Defining parameters
Level: | \( N \) | \(=\) | \( 285 = 3 \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 285.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(285, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 20 | 24 |
Cusp forms | 36 | 20 | 16 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(285, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
285.2.c.a | $6$ | $2.276$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{2}-\beta _{3}q^{3}+(-\beta _{1}+\beta _{2})q^{4}+\cdots\) |
285.2.c.b | $14$ | $2.276$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{6}q^{3}+(-2+\beta _{2})q^{4}+\beta _{10}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(285, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(285, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)