + 1.10782i
\(23\) 4.00000 6.92820i 0.834058 1.44463i −0.0607377 0.998154i \(-0.519345\pi\)
0.894795 0.446476i \(-0.147321\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 12.0000 2.35339
\(27\) 1.00000 0.192450
\(28\) 2.00000 3.46410i 0.377964 0.654654i
\(29\) −3.50000 + 6.06218i −0.649934 + 1.12572i 0.333205 + 0.942855i \(0.391870\pi\)
−0.983138 + 0.182864i \(0.941463\pi\)
\(30\) −2.00000 −0.365148
\(31\) 9.00000 1.61645 0.808224 0.588875i \(-0.200429\pi\)
0.808224 + 0.588875i \(0.200429\pi\)
\(32\) 4.00000 6.92820i 0.707107 1.22474i
\(33\) 1.50000 + 2.59808i 0.261116 + 0.452267i
\(34\) −6.00000 + 10.3923i −1.02899 + 1.78227i
\(35\) −1.00000 1.73205i −0.169031 0.292770i
\(36\) −1.00000 1.73205i −0.166667 0.288675i
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 8.00000 + 3.46410i 1.29777 + 0.561951i
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) −3.00000 5.19615i −0.468521 0.811503i 0.530831 0.847477i \(-0.321880\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) 2.00000 3.46410i 0.308607 0.534522i
\(43\) −5.00000 8.66025i −0.762493 1.32068i −0.941562 0.336840i \(-0.890642\pi\)
0.179069 0.983836i \(-0.442691\pi\)
\(44\) 3.00000 5.19615i 0.452267 0.783349i
\(45\) −1.00000 −0.149071
\(46\) −16.0000 −2.35907
\(47\) −2.00000 + 3.46410i −0.291730 + 0.505291i −0.974219 0.225605i \(-0.927564\pi\)
0.682489 + 0.730896i \(0.260898\pi\)
\(48\) 2.00000 3.46410i 0.288675 0.500000i
\(49\) −3.00000 −0.428571
\(50\) 2.00000 0.282843
\(51\) −3.00000 + 5.19615i −0.420084 + 0.727607i
\(52\) −6.00000 10.3923i −0.832050 1.44115i
\(53\) −7.00000 + 12.1244i −0.961524 + 1.66541i −0.242846 + 0.970065i \(0.578081\pi\)
−0.718677 + 0.695344i \(0.755252\pi\)
\(54\) −1.00000 1.73205i −0.136083 0.235702i
\(55\) −1.50000 2.59808i −0.202260 0.350325i
\(56\) 0 0
\(57\) 4.00000 + 1.73205i 0.529813 + 0.229416i
\(58\) 14.0000 1.83829
\(59\) −1.50000 2.59808i −0.195283 0.338241i 0.751710 0.659494i \(-0.229229\pi\)
−0.946993 + 0.321253i \(0.895896\pi\)
\(60\) 1.00000 + 1.73205i 0.129099 + 0.223607i
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) −9.00000 15.5885i −1.14300 1.97974i
\(63\) 1.00000 1.73205i 0.125988 0.218218i
\(64\) −8.00000 −1.00000
\(65\) −6.00000 −0.744208
\(66\) 3.00000 5.19615i 0.369274 0.639602i
\(67\) −2.00000 + 3.46410i −0.244339 + 0.423207i −0.961946 0.273241i \(-0.911904\pi\)
0.717607 + 0.696449i \(0.245238\pi\)
\(68\) 12.0000 1.45521
\(69\) −8.00000 −0.963087
\(70\) −2.00000 + 3.46410i −0.239046 + 0.414039i
\(71\) −3.50000 6.06218i −0.415374 0.719448i 0.580094 0.814550i \(-0.303016\pi\)
−0.995468 + 0.0951014i \(0.969682\pi\)
\(72\) 0 0
\(73\) −1.00000 1.73205i −0.117041 0.202721i 0.801553 0.597924i \(-0.204008\pi\)
−0.918594 + 0.395203i \(0.870674\pi\)
\(74\) 2.00000 + 3.46410i 0.232495 + 0.402694i
\(75\) 1.00000 0.115470
\(76\) −1.00000 8.66025i −0.114708 0.993399i
\(77\) 6.00000 0.683763
\(78\) −6.00000 10.3923i −0.679366 1.17670i
\(79\) −2.50000 4.33013i −0.281272 0.487177i 0.690426 0.723403i \(-0.257423\pi\)
−0.971698 + 0.236225i \(0.924090\pi\)
\(80\) −2.00000 + 3.46410i −0.223607 + 0.387298i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −6.00000 + 10.3923i −0.662589 + 1.14764i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) −4.00000 −0.436436
\(85\) 3.00000 5.19615i 0.325396 0.563602i
\(86\) −10.0000 + 17.3205i −1.07833 + 1.86772i
\(87\) 7.00000 0.750479
\(88\) 0 0
\(89\) −1.50000 + 2.59808i −0.159000 + 0.275396i −0.934508 0.355942i \(-0.884160\pi\)
0.775509 + 0.631337i \(0.217494\pi\)
\(90\) 1.00000 + 1.73205i 0.105409 + 0.182574i
\(91\) 6.00000 10.3923i 0.628971 1.08941i
\(92\) 8.00000 + 13.8564i 0.834058 + 1.44463i
\(93\) −4.50000 7.79423i −0.466628 0.808224i
\(94\) 8.00000 0.825137
\(95\) −4.00000 1.73205i −0.410391 0.177705i
\(96\) −8.00000 −0.816497
\(97\) 6.00000 + 10.3923i 0.609208 + 1.05518i 0.991371 + 0.131084i \(0.0418458\pi\)
−0.382164 + 0.924095i \(0.624821\pi\)
\(98\) 3.00000 + 5.19615i 0.303046 + 0.524891i
\(99\) 1.50000 2.59808i 0.150756 0.261116i
\(100\) −1.00000 1.73205i −0.100000 0.173205i
\(101\) 1.50000 2.59808i 0.149256 0.258518i −0.781697 0.623658i \(-0.785646\pi\)
0.930953 + 0.365140i \(0.118979\pi\)
\(102\) 12.0000 1.18818
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) −1.00000 + 1.73205i −0.0975900 + 0.169031i
\(106\) 28.0000 2.71960
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) −1.00000 + 1.73205i −0.0962250 + 0.166667i
\(109\) −1.50000 2.59808i −0.143674 0.248851i 0.785203 0.619238i \(-0.212558\pi\)
−0.928877 + 0.370387i \(0.879225\pi\)
\(110\) −3.00000 + 5.19615i −0.286039 + 0.495434i
\(111\) 1.00000 + 1.73205i 0.0949158 + 0.164399i
