Properties

Label 285.10.a.h.1.9
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-10.1020\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.10202 q^{2} -81.0000 q^{3} -429.153 q^{4} +625.000 q^{5} -737.264 q^{6} +6714.13 q^{7} -8566.40 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q+9.10202 q^{2} -81.0000 q^{3} -429.153 q^{4} +625.000 q^{5} -737.264 q^{6} +6714.13 q^{7} -8566.40 q^{8} +6561.00 q^{9} +5688.76 q^{10} +73844.5 q^{11} +34761.4 q^{12} +48214.9 q^{13} +61112.2 q^{14} -50625.0 q^{15} +141755. q^{16} +302236. q^{17} +59718.4 q^{18} -130321. q^{19} -268221. q^{20} -543845. q^{21} +672134. q^{22} +2.35362e6 q^{23} +693878. q^{24} +390625. q^{25} +438853. q^{26} -531441. q^{27} -2.88139e6 q^{28} -2.23574e6 q^{29} -460790. q^{30} +187831. q^{31} +5.67625e6 q^{32} -5.98140e6 q^{33} +2.75096e6 q^{34} +4.19633e6 q^{35} -2.81567e6 q^{36} -4.75991e6 q^{37} -1.18618e6 q^{38} -3.90540e6 q^{39} -5.35400e6 q^{40} -9.93660e6 q^{41} -4.95009e6 q^{42} -6.79488e6 q^{43} -3.16906e7 q^{44} +4.10062e6 q^{45} +2.14227e7 q^{46} +2.32332e7 q^{47} -1.14821e7 q^{48} +4.72597e6 q^{49} +3.55548e6 q^{50} -2.44811e7 q^{51} -2.06916e7 q^{52} +6.12154e7 q^{53} -4.83719e6 q^{54} +4.61528e7 q^{55} -5.75159e7 q^{56} +1.05560e7 q^{57} -2.03497e7 q^{58} +1.19429e7 q^{59} +2.17259e7 q^{60} +11220.3 q^{61} +1.70964e6 q^{62} +4.40514e7 q^{63} -2.09132e7 q^{64} +3.01343e7 q^{65} -5.44428e7 q^{66} -1.64079e8 q^{67} -1.29705e8 q^{68} -1.90644e8 q^{69} +3.81951e7 q^{70} -2.51649e8 q^{71} -5.62041e7 q^{72} -1.11543e8 q^{73} -4.33248e7 q^{74} -3.16406e7 q^{75} +5.59277e7 q^{76} +4.95802e8 q^{77} -3.55471e7 q^{78} +3.07053e8 q^{79} +8.85968e7 q^{80} +4.30467e7 q^{81} -9.04432e7 q^{82} -2.22020e8 q^{83} +2.33393e8 q^{84} +1.88897e8 q^{85} -6.18471e7 q^{86} +1.81095e8 q^{87} -6.32581e8 q^{88} -3.96077e8 q^{89} +3.73240e7 q^{90} +3.23721e8 q^{91} -1.01007e9 q^{92} -1.52143e7 q^{93} +2.11469e8 q^{94} -8.14506e7 q^{95} -4.59776e8 q^{96} +1.27450e9 q^{97} +4.30159e7 q^{98} +4.84494e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.10202 0.402256 0.201128 0.979565i \(-0.435539\pi\)
0.201128 + 0.979565i \(0.435539\pi\)
\(3\) −81.0000 −0.577350
\(4\) −429.153 −0.838190
\(5\) 625.000 0.447214
\(6\) −737.264 −0.232243
\(7\) 6714.13 1.05694 0.528468 0.848953i \(-0.322767\pi\)
0.528468 + 0.848953i \(0.322767\pi\)
\(8\) −8566.40 −0.739423
\(9\) 6561.00 0.333333
\(10\) 5688.76 0.179894
\(11\) 73844.5 1.52073 0.760363 0.649499i \(-0.225021\pi\)
0.760363 + 0.649499i \(0.225021\pi\)
\(12\) 34761.4 0.483929
