Properties

Label 285.2.c
Level $285$
Weight $2$
Character orbit 285.c
Rep. character $\chi_{285}(229,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $2$
Sturm bound $80$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(80\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(285, [\chi])\).

Total New Old
Modular forms 44 20 24
Cusp forms 36 20 16
Eisenstein series 8 0 8

Trace form

\( 20 q - 24 q^{4} + 2 q^{5} + 4 q^{6} - 20 q^{9} + O(q^{10}) \) \( 20 q - 24 q^{4} + 2 q^{5} + 4 q^{6} - 20 q^{9} - 12 q^{10} + 4 q^{11} + 16 q^{14} - 4 q^{15} + 32 q^{16} - 8 q^{19} - 12 q^{24} - 2 q^{25} - 32 q^{26} + 16 q^{29} + 8 q^{30} - 8 q^{31} + 8 q^{34} - 6 q^{35} + 24 q^{36} - 8 q^{39} + 16 q^{40} + 24 q^{41} + 48 q^{44} - 2 q^{45} - 16 q^{46} - 48 q^{49} - 20 q^{50} - 8 q^{51} - 4 q^{54} + 14 q^{55} - 24 q^{56} + 48 q^{59} - 8 q^{60} + 4 q^{61} - 4 q^{65} + 24 q^{66} + 8 q^{69} - 36 q^{70} - 48 q^{71} - 56 q^{74} + 8 q^{75} + 20 q^{76} + 4 q^{80} + 20 q^{81} - 32 q^{84} - 6 q^{85} - 32 q^{86} - 16 q^{89} + 12 q^{90} + 40 q^{91} + 8 q^{94} - 2 q^{95} + 68 q^{96} - 4 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(285, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
285.2.c.a 285.c 5.b $6$ $2.276$ 6.0.350464.1 None 285.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}-\beta _{3}q^{3}+(-\beta _{1}+\beta _{2})q^{4}+\cdots\)
285.2.c.b 285.c 5.b $14$ $2.276$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 285.2.c.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{6}q^{3}+(-2+\beta _{2})q^{4}+\beta _{10}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(285, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(285, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)