\(112\) −4.00000 6.92820i −0.377964 0.654654i
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) −1.00000 8.66025i −0.0936586 0.811107i
\(115\) 8.00000 0.746004
\(116\) −7.00000 12.1244i −0.649934 1.12572i
\(117\) −3.00000 5.19615i −0.277350 0.480384i
\(118\) −3.00000 + 5.19615i −0.276172 + 0.478345i
\(119\) 6.00000 + 10.3923i 0.550019 + 0.952661i
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −14.0000 −1.26750
\(123\) −3.00000 + 5.19615i −0.270501 + 0.468521i
\(124\) −9.00000 + 15.5885i −0.808224 + 1.39988i
\(125\) −1.00000 −0.0894427
\(126\) −4.00000 −0.356348
\(127\) 4.00000 6.92820i 0.354943 0.614779i −0.632166 0.774833i \(-0.717834\pi\)
0.987108 + 0.160055i \(0.0511671\pi\)
\(128\) 0 0
\(129\) −5.00000 + 8.66025i −0.440225 + 0.762493i
\(130\) 6.00000 + 10.3923i 0.526235 + 0.911465i
\(131\) 4.00000 + 6.92820i 0.349482 + 0.605320i 0.986157 0.165812i \(-0.0530244\pi\)
−0.636676 + 0.771132i \(0.719691\pi\)
\(132\) −6.00000 −0.522233
\(133\) 7.00000 5.19615i 0.606977 0.450564i
\(134\) 8.00000 0.691095
\(135\) 0.500000 + 0.866025i 0.0430331 + 0.0745356i
\(136\) 0 0
\(137\) −1.00000 + 1.73205i −0.0854358 + 0.147979i −0.905577 0.424182i \(-0.860562\pi\)
0.820141 + 0.572161i \(0.193895\pi\)
\(138\) 8.00000 + 13.8564i 0.681005 + 1.17954i
\(139\) 2.00000 3.46410i 0.169638 0.293821i −0.768655 0.639664i \(-0.779074\pi\)
0.938293 + 0.345843i \(0.112407\pi\)
\(140\) 4.00000 0.338062
\(141\) 4.00000 0.336861
\(142\) −7.00000 + 12.1244i −0.587427 + 1.01745i
\(143\) 9.00000 15.5885i 0.752618 1.30357i
\(144\) −4.00000 −0.333333
\(145\) −7.00000 −0.581318
\(146\) −2.00000 + 3.46410i −0.165521 + 0.286691i
\(147\) 1.50000 + 2.59808i 0.123718 + 0.214286i
\(148\) 2.00000 3.46410i 0.164399 0.284747i
\(149\) 1.50000 + 2.59808i 0.122885 + 0.212843i 0.920904 0.389789i \(-0.127452\pi\)
−0.798019 + 0.602632i \(0.794119\pi\)
\(150\) −1.00000 1.73205i −0.0816497 0.141421i
\(151\) 5.00000 0.406894 0.203447 0.979086i \(-0.434786\pi\)
0.203447 + 0.979086i \(0.434786\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) −6.00000 10.3923i −0.483494 0.837436i
\(155\) 4.50000 + 7.79423i 0.361449 + 0.626048i
\(156\) −6.00000 + 10.3923i −0.480384 + 0.832050i
\(157\) 10.0000 + 17.3205i 0.798087 + 1.38233i 0.920860 + 0.389892i \(0.127488\pi\)
−0.122774 + 0.992435i \(0.539179\pi\)
\(158\) −5.00000 + 8.66025i −0.397779 + 0.688973i
\(159\) 14.0000 1.11027
\(160\) 8.00000 0.632456
\(161\) −8.00000 + 13.8564i −0.630488 + 1.09204i
\(162\) −1.00000 + 1.73205i −0.0785674 + 0.136083i
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 12.0000 0.937043
\(165\) −1.50000 + 2.59808i −0.116775 + 0.202260i
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) −11.0000 + 19.0526i −0.851206 + 1.47433i 0.0289155 + 0.999582i \(0.490795\pi\)
−0.880121 + 0.474749i \(0.842539\pi\)
\(168\) 0 0
\(169\) −11.5000 19.9186i −0.884615 1.53220i
\(170\) −12.0000 −0.920358
\(171\) −0.500000 4.33013i −0.0382360 0.331133i
\(172\) 20.0000 1.52499
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) −7.00000 12.1244i −0.530669 0.919145i
\(175\) 1.00000 1.73205i 0.0755929 0.130931i
\(176\) −6.00000 10.3923i −0.452267 0.783349i
\(177\) −1.50000 + 2.59808i −0.112747 + 0.195283i
\(178\) 6.00000 0.449719
\(179\) 1.00000 0.0747435 0.0373718 0.999301i \(-0.488101\pi\)
0.0373718 + 0.999301i \(0.488101\pi\)
\(180\) 1.00000 1.73205i 0.0745356 0.129099i
\(181\) 7.00000 12.1244i 0.520306 0.901196i −0.479415 0.877588i \(-0.659151\pi\)
0.999721 0.0236082i \(-0.00751541\pi\)
\(182\) −24.0000 −1.77900
\(183\) −7.00000 −0.517455
\(184\) 0 0
\(185\) −1.00000 1.73205i −0.0735215 0.127343i
\(186\) −9.00000 + 15.5885i −0.659912 + 1.14300i
\(187\) 9.00000 + 15.5885i 0.658145 + 1.13994i
\(188\) −4.00000 6.92820i −0.291730 0.505291i
\(189\) −2.00000 −0.145479
\(190\) 1.00000 + 8.66025i 0.0725476 + 0.628281i
\(191\) −5.00000 −0.361787 −0.180894 0.983503i \(-0.557899\pi\)
−0.180894 + 0.983503i \(0.557899\pi\)
\(192\) 4.00000 + 6.92820i 0.288675 + 0.500000i
\(193\) 9.00000 + 15.5885i 0.647834 + 1.12208i 0.983639 + 0.180150i \(0.0576584\pi\)
−0.335805 + 0.941932i \(0.609008\pi\)
\(194\) 12.0000 20.7846i 0.861550 1.49225i
\(195\) 3.00000 + 5.19615i 0.214834 + 0.372104i
\(196\) 3.00000 5.19615i 0.214286 0.371154i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) −6.00000 −0.426401
\(199\) 5.50000 9.52628i 0.389885 0.675300i −0.602549 0.798082i \(-0.705848\pi\)
0.992434 + 0.122782i \(0.0391815\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) −6.00000 −0.422159
\(203\) 7.00000 12.1244i 0.491304 0.850963i
\(204\) −6.00000 10.3923i −0.420084 0.727607i