\(13\) 48214.9 0.468205 0.234102 0.972212i \(-0.424785\pi\)
0.234102 + 0.972212i \(0.424785\pi\)
\(14\) 61112.2 0.425159
\(15\) −50625.0 −0.258199
\(16\) 141755. 0.540752
\(17\) 302236. 0.877659 0.438829 0.898570i \(-0.355393\pi\)
0.438829 + 0.898570i \(0.355393\pi\)
\(18\) 59718.4 0.134085
\(19\) −130321. −0.229416
\(20\) −268221. −0.374850
\(21\) −543845. −0.610222
\(22\) 672134. 0.611721
\(23\) 2.35362e6 1.75373 0.876863 0.480740i \(-0.159632\pi\)
0.876863 + 0.480740i \(0.159632\pi\)
\(24\) 693878. 0.426906
\(25\) 390625. 0.200000
\(26\) 438853. 0.188338
\(27\) −531441. −0.192450
\(28\) −2.88139e6 −0.885913
\(29\) −2.23574e6 −0.586988 −0.293494 0.955961i \(-0.594818\pi\)
−0.293494 + 0.955961i \(0.594818\pi\)
\(30\) −460790. −0.103862
\(31\) 187831. 0.0365292 0.0182646 0.999833i \(-0.494186\pi\)
0.0182646 + 0.999833i \(0.494186\pi\)
\(32\) 5.67625e6 0.956944
\(33\) −5.98140e6 −0.877991
\(34\) 2.75096e6 0.353044
\(35\) 4.19633e6 0.472676
\(36\) −2.81567e6 −0.279397
\(37\) −4.75991e6 −0.417533 −0.208766 0.977966i \(-0.566945\pi\)
−0.208766 + 0.977966i \(0.566945\pi\)
\(38\) −1.18618e6 −0.0922839
\(39\) −3.90540e6 −0.270318
\(40\) −5.35400e6 −0.330680
\(41\) −9.93660e6 −0.549175 −0.274587 0.961562i \(-0.588541\pi\)
−0.274587 + 0.961562i \(0.588541\pi\)
\(42\) −4.95009e6 −0.245466
\(43\) −6.79488e6 −0.303091 −0.151546 0.988450i \(-0.548425\pi\)
−0.151546 + 0.988450i \(0.548425\pi\)
\(44\) −3.16906e7 −1.27466
\(45\) 4.10062e6 0.149071
\(46\) 2.14227e7 0.705447
\(47\) 2.32332e7 0.694495 0.347247 0.937774i \(-0.387116\pi\)
0.347247 + 0.937774i \(0.387116\pi\)
\(48\) −1.14821e7 −0.312203
\(49\) 4.72597e6 0.117114
\(50\) 3.55548e6 0.0804513
\(51\) −2.44811e7 −0.506717
\(52\) −2.06916e7 −0.392444
\(53\) 6.12154e7 1.06566 0.532831 0.846222i \(-0.321128\pi\)
0.532831 + 0.846222i \(0.321128\pi\)
\(54\) −4.83719e6 −0.0774143
\(55\) 4.61528e7 0.680089
\(56\) −5.75159e7 −0.781523
\(57\) 1.05560e7 0.132453
\(58\) −2.03497e7 −0.236120
\(59\) 1.19429e7 0.128315 0.0641574 0.997940i \(-0.479564\pi\)
0.0641574 + 0.997940i \(0.479564\pi\)
\(60\) 2.17259e7 0.216420
\(61\) 11220.3 0.000103757 0 5.18786e−5 1.00000i \(-0.499983\pi\)
5.18786e−5 1.00000i \(0.499983\pi\)
\(62\) 1.70964e6 0.0146941
\(63\) 4.40514e7 0.352312
\(64\) −2.09132e7 −0.155815
\(65\) 3.01343e7 0.209388
\(66\) −5.44428e7 −0.353178
\(67\) −1.64079e8 −0.994758 −0.497379 0.867533i \(-0.665704\pi\)
−0.497379 + 0.867533i \(0.665704\pi\)
\(68\) −1.29705e8 −0.735645
\(69\) −1.90644e8 −1.01251
\(70\) 3.81951e7 0.190137
\(71\) −2.51649e8 −1.17526 −0.587629 0.809131i \(-0.699938\pi\)
