Properties

Label 285.2
Level 285
Weight 2
Dimension 1871
Nonzero newspaces 18
Newform subspaces 45
Sturm bound 11520
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Newform subspaces: \( 45 \)
Sturm bound: \(11520\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(285))\).

Total New Old
Modular forms 3168 2071 1097
Cusp forms 2593 1871 722
Eisenstein series 575 200 375

Trace form

\( 1871 q + 5 q^{2} - 15 q^{3} - 27 q^{4} - q^{5} - 53 q^{6} - 28 q^{7} + 9 q^{8} - 19 q^{9} + O(q^{10}) \) \( 1871 q + 5 q^{2} - 15 q^{3} - 27 q^{4} - q^{5} - 53 q^{6} - 28 q^{7} + 9 q^{8} - 19 q^{9} - 49 q^{10} + 20 q^{11} - 37 q^{12} - 66 q^{13} - 48 q^{14} - 42 q^{15} - 219 q^{16} - 22 q^{17} - 31 q^{18} - 105 q^{19} - 63 q^{20} - 88 q^{21} - 116 q^{22} - 12 q^{23} - 69 q^{24} - 91 q^{25} - 34 q^{26} - 39 q^{27} - 136 q^{28} - 38 q^{29} - 89 q^{30} - 148 q^{31} - 107 q^{32} - 122 q^{33} - 158 q^{34} - 64 q^{35} - 189 q^{36} - 86 q^{37} - 191 q^{38} - 134 q^{39} - 207 q^{40} - 50 q^{41} - 174 q^{42} - 144 q^{43} - 104 q^{44} - 55 q^{45} - 216 q^{46} - 40 q^{47} + 11 q^{48} - 37 q^{49} - 49 q^{50} + 40 q^{51} + 58 q^{52} + 74 q^{53} + 91 q^{54} - 34 q^{55} + 120 q^{56} + 95 q^{57} + 14 q^{58} + 68 q^{59} + 41 q^{60} - 162 q^{61} - 84 q^{62} + 38 q^{63} - 211 q^{64} - 90 q^{65} - 10 q^{66} - 280 q^{67} - 122 q^{68} - 84 q^{69} - 246 q^{70} - 56 q^{71} + 9 q^{72} - 306 q^{73} - 194 q^{74} - 57 q^{75} - 331 q^{76} - 228 q^{77} - 116 q^{78} - 220 q^{79} + 213 q^{80} + 17 q^{81} - 286 q^{82} + 24 q^{83} + 38 q^{84} + 32 q^{85} + 32 q^{86} + 8 q^{87} + 240 q^{88} - 6 q^{89} + 275 q^{90} - 44 q^{91} + 276 q^{92} + 98 q^{93} + 376 q^{94} + 177 q^{95} + 377 q^{96} + 166 q^{97} + 445 q^{98} + 272 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(285))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
285.2.a \(\chi_{285}(1, \cdot)\) 285.2.a.a 1 1
285.2.a.b 1
285.2.a.c 1
285.2.a.d 2
285.2.a.e 2
285.2.a.f 2
285.2.a.g 2
285.2.b \(\chi_{285}(284, \cdot)\) 285.2.b.a 4 1
285.2.b.b 16
285.2.b.c 16
285.2.c \(\chi_{285}(229, \cdot)\) 285.2.c.a 6 1
285.2.c.b 14
285.2.h \(\chi_{285}(56, \cdot)\) 285.2.h.a 28 1
285.2.i \(\chi_{285}(106, \cdot)\) 285.2.i.a 2 2
285.2.i.b 2
285.2.i.c 2
285.2.i.d 4
285.2.i.e 4
285.2.i.f 10
285.2.k \(\chi_{285}(77, \cdot)\) 285.2.k.a 4 2
285.2.k.b 4
285.2.k.c 28
285.2.k.d 36
285.2.m \(\chi_{285}(37, \cdot)\) 285.2.m.a 4 2
285.2.m.b 36
285.2.p \(\chi_{285}(221, \cdot)\) 285.2.p.a 4 2
285.2.p.b 52
285.2.q \(\chi_{285}(164, \cdot)\) 285.2.q.a 4 2
285.2.q.b 4
285.2.q.c 8
285.2.q.d 56
285.2.r \(\chi_{285}(49, \cdot)\) 285.2.r.a 40 2
285.2.u \(\chi_{285}(16, \cdot)\) 285.2.u.a 12 6
285.2.u.b 18
285.2.u.c 24
285.2.u.d 30
285.2.v \(\chi_{285}(68, \cdot)\) 285.2.v.a 144 4
285.2.x \(\chi_{285}(88, \cdot)\) 285.2.x.a 80 4
285.2.z \(\chi_{285}(41, \cdot)\) 285.2.z.a 156 6
285.2.be \(\chi_{285}(4, \cdot)\) 285.2.be.a 120 6
285.2.bf \(\chi_{285}(14, \cdot)\) 285.2.bf.a 12 6
285.2.bf.b 12
285.2.bf.c 192
285.2.bh \(\chi_{285}(13, \cdot)\) 285.2.bh.a 240 12
285.2.bi \(\chi_{285}(17, \cdot)\) 285.2.bi.a 432 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(285))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(285)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(95))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(285))\)\(^{\oplus 1}\)