\(205\) 3.00000 5.19615i 0.209529 0.362915i
\(206\) 8.00000 + 13.8564i 0.557386 + 0.965422i
\(207\) 4.00000 + 6.92820i 0.278019 + 0.481543i
\(208\) −24.0000 −1.66410
\(209\) 10.5000 7.79423i 0.726300 0.539138i
\(210\) 4.00000 0.276026
\(211\) −6.50000 11.2583i −0.447478 0.775055i 0.550743 0.834675i \(-0.314345\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) −14.0000 24.2487i −0.961524 1.66541i
\(213\) −3.50000 + 6.06218i −0.239816 + 0.415374i
\(214\) −12.0000 20.7846i −0.820303 1.42081i
\(215\) 5.00000 8.66025i 0.340997 0.590624i
\(216\) 0 0
\(217\) −18.0000 −1.22192
\(218\) −3.00000 + 5.19615i −0.203186 + 0.351928i
\(219\) −1.00000 + 1.73205i −0.0675737 + 0.117041i
\(220\) 6.00000 0.404520
\(221\) 36.0000 2.42162
\(222\) 2.00000 3.46410i 0.134231 0.232495i
\(223\) −4.00000 6.92820i −0.267860 0.463947i 0.700449 0.713702i \(-0.252983\pi\)
−0.968309 + 0.249756i \(0.919650\pi\)
\(224\) −8.00000 + 13.8564i −0.534522 + 0.925820i
\(225\) −0.500000 0.866025i −0.0333333 0.0577350i
\(226\) −6.00000 10.3923i −0.399114 0.691286i
\(227\) 14.0000 0.929213 0.464606 0.885517i \(-0.346196\pi\)
0.464606 + 0.885517i \(0.346196\pi\)
\(228\) −7.00000 + 5.19615i −0.463586 + 0.344124i
\(229\) 29.0000 1.91637 0.958187 0.286143i \(-0.0923732\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) −8.00000 13.8564i −0.527504 0.913664i
\(231\) −3.00000 5.19615i −0.197386 0.341882i
\(232\) 0 0
\(233\) −8.00000 13.8564i −0.524097 0.907763i −0.999606 0.0280525i \(-0.991069\pi\)
0.475509 0.879711i \(-0.342264\pi\)
\(234\) −6.00000 + 10.3923i −0.392232 + 0.679366i
\(235\) −4.00000 −0.260931
\(236\) 6.00000 0.390567
\(237\) −2.50000 + 4.33013i −0.162392 + 0.281272i
\(238\) 12.0000 20.7846i 0.777844 1.34727i
\(239\) −9.00000 −0.582162 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(240\) 4.00000 0.258199
\(241\) −10.5000 + 18.1865i −0.676364 + 1.17150i 0.299704 + 0.954032i \(0.403112\pi\)
−0.976068 + 0.217465i \(0.930221\pi\)
\(242\) 2.00000 + 3.46410i 0.128565 + 0.222681i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 7.00000 + 12.1244i 0.448129 + 0.776182i
\(245\) −1.50000 2.59808i −0.0958315 0.165985i
\(246\) 12.0000 0.765092
\(247\) −3.00000 25.9808i −0.190885 1.65312i
\(248\) 0 0
\(249\) 3.00000 + 5.19615i 0.190117 + 0.329293i
\(250\) 1.00000 + 1.73205i 0.0632456 + 0.109545i
\(251\) −1.50000 + 2.59808i −0.0946792 + 0.163989i −0.909475 0.415759i \(-0.863516\pi\)
0.814795 + 0.579748i \(0.196849\pi\)
\(252\) 2.00000 + 3.46410i 0.125988 + 0.218218i
\(253\) −12.0000 + 20.7846i −0.754434 + 1.30672i
\(254\) −16.0000 −1.00393
\(255\) −6.00000 −0.375735
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −1.00000 + 1.73205i −0.0623783 + 0.108042i −0.895528 0.445005i \(-0.853202\pi\)
0.833150 + 0.553047i \(0.186535\pi\)
\(258\) 20.0000 1.24515
\(259\) 4.00000 0.248548
\(260\) 6.00000 10.3923i 0.372104 0.644503i
\(261\) −3.50000 6.06218i −0.216645 0.375239i
\(262\) 8.00000 13.8564i 0.494242 0.856052i
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) 0 0
\(265\) −14.0000 −0.860013
\(266\) −16.0000 6.92820i −0.981023 0.424795i
\(267\) 3.00000 0.183597
\(268\) −4.00000 6.92820i −0.244339 0.423207i
\(269\) −10.5000 18.1865i −0.640196 1.10885i −0.985389 0.170321i \(-0.945520\pi\)
0.345192 0.938532i \(-0.387814\pi\)
\(270\) 1.00000 1.73205i 0.0608581 0.105409i
\(271\) 2.50000 + 4.33013i 0.151864 + 0.263036i 0.931913 0.362682i \(-0.118139\pi\)
−0.780049 + 0.625719i \(0.784806\pi\)
\(272\) 12.0000 20.7846i 0.727607 1.26025i
\(273\) −12.0000 −0.726273
\(274\) 4.00000 0.241649
\(275\) 1.50000 2.59808i 0.0904534 0.156670i
\(276\) 8.00000 13.8564i 0.481543 0.834058i
\(277\) 16.0000 0.961347 0.480673 0.876900i \(-0.340392\pi\)
0.480673 + 0.876900i \(0.340392\pi\)
\(278\) −8.00000 −0.479808
\(279\) −4.50000 + 7.79423i −0.269408 + 0.466628i
\(280\) 0 0
\(281\) −7.00000 + 12.1244i −0.417585 + 0.723278i −0.995696 0.0926797i \(-0.970457\pi\)
0.578111 + 0.815958i \(0.303790\pi\)
\(282\) −4.00000 6.92820i −0.238197 0.412568i
\(283\) 13.0000 + 22.5167i 0.772770 + 1.33848i 0.936039 + 0.351895i \(0.114463\pi\)
−0.163270 + 0.986581i \(0.552204\pi\)
\(284\) 14.0000 0.830747
\(285\) 0.500000 + 4.33013i 0.0296174 + 0.256495i
\(286\) −36.0000 −2.12872
\(287\) 6.00000 + 10.3923i 0.354169 + 0.613438i
\(288\) 4.00000 + 6.92820i 0.235702 + 0.408248i
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 7.00000 + 12.1244i 0.411054 + 0.711967i
\(291\) 6.00000 10.3923i 0.351726 0.609208i
\(292\) 4.00000 0.234082
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 3.00000 5.19615i 0.174964 0.303046i
\(295\) 1.50000 2.59808i 0.0873334 0.151266i
\(296\) 0 0