−0.587629 + 0.809131i \(0.699938\pi\)
\(72\) −5.62041e7 −0.246474
\(73\) −1.11543e8 −0.459716 −0.229858 0.973224i \(-0.573826\pi\)
−0.229858 + 0.973224i \(0.573826\pi\)
\(74\) −4.33248e7 −0.167955
\(75\) −3.16406e7 −0.115470
\(76\) 5.59277e7 0.192294
\(77\) 4.95802e8 1.60731
\(78\) −3.55471e7 −0.108737
\(79\) 3.07053e8 0.886933 0.443467 0.896291i \(-0.353748\pi\)
0.443467 + 0.896291i \(0.353748\pi\)
\(80\) 8.85968e7 0.241832
\(81\) 4.30467e7 0.111111
\(82\) −9.04432e7 −0.220909
\(83\) −2.22020e8 −0.513500 −0.256750 0.966478i \(-0.582652\pi\)
−0.256750 + 0.966478i \(0.582652\pi\)
\(84\) 2.33393e8 0.511482
\(85\) 1.88897e8 0.392501
\(86\) −6.18471e7 −0.121920
\(87\) 1.81095e8 0.338898
\(88\) −6.32581e8 −1.12446
\(89\) −3.96077e8 −0.669152 −0.334576 0.942369i \(-0.608593\pi\)
−0.334576 + 0.942369i \(0.608593\pi\)
\(90\) 3.73240e7 0.0599648
\(91\) 3.23721e8 0.494862
\(92\) −1.01007e9 −1.46996
\(93\) −1.52143e7 −0.0210901
\(94\) 2.11469e8 0.279365
\(95\) −8.14506e7 −0.102598
\(96\) −4.59776e8 −0.552492
\(97\) 1.27450e9 1.46173 0.730863 0.682524i \(-0.239118\pi\)
0.730863 + 0.682524i \(0.239118\pi\)
\(98\) 4.30159e7 0.0471098
\(99\) 4.84494e8 0.506909
\(100\) −1.67638e8 −0.167638
\(101\) 1.19960e9 1.14707 0.573533 0.819182i \(-0.305572\pi\)
0.573533 + 0.819182i \(0.305572\pi\)
\(102\) −2.22828e8 −0.203830
\(103\) −1.98407e9 −1.73696 −0.868479 0.495726i \(-0.834902\pi\)
−0.868479 + 0.495726i \(0.834902\pi\)
\(104\) −4.13028e8 −0.346202
\(105\) −3.39903e8 −0.272900
\(106\) 5.57184e8 0.428669
\(107\) 1.26262e9 0.931203 0.465602 0.884994i \(-0.345838\pi\)
0.465602 + 0.884994i \(0.345838\pi\)
\(108\) 2.28070e8 0.161310
\(109\) 2.25160e9 1.52782 0.763909 0.645325i \(-0.223278\pi\)
0.763909 + 0.645325i \(0.223278\pi\)
\(110\) 4.20084e8 0.273570
\(111\) 3.85552e8 0.241063
\(112\) 9.51761e8 0.571540
\(113\) 1.24737e9 0.719684 0.359842 0.933013i \(-0.382831\pi\)
0.359842 + 0.933013i \(0.382831\pi\)
\(114\) 9.60809e7 0.0532801
\(115\) 1.47101e9 0.784290
\(116\) 9.59473e8 0.492008
\(117\) 3.16338e8 0.156068
\(118\) 1.08705e8 0.0516154
\(119\) 2.02925e9 0.927629
\(120\) 4.33674e8 0.190918
\(121\) 3.09506e9 1.31261
\(122\) 102127. 4.17370e−5 0
\(123\) 8.04865e8 0.317066
\(124\) −8.06083e7 −0.0306184
\(125\) 2.44141e8 0.0894427
\(126\) 4.00957e8 0.141720
\(127\) 5.30406e8 0.180922 0.0904611 0.995900i \(-0.471166\pi\)
0.0904611 + 0.995900i \(0.471166\pi\)
\(128\) −3.09659e9 −1.01962
\(129\) 5.50385e8 0.174990
\(130\) 2.74283e8 0.0842275
\(131\) −7.89230e8 −0.234144 −0.117072 0.993123i \(-0.537351\pi\)
−0.117072 + 0.993123i \(0.537351\pi\)
