Properties

Label 285.2.a
Level $285$
Weight $2$
Character orbit 285.a
Rep. character $\chi_{285}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $7$
Sturm bound $80$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(80\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(285))\).

Total New Old
Modular forms 44 11 33
Cusp forms 37 11 26
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(9\)

Trace form

\( 11 q + 5 q^{2} - q^{3} + 13 q^{4} - q^{5} - 3 q^{6} + 9 q^{8} + 11 q^{9} - 3 q^{10} + 12 q^{11} - 7 q^{12} - 6 q^{13} - q^{15} + 21 q^{16} - 10 q^{17} + 5 q^{18} - q^{19} + 9 q^{20} - 8 q^{21} + 4 q^{22}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(285))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 19
285.2.a.a 285.a 1.a $1$ $2.276$ \(\Q\) None 285.2.a.a \(-1\) \(1\) \(-1\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}-q^{5}-q^{6}-2q^{7}+\cdots\)
285.2.a.b 285.a 1.a $1$ $2.276$ \(\Q\) None 285.2.a.b \(1\) \(-1\) \(-1\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}-q^{5}-q^{6}-2q^{7}+\cdots\)
285.2.a.c 285.a 1.a $1$ $2.276$ \(\Q\) None 285.2.a.c \(1\) \(-1\) \(1\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}+q^{5}-q^{6}+4q^{7}+\cdots\)
285.2.a.d 285.a 1.a $2$ $2.276$ \(\Q(\sqrt{7}) \) None 285.2.a.d \(0\) \(-2\) \(2\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-q^{3}+5q^{4}+q^{5}-\beta q^{6}+(-1+\cdots)q^{7}+\cdots\)
285.2.a.e 285.a 1.a $2$ $2.276$ \(\Q(\sqrt{3}) \) None 285.2.a.e \(0\) \(2\) \(2\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{3}+q^{4}+q^{5}+\beta q^{6}+(-1+\cdots)q^{7}+\cdots\)
285.2.a.f 285.a 1.a $2$ $2.276$ \(\Q(\sqrt{2}) \) None 285.2.a.f \(2\) \(-2\) \(-2\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}-q^{3}+(1+2\beta )q^{4}-q^{5}+\cdots\)
285.2.a.g 285.a 1.a $2$ $2.276$ \(\Q(\sqrt{2}) \) None 285.2.a.g \(2\) \(2\) \(-2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+q^{3}+(1+2\beta )q^{4}-q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(285))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(285)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 2}\)