\(297\) −3.00000 −0.174078
\(298\) 3.00000 5.19615i 0.173785 0.301005i
\(299\) 24.0000 + 41.5692i 1.38796 + 2.40401i
\(300\) −1.00000 + 1.73205i −0.0577350 + 0.100000i
\(301\) 10.0000 + 17.3205i 0.576390 + 0.998337i
\(302\) −5.00000 8.66025i −0.287718 0.498342i
\(303\) −3.00000 −0.172345
\(304\) −16.0000 6.92820i −0.917663 0.397360i
\(305\) 7.00000 0.400819
\(306\) −6.00000 10.3923i −0.342997 0.594089i
\(307\) −8.00000 13.8564i −0.456584 0.790827i 0.542194 0.840254i \(-0.317594\pi\)
−0.998778 + 0.0494267i \(0.984261\pi\)
\(308\) −6.00000 + 10.3923i −0.341882 + 0.592157i
\(309\) 4.00000 + 6.92820i 0.227552 + 0.394132i
\(310\) 9.00000 15.5885i 0.511166 0.885365i
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 4.00000 6.92820i 0.226093 0.391605i −0.730554 0.682855i \(-0.760738\pi\)
0.956647 + 0.291250i \(0.0940712\pi\)
\(314\) 20.0000 34.6410i 1.12867 1.95491i
\(315\) 2.00000 0.112687
\(316\) 10.0000 0.562544
\(317\) −6.00000 + 10.3923i −0.336994 + 0.583690i −0.983866 0.178908i \(-0.942743\pi\)
0.646872 + 0.762598i \(0.276077\pi\)
\(318\) −14.0000 24.2487i −0.785081 1.35980i
\(319\) 10.5000 18.1865i 0.587887 1.01825i
\(320\) −4.00000 6.92820i −0.223607 0.387298i
\(321\) −6.00000 10.3923i −0.334887 0.580042i
\(322\) 32.0000 1.78329
\(323\) 24.0000 + 10.3923i 1.33540 + 0.578243i
\(324\) 2.00000 0.111111
\(325\) −3.00000 5.19615i −0.166410 0.288231i
\(326\) 10.0000 + 17.3205i 0.553849 + 0.959294i
\(327\) −1.50000 + 2.59808i −0.0829502 + 0.143674i
\(328\) 0 0
\(329\) 4.00000 6.92820i 0.220527 0.381964i
\(330\) 6.00000 0.330289
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 6.00000 10.3923i 0.329293 0.570352i
\(333\) 1.00000 1.73205i 0.0547997 0.0949158i
\(334\) 44.0000 2.40757
\(335\) −4.00000 −0.218543
\(336\) −4.00000 + 6.92820i −0.218218 + 0.377964i
\(337\) 6.00000 + 10.3923i 0.326841 + 0.566105i 0.981883 0.189487i \(-0.0606826\pi\)
−0.655042 + 0.755592i \(0.727349\pi\)
\(338\) −23.0000 + 39.8372i −1.25104 + 2.16686i
\(339\) −3.00000 5.19615i −0.162938 0.282216i
\(340\) 6.00000 + 10.3923i 0.325396 + 0.563602i
\(341\) −27.0000 −1.46213
\(342\) −7.00000 + 5.19615i −0.378517 + 0.280976i
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) −4.00000 6.92820i −0.215353 0.373002i
\(346\) −6.00000 + 10.3923i −0.322562 + 0.558694i
\(347\) −1.00000 1.73205i −0.0536828 0.0929814i 0.837935 0.545770i \(-0.183763\pi\)
−0.891618 + 0.452788i \(0.850429\pi\)
\(348\) −7.00000 + 12.1244i −0.375239 + 0.649934i
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) −4.00000 −0.213809
\(351\) −3.00000 + 5.19615i −0.160128 + 0.277350i
\(352\) −12.0000 + 20.7846i −0.639602 + 1.10782i
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) 6.00000 0.318896
\(355\) 3.50000 6.06218i 0.185761 0.321747i
\(356\) −3.00000 5.19615i −0.159000 0.275396i
\(357\) 6.00000 10.3923i 0.317554 0.550019i
\(358\) −1.00000 1.73205i −0.0528516 0.0915417i
\(359\) 16.0000 + 27.7128i 0.844448 + 1.46263i 0.886100 + 0.463494i \(0.153404\pi\)
−0.0416523 + 0.999132i \(0.513262\pi\)
\(360\) 0 0
\(361\) 5.50000 18.1865i 0.289474 0.957186i
\(362\) −28.0000 −1.47165
\(363\) 1.00000 + 1.73205i 0.0524864 + 0.0909091i
\(364\) 12.0000 + 20.7846i 0.628971 + 1.08941i
\(365\) 1.00000 1.73205i 0.0523424 0.0906597i
\(366\) 7.00000 + 12.1244i 0.365896 + 0.633750i
\(367\) 10.0000 17.3205i 0.521996 0.904123i −0.477677 0.878536i \(-0.658521\pi\)
0.999673 0.0255875i \(-0.00814566\pi\)
\(368\) 32.0000 1.66812
\(369\) 6.00000 0.312348
\(370\) −2.00000 + 3.46410i −0.103975 + 0.180090i
\(371\) 14.0000 24.2487i 0.726844 1.25893i
\(372\) 18.0000 0.933257
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) 18.0000 31.1769i 0.930758 1.61212i
\(375\) 0.500000 + 0.866025i 0.0258199 + 0.0447214i
\(376\) 0 0
\(377\) −21.0000 36.3731i −1.08156 1.87331i
\(378\) 2.00000 + 3.46410i 0.102869 + 0.178174i
\(379\) −25.0000 −1.28416 −0.642082 0.766636i \(-0.721929\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(380\) 7.00000 5.19615i 0.359092 0.266557i
\(381\) −8.00000 −0.409852
\(382\) 5.00000 + 8.66025i 0.255822 + 0.443097i
\(383\) 17.0000 + 29.4449i 0.868659 + 1.50456i 0.863367 + 0.504576i \(0.168351\pi\)
0.00529229 + 0.999986i \(0.498315\pi\)
\(384\) 0 0
\(385\) 3.00000 + 5.19615i 0.152894 + 0.264820i
\(386\) 18.0000 31.1769i 0.916176 1.58686i
\(387\) 10.0000 0.508329
\(388\) −24.0000 −1.21842
\(389\) −18.5000 + 32.0429i −0.937987 + 1.62464i −0.168769 + 0.985656i \(0.553979\pi\)
−0.769218 + 0.638986i \(0.779354\pi\)
\(390\) 6.00000 10.3923i 0.303822 0.526235i
\(391\) −48.0000 −2.42746
\(392\) 0 0
\(393\) 4.00000 6.92820i 0.201773 0.349482i
\(394\) 18.0000 + 31.1769i 0.906827 + 1.57067i
\(395\) 2.50000 4.33013i 0.125789 0.217872i
\(396\) 3.00000 + 5.19615i 0.150756 + 0.261116i
\(397\) −6.00000 10.3923i −0.301131 0.521575i 0.675261 0.737579i \(-0.264031\pi\)
−0.976392 + 0.216004i \(0.930698\pi\)
\(398\) −22.0000 −1.10276
\(399\) −8.00000 3.46410i −0.400501 0.173422i
\(400\) −4.00000 −0.200000
\(401\) 11.5000 + 19.9186i 0.574283 + 0.994687i 0.996119 + 0.0880147i \(0.0280523\pi\)
−0.421837 + 0.906672i \(0.638614\pi\)
\(402\) −4.00000 6.92820i −0.199502 0.345547i
\(403\) −27.0000 + 46.7654i −1.34497 + 2.32955i
\(404\) 3.00000 + 5.19615i 0.149256 + 0.258518i
\(405\) 0.500000 0.866025i 0.0248452 0.0430331i
\(406\) −28.0000 −1.38962
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) −5.50000 + 9.52628i −0.271957 + 0.471044i −0.969363 0.245633i \(-0.921004\pi\)
0.697406 + 0.716677i \(0.254338\pi\)
\(410\) −12.0000 −0.592638
\(411\) 2.00000 0.0986527
\(412\) 8.00000 13.8564i 0.394132 0.682656i
\(413\) 3.00000 + 5.19615i 0.147620 + 0.255686i
\(414\) 8.00000 13.8564i 0.393179 0.681005i
\(415\) −3.00000 5.19615i −0.147264 0.255069i
\(416\) 24.0000 + 41.5692i 1.17670 + 2.03810i
\(417\) −4.00000 −0.195881
\(418\) −24.0000 10.3923i −1.17388 0.508304i
\(419\) −9.00000 −0.439679 −0.219839 0.975536i \(-0.570553\pi\)
−0.219839 + 0.975536i \(0.570553\pi\)
\(420\) −2.00000 3.46410i −0.0975900 0.169031i
\(421\) −4.50000 7.79423i −0.219317 0.379867i 0.735283 0.677761i \(-0.237049\pi\)
−0.954599 + 0.297893i \(0.903716\pi\)
\(422\) −13.0000 + 22.5167i −0.632830 + 1.09609i
\(423\) −2.00000 3.46410i −0.0972433 0.168430i
\(424\) 0 0
\(425\) 6.00000 0.291043
\(426\) 14.0000 0.678302
\(427\) −7.00000 + 12.1244i −0.338754 + 0.586739i
\(428\) −12.0000 + 20.7846i −0.580042 + 1.00466i
\(429\) −18.0000 −0.869048
\(430\) −20.0000 −0.964486
\(431\) 10.5000 18.1865i 0.505767 0.876014i −0.494211 0.869342i \(-0.664543\pi\)
0.999978 0.00667224i \(-0.00212386\pi\)
\(432\) 2.00000 + 3.46410i 0.0962250 + 0.166667i
\(433\) 5.00000 8.66025i 0.240285 0.416185i −0.720511 0.693444i \(-0.756093\pi\)
0.960795 + 0.277259i \(0.0894259\pi\)
\(434\) 18.0000 + 31.1769i 0.864028 + 1.49654i
\(435\) 3.50000 + 6.06218i 0.167812 + 0.290659i
\(436\) 6.00000 0.287348
\(437\) 4.00000 + 34.6410i 0.191346 + 1.65710i
\(438\) 4.00000 0.191127
\(439\) 4.50000 + 7.79423i 0.214773 + 0.371998i 0.953202 0.302333i \(-0.0977654\pi\)
−0.738429 + 0.674331i \(0.764432\pi\)
\(440\) 0 0
\(441\) 1.50000 2.59808i 0.0714286 0.123718i
\(442\) −36.0000 62.3538i −1.71235 2.96587i
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) −4.00000 −0.189832
\(445\) −3.00000 −0.142214
\(446\) −8.00000 + 13.8564i −0.378811 + 0.656120i
\(447\) 1.50000 2.59808i 0.0709476 0.122885i
\(448\) 16.0000 0.755929
\(449\) 13.0000 0.613508 0.306754 0.951789i \(-0.400757\pi\)
0.306754 + 0.951789i \(0.400757\pi\)
\(450\) −1.00000 + 1.73205i −0.0471405 + 0.0816497i
\(451\) 9.00000 + 15.5885i 0.423793 + 0.734032i
\(452\) −6.00000 + 10.3923i −0.282216 + 0.488813i
\(453\) −2.50000 4.33013i −0.117460 0.203447i
\(454\) −14.0000 24.2487i −0.657053 1.13805i
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) 12.0000 0.561336 0.280668 0.959805i \(-0.409444\pi\)
0.280668 + 0.959805i \(0.409444\pi\)
\(458\) −29.0000 50.2295i −1.35508 2.34707i
\(459\) −3.00000 5.19615i −0.140028 0.242536i
\(460\) −8.00000 + 13.8564i −0.373002 + 0.646058i
\(461\) −16.5000 28.5788i −0.768482 1.33105i −0.938386 0.345589i \(-0.887679\pi\)
0.169904 0.985461i \(-0.445654\pi\)
\(462\) −6.00000 + 10.3923i −0.279145 + 0.483494i
\(463\) −26.0000 −1.20832 −0.604161 0.796862i \(-0.706492\pi\)
−0.604161 + 0.796862i \(0.706492\pi\)
\(464\) −28.0000 −1.29987
\(465\) 4.50000 7.79423i 0.208683 0.361449i
\(466\) −16.0000 + 27.7128i −0.741186 + 1.28377i
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 12.0000 0.554700
\(469\) 4.00000 6.92820i 0.184703 0.319915i
\(470\) 4.00000 + 6.92820i 0.184506 + 0.319574i
\(471\) 10.0000 17.3205i 0.460776 0.798087i
\(472\) 0 0
\(473\) 15.0000 + 25.9808i 0.689701 + 1.19460i
\(474\) 10.0000 0.459315
\(475\) −0.500000 4.33013i −0.0229416 0.198680i
\(476\) −24.0000 −1.10004
\(477\) −7.00000 12.1244i −0.320508 0.555136i
\(478\) 9.00000 + 15.5885i 0.411650 + 0.712999i
\(479\) 7.50000 12.9904i 0.342684 0.593546i −0.642246 0.766498i \(-0.721997\pi\)
0.984930 + 0.172953i \(0.0553307\pi\)
\(480\) −4.00000 6.92820i −0.182574 0.316228i
\(481\) 6.00000 10.3923i 0.273576 0.473848i
\(482\) 42.0000 1.91305
\(483\) 16.0000 0.728025
\(484\) 2.00000 3.46410i 0.0909091 0.157459i
\(485\) −6.00000 + 10.3923i −0.272446 + 0.471890i
\(486\) 2.00000 0.0907218
\(487\) −22.0000 −0.996915 −0.498458 0.866914i \(-0.666100\pi\)
−0.498458 + 0.866914i \(0.666100\pi\)
\(488\) 0 0
\(489\) 5.00000 + 8.66025i 0.226108 + 0.391630i
\(490\) −3.00000 + 5.19615i −0.135526 + 0.234738i
\(491\) 2.50000 + 4.33013i 0.112823 + 0.195416i 0.916908 0.399100i \(-0.130677\pi\)
−0.804084 + 0.594515i \(0.797344\pi\)
\(492\) −6.00000 10.3923i −0.270501 0.468521i
\(493\) 42.0000 1.89158
\(494\) −42.0000 + 31.1769i −1.88967 + 1.40272i
\(495\) 3.00000 0.134840
\(496\) 18.0000 + 31.1769i 0.808224 + 1.39988i
\(497\) 7.00000 + 12.1244i 0.313993 + 0.543852i
\(498\) 6.00000 10.3923i 0.268866 0.465690i
\(499\) −6.00000 10.3923i −0.268597 0.465223i 0.699903 0.714238i \(-0.253227\pi\)
−0.968500 + 0.249015i \(0.919893\pi\)
\(500\) 1.00000 1.73205i 0.0447214 0.0774597i
\(501\) 22.0000 0.982888
\(502\) 6.00000 0.267793
\(503\) 12.0000 20.7846i 0.535054 0.926740i −0.464107 0.885779i \(-0.653625\pi\)
0.999161 0.0409609i \(-0.0130419\pi\)
\(504\) 0 0
\(505\) 3.00000 0.133498
\(506\) 48.0000 2.13386
\(507\) −11.5000 + 19.9186i −0.510733 + 0.884615i
\(508\) 8.00000 + 13.8564i 0.354943 + 0.614779i
\(509\) 15.0000 25.9808i 0.664863 1.15158i −0.314459 0.949271i \(-0.601823\pi\)
0.979322 0.202306i \(-0.0648436\pi\)
\(510\) 6.00000 + 10.3923i 0.265684 + 0.460179i
\(511\) 2.00000 + 3.46410i 0.0884748 + 0.153243i
\(512\) 32.0000 1.41421
\(513\) −3.50000 + 2.59808i −0.154529 + 0.114708i
\(514\) 4.00000 0.176432
\(515\) −4.00000 6.92820i −0.176261 0.305293i
\(516\) −10.0000 17.3205i −0.440225 0.762493i
\(517\) 6.00000 10.3923i 0.263880 0.457053i
\(518\) −4.00000 6.92820i −0.175750 0.304408i
\(519\) −3.00000 + 5.19615i −0.131685 + 0.228086i
\(520\) 0 0
\(521\) −7.00000 −0.306676 −0.153338 0.988174i \(-0.549002\pi\)
−0.153338 + 0.988174i \(0.549002\pi\)
\(522\) −7.00000 + 12.1244i −0.306382 + 0.530669i
\(523\) 11.0000 19.0526i 0.480996 0.833110i −0.518766 0.854916i \(-0.673608\pi\)
0.999762 + 0.0218062i \(0.00694167\pi\)
\(524\) −16.0000 −0.698963
\(525\) −2.00000 −0.0872872
\(526\) −12.0000 + 20.7846i −0.523225 + 0.906252i
\(527\) −27.0000 46.7654i −1.17614 2.03713i
\(528\) −6.00000 + 10.3923i −0.261116 + 0.452267i
\(529\) −20.5000 35.5070i −0.891304 1.54378i
\(530\) 14.0000 + 24.2487i 0.608121 + 1.05330i
\(531\) 3.00000 0.130189
\(532\) 2.00000 + 17.3205i 0.0867110 + 0.750939i
\(533\) 36.0000 1.55933
\(534\) −3.00000 5.19615i −0.129823 0.224860i
\(535\) 6.00000 + 10.3923i 0.259403 + 0.449299i
\(536\) 0 0
\(537\) −0.500000 0.866025i −0.0215766 0.0373718i
\(538\) −21.0000 + 36.3731i −0.905374 + 1.56815i
\(539\) 9.00000 0.387657
\(540\) −2.00000 −0.0860663
\(541\) 4.50000 7.79423i 0.193470 0.335100i −0.752928 0.658103i \(-0.771359\pi\)
0.946398 + 0.323003i \(0.104692\pi\)
\(542\) 5.00000 8.66025i 0.214768 0.371990i
\(543\) −14.0000 −0.600798
\(544\) −48.0000 −2.05798
\(545\) 1.50000 2.59808i 0.0642529 0.111289i
\(546\) 12.0000 + 20.7846i 0.513553 + 0.889499i
\(547\) −14.0000 + 24.2487i −0.598597 + 1.03680i 0.394432 + 0.918925i \(0.370941\pi\)
−0.993028 + 0.117875i \(0.962392\pi\)
\(548\) −2.00000 3.46410i −0.0854358 0.147979i
\(549\) 3.50000 + 6.06218i 0.149376 + 0.258727i
\(550\) −6.00000 −0.255841
\(551\) −3.50000 30.3109i −0.149105 1.29129i
\(552\) 0 0
\(553\) 5.00000 + 8.66025i 0.212622 + 0.368271i
\(554\) −16.0000 27.7128i −0.679775 1.17740i
\(555\) −1.00000 + 1.73205i −0.0424476 + 0.0735215i
\(556\) 4.00000 + 6.92820i 0.169638 + 0.293821i
\(557\) −6.00000 + 10.3923i −0.254228 + 0.440336i −0.964686 0.263404i \(-0.915155\pi\)
0.710457 + 0.703740i \(0.248488\pi\)
\(558\) 18.0000 0.762001
\(559\) 60.0000 2.53773
\(560\) 4.00000 6.92820i 0.169031 0.292770i
\(561\) 9.00000 15.5885i 0.379980 0.658145i
\(562\) 28.0000 1.18111
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) −4.00000 + 6.92820i −0.168430 + 0.291730i
\(565\) 3.00000 + 5.19615i 0.126211 + 0.218604i
\(566\) 26.0000 45.0333i 1.09286 1.89289i
\(567\) 1.00000 + 1.73205i 0.0419961 + 0.0727393i
\(568\) 0 0
\(569\) −11.0000 −0.461144 −0.230572 0.973055i \(-0.574060\pi\)
−0.230572 + 0.973055i \(0.574060\pi\)
\(570\) 7.00000 5.19615i 0.293198 0.217643i
\(571\) −15.0000 −0.627730 −0.313865 0.949468i \(-0.601624\pi\)
−0.313865 + 0.949468i \(0.601624\pi\)
\(572\) 18.0000 + 31.1769i 0.752618 + 1.30357i
\(573\) 2.50000 + 4.33013i 0.104439 + 0.180894i
\(574\) 12.0000 20.7846i 0.500870 0.867533i
\(575\) 4.00000 + 6.92820i 0.166812 + 0.288926i
\(576\) 4.00000 6.92820i 0.166667 0.288675i
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) 38.0000 1.58059
\(579\) 9.00000 15.5885i 0.374027 0.647834i
\(580\) 7.00000 12.1244i 0.290659 0.503436i
\(581\) 12.0000 0.497844
\(582\) −24.0000 −0.994832
\(583\) 21.0000 36.3731i 0.869731 1.50642i
\(584\) 0 0
\(585\) 3.00000 5.19615i 0.124035 0.214834i
\(586\) 12.0000 + 20.7846i 0.495715 + 0.858604i
\(587\) −11.0000 19.0526i −0.454019 0.786383i 0.544613 0.838688i \(-0.316677\pi\)
−0.998631 + 0.0523045i \(0.983343\pi\)
\(588\) −6.00000 −0.247436
\(589\) −31.5000 + 23.3827i −1.29793 + 0.963467i
\(590\) −6.00000 −0.247016
\(591\) 9.00000 + 15.5885i 0.370211 + 0.641223i
\(592\) −4.00000 6.92820i −0.164399 0.284747i
\(593\) 5.00000 8.66025i 0.205325 0.355634i −0.744911 0.667164i \(-0.767508\pi\)
0.950236 + 0.311530i \(0.100841\pi\)
\(594\) 3.00000 + 5.19615i 0.123091 + 0.213201i
\(595\) −6.00000 + 10.3923i −0.245976 + 0.426043i
\(596\) −6.00000 −0.245770
\(597\) −11.0000 −0.450200
\(598\) 48.0000 83.1384i 1.96287 3.39978i
\(599\) −2.00000 + 3.46410i −0.0817178 + 0.141539i −0.903988 0.427558i \(-0.859374\pi\)
0.822270 + 0.569097i \(0.192707\pi\)
\(600\) 0 0
\(601\) 1.00000 0.0407909 0.0203954 0.999792i \(-0.493507\pi\)
0.0203954 + 0.999792i \(0.493507\pi\)
\(602\) 20.0000 34.6410i 0.815139 1.41186i
\(603\) −2.00000 3.46410i −0.0814463 0.141069i
\(604\) −5.00000 + 8.66025i −0.203447 + 0.352381i
\(605\) −1.00000 1.73205i −0.0406558 0.0704179i
\(606\) 3.00000 + 5.19615i 0.121867 + 0.211079i
\(607\) −14.0000 −0.568242 −0.284121 0.958788i \(-0.591702\pi\)
−0.284121 + 0.958788i \(0.591702\pi\)
\(608\) 4.00000 + 34.6410i 0.162221 + 1.40488i
\(609\) −14.0000 −0.567309
\(610\) −7.00000 12.1244i −0.283422 0.490901i
\(611\) −12.0000 20.7846i −0.485468 0.840855i
\(612\) −6.00000 + 10.3923i −0.242536 + 0.420084i
\(613\) 19.0000 + 32.9090i 0.767403 + 1.32918i 0.938967 + 0.344008i \(0.111785\pi\)
−0.171564 + 0.985173i \(0.554882\pi\)
\(614\) −16.0000 + 27.7128i −0.645707 + 1.11840i
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) −14.0000 + 24.2487i −0.563619 + 0.976216i 0.433558 + 0.901126i \(0.357258\pi\)
−0.997177 + 0.0750907i \(0.976075\pi\)
\(618\) 8.00000 13.8564i 0.321807 0.557386i
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) −18.0000 −0.722897
\(621\) 4.00000 6.92820i 0.160514 0.278019i
\(622\) 8.00000 + 13.8564i 0.320771 + 0.555591i
\(623\) 3.00000 5.19615i 0.120192 0.208179i
\(624\) 12.0000 + 20.7846i 0.480384 + 0.832050i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −16.0000 −0.639489
\(627\) −12.0000 5.19615i −0.479234 0.207514i
\(628\) −40.0000 −1.59617
\(629\) 6.00000 + 10.3923i 0.239236 + 0.414368i
\(630\) −2.00000 3.46410i −0.0796819 0.138013i
\(631\) −14.5000 + 25.1147i −0.577236 + 0.999802i 0.418559 + 0.908190i \(0.362535\pi\)
−0.995795 + 0.0916122i \(0.970798\pi\)
\(632\) 0 0
\(633\) −6.50000 + 11.2583i −0.258352 + 0.447478i
\(634\) 24.0000 0.953162
\(635\) 8.00000 0.317470
\(636\) −14.0000 + 24.2487i −0.555136 + 0.961524i
\(637\) 9.00000 15.5885i 0.356593 0.617637i
\(638\) −42.0000 −1.66280
\(639\) 7.00000 0.276916
\(640\) 0 0
\(641\) −9.50000 16.4545i −0.375227 0.649913i 0.615134 0.788423i \(-0.289102\pi\)
−0.990361 + 0.138510i \(0.955769\pi\)
\(642\) −12.0000 + 20.7846i −0.473602 + 0.820303i
\(643\) −16.0000 27.7128i −0.630978 1.09289i −0.987352 0.158543i \(-0.949320\pi\)
0.356374 0.934344i \(-0.384013\pi\)
\(644\) −16.0000 27.7128i −0.630488 1.09204i
\(645\) −10.0000 −0.393750
\(646\) −6.00000 51.9615i −0.236067 2.04440i
\(647\) 2.00000 0.0786281 0.0393141 0.999227i \(-0.487483\pi\)
0.0393141 + 0.999227i \(0.487483\pi\)
\(648\) 0 0
\(649\) 4.50000 + 7.79423i 0.176640 + 0.305950i
\(650\) −6.00000 + 10.3923i −0.235339 + 0.407620i
\(651\) 9.00000 + 15.5885i 0.352738 + 0.610960i
\(652\) 10.0000 17.3205i 0.391630 0.678323i
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 6.00000 0.234619
\(655\) −4.00000 + 6.92820i −0.156293 + 0.270707i
\(656\) 12.0000 20.7846i 0.468521 0.811503i
\(657\) 2.00000 0.0780274
\(658\) −16.0000 −0.623745
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) −3.00000 5.19615i −0.116775 0.202260i
\(661\) −8.50000 + 14.7224i −0.330612 + 0.572636i −0.982632 0.185565i \(-0.940588\pi\)
0.652020 + 0.758202i \(0.273922\pi\)
\(662\) 8.00000 + 13.8564i 0.310929 + 0.538545i
\(663\) −18.0000 31.1769i −0.699062 1.21081i
\(664\) 0 0
\(665\) 8.00000 + 3.46410i 0.310227 + 0.134332i
\(666\) −4.00000 −0.154997
\(667\) 28.0000 + 48.4974i 1.08416 + 1.87783i
\(668\) −22.0000 38.1051i −0.851206 1.47433i
\(669\) −4.00000 + 6.92820i −0.154649 + 0.267860i
\(670\) 4.00000 + 6.92820i 0.154533 + 0.267660i
\(671\) −10.5000 + 18.1865i −0.405348 + 0.702083i
\(672\) 16.0000 0.617213
\(673\) −36.0000 −1.38770 −0.693849 0.720121i \(-0.744086\pi\)
−0.693849 + 0.720121i \(0.744086\pi\)
\(674\) 12.0000 20.7846i 0.462223 0.800593i
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 46.0000 1.76923
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) −6.00000 + 10.3923i −0.230429 + 0.399114i
\(679\) −12.0000 20.7846i −0.460518 0.797640i
\(680\) 0 0
\(681\) −7.00000 12.1244i −0.268241 0.464606i
\(682\) 27.0000 + 46.7654i 1.03388 + 1.79074i
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 8.00000 + 3.46410i 0.305888 + 0.132453i
\(685\) −2.00000 −0.0764161
\(686\) −20.0000 34.6410i −0.763604 1.32260i
\(687\) −14.5000 25.1147i −0.553210 0.958187i
\(688\) 20.0000 34.6410i 0.762493 1.32068i
\(689\) −42.0000 72.7461i −1.60007 2.77141i
\(690\) −8.00000 + 13.8564i −0.304555 + 0.527504i
\(691\) −1.00000 −0.0380418 −0.0190209 0.999819i \(-0.506055\pi\)
−0.0190209 + 0.999819i \(0.506055\pi\)
\(692\) 12.0000 0.456172
\(693\) −3.00000 + 5.19615i −0.113961 + 0.197386i
\(694\) −2.00000 + 3.46410i −0.0759190 + 0.131495i
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) −18.0000 + 31.1769i −0.681799 + 1.18091i
\(698\) 2.00000 + 3.46410i 0.0757011 + 0.131118i
\(699\) −8.00000 + 13.8564i −0.302588 + 0.524097i
\(700\) 2.00000 + 3.46410i 0.0755929 + 0.130931i
\(701\) −9.00000 15.5885i −0.339925 0.588768i 0.644493 0.764610i \(-0.277068\pi\)
−0.984418 + 0.175842i \(0.943735\pi\)
\(702\) 12.0000 0.452911
\(703\) 7.00000 5.19615i 0.264010 0.195977i
\(704\) 24.0000 0.904534
\(705\) 2.00000 + 3.46410i 0.0753244 + 0.130466i
\(706\) −2.00000 3.46410i −0.0752710 0.130373i
\(707\) −3.00000 + 5.19615i −0.112827 + 0.195421i
\(708\) −3.00000 5.19615i −0.112747 0.195283i
\(709\) 17.5000 30.3109i 0.657226 1.13835i −0.324104 0.946021i \(-0.605063\pi\)
0.981331 0.192328i \(-0.0616038\pi\)
\(710\) −14.0000 −0.525411
\(711\) 5.00000 0.187515
\(712\) 0 0
\(713\) 36.0000 62.3538i 1.34821 2.33517i
\(714\) −24.0000 −0.898177
\(715\) 18.0000 0.673162
\(716\) −1.00000 + 1.73205i −0.0373718 + 0.0647298i
\(717\) 4.50000 + 7.79423i 0.168056 + 0.291081i
\(718\) 32.0000 55.4256i 1.19423 2.06847i
\(719\) −16.5000 28.5788i −0.615346 1.06581i −0.990324 0.138777i \(-0.955683\pi\)
0.374978 0.927034i \(-0.377650\pi\)
\(720\) −2.00000 3.46410i −0.0745356 0.129099i
\(721\) 16.0000 0.595871
\(722\) −37.0000 + 8.66025i −1.37700 + 0.322301i
\(723\) 21.0000 0.780998
\(724\) 14.0000 + 24.2487i 0.520306 + 0.901196i
\(725\) −3.50000 6.06218i −0.129987 0.225144i
\(726\) 2.00000 3.46410i 0.0742270 0.128565i
\(727\) −7.00000 12.1244i −0.259616 0.449667i 0.706523 0.707690i \(-0.250263\pi\)
−0.966139 + 0.258022i \(0.916929\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −4.00000 −0.148047
\(731\) −30.0000 + 51.9615i −1.10959 + 1.92187i
\(732\) 7.00000 12.1244i 0.258727 0.448129i
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) −40.0000 −1.47643
\(735\) −1.50000 + 2.59808i −0.0553283 + 0.0958315i
\(736\) −32.0000 55.4256i −1.17954 2.04302i
\(737\) 6.00000 10.3923i 0.221013 0.382805i
\(738\) −6.00000 10.3923i −0.220863 0.382546i
\(739\) 14.5000 + 25.1147i 0.533391 + 0.923861i 0.999239 + 0.0389959i \(0.0124159\pi\)
−0.465848 + 0.884865i \(0.654251\pi\)
\(740\) 4.00000 0.147043
\(741\) −21.0000 + 15.5885i −0.771454 + 0.572656i
\(742\) −56.0000 −2.05582
\(743\) 3.00000 + 5.19615i 0.110059 + 0.190628i 0.915794 0.401648i \(-0.131563\pi\)
−0.805735 + 0.592277i \(0.798229\pi\)
\(744\) 0 0
\(745\) −1.50000 + 2.59808i −0.0549557 + 0.0951861i
\(746\) 24.0000 + 41.5692i 0.878702 + 1.52196i
\(747\) 3.00000 5.19615i 0.109764 0.190117i
\(748\) −36.0000 −1.31629
\(749\) −24.0000 −0.876941
\(750\) 1.00000 1.73205i 0.0365148 0.0632456i
\(751\) −14.5000 + 25.1147i −0.529113 + 0.916450i 0.470311 + 0.882501i \(0.344142\pi\)
−0.999424 + 0.0339490i \(0.989192\pi\)
\(752\) −16.0000 −0.583460
\(753\) 3.00000 0.109326
\(754\) −42.0000 + 72.7461i −1.52955 + 2.64926i
\(755\) 2.50000 + 4.33013i 0.0909843 + 0.157589i
\(756\) 2.00000 3.46410i 0.0727393 0.125988i
\(757\) −23.0000 39.8372i −0.835949 1.44791i −0.893255 0.449550i \(-0.851584\pi\)
0.0573060 0.998357i \(-0.481749\pi\)
\(758\) 25.0000 + 43.3013i 0.908041 + 1.57277i
\(759\) 24.0000 0.871145
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 8.00000 + 13.8564i 0.289809 + 0.501965i
\(763\) 3.00000 + 5.19615i 0.108607 + 0.188113i
\(764\) 5.00000 8.66025i 0.180894 0.313317i
\(765\) 3.00000 + 5.19615i 0.108465 + 0.187867i
\(766\) 34.0000 58.8897i 1.22847 2.12777i
\(767\) 18.0000 0.649942
\(768\) 16.0000 0.577350
\(769\) −6.50000 + 11.2583i −0.234396 + 0.405986i −0.959097 0.283078i \(-0.908645\pi\)
0.724701 + 0.689063i \(0.241978\pi\)
\(770\) 6.00000 10.3923i 0.216225 0.374513i
\(771\) 2.00000 0.0720282
\(772\) −36.0000 −1.29567