\(132\) 2.56694e9 0.735923
\(133\) −8.74992e8 −0.242478
\(134\) −1.49345e9 −0.400148
\(135\) −3.32151e8 −0.0860663
\(136\) −2.58907e9 −0.648962
\(137\) 4.73758e9 1.14898 0.574492 0.818510i \(-0.305199\pi\)
0.574492 + 0.818510i \(0.305199\pi\)
\(138\) −1.73524e9 −0.407290
\(139\) −3.68582e9 −0.837467 −0.418733 0.908109i \(-0.637526\pi\)
−0.418733 + 0.908109i \(0.637526\pi\)
\(140\) −1.80087e9 −0.396192
\(141\) −1.88189e9 −0.400967
\(142\) −2.29052e9 −0.472755
\(143\) 3.56040e9 0.712011
\(144\) 9.30054e8 0.180251
\(145\) −1.39734e9 −0.262509
\(146\) −1.01527e9 −0.184924
\(147\) −3.82803e8 −0.0676157
\(148\) 2.04273e9 0.349972
\(149\) 2.99273e9 0.497427 0.248713 0.968577i \(-0.419992\pi\)
0.248713 + 0.968577i \(0.419992\pi\)
\(150\) −2.87994e8 −0.0464486
\(151\) −1.80123e9 −0.281950 −0.140975 0.990013i \(-0.545024\pi\)
−0.140975 + 0.990013i \(0.545024\pi\)
\(152\) 1.11638e9 0.169635
\(153\) 1.98297e9 0.292553
\(154\) 4.51280e9 0.646550
\(155\) 1.17394e8 0.0163363
\(156\) 1.67602e9 0.226578
\(157\) 2.55432e7 0.00335527 0.00167763 0.999999i \(-0.499466\pi\)
0.00167763 + 0.999999i \(0.499466\pi\)
\(158\) 2.79480e9 0.356775
\(159\) −4.95845e9 −0.615260
\(160\) 3.54766e9 0.427959
\(161\) 1.58025e10 1.85358
\(162\) 3.91812e8 0.0446951
\(163\) −4.93545e8 −0.0547624 −0.0273812 0.999625i \(-0.508717\pi\)
−0.0273812 + 0.999625i \(0.508717\pi\)
\(164\) 4.26432e9 0.460313
\(165\) −3.73838e9 −0.392650
\(166\) −2.02083e9 −0.206559
\(167\) 1.50775e10 1.50005 0.750023 0.661411i \(-0.230042\pi\)
0.750023 + 0.661411i \(0.230042\pi\)
\(168\) 4.65879e9 0.451213
\(169\) −8.27983e9 −0.780784
\(170\) 1.71935e9 0.157886
\(171\) −8.55036e8 −0.0764719
\(172\) 2.91604e9 0.254048
\(173\) 1.58614e10 1.34627 0.673136 0.739519i \(-0.264947\pi\)
0.673136 + 0.739519i \(0.264947\pi\)
\(174\) 1.64833e9 0.136324
\(175\) 2.62271e9 0.211387
\(176\) 1.04678e10 0.822336
\(177\) −9.67377e8 −0.0740826
\(178\) −3.60510e9 −0.269170
\(179\) −1.89078e10 −1.37658 −0.688292 0.725433i \(-0.741639\pi\)
−0.688292 + 0.725433i \(0.741639\pi\)
\(180\) −1.75980e9 −0.124950
\(181\) −1.04679e10 −0.724949 −0.362474 0.931994i \(-0.618068\pi\)
−0.362474 + 0.931994i \(0.618068\pi\)
\(182\) 2.94651e9 0.199062
\(183\) −908840. −5.99043e−5 0
\(184\) −2.01621e10 −1.29675
\(185\) −2.97494e9 −0.186726
\(186\) −1.38481e8 −0.00848363
\(187\) 2.23184e10 1.33468
\(188\) −9.97061e9 −0.582119
\(189\) −3.56817e9 −0.203407
\(190\) −7.41365e8 −0.0412706
\(191\) 2.24819e10 1.22231 0.611157 0.791510i \(-0.290704\pi\)
0.611157 + 0.791510i \(0.290704\pi\)
\(192\) 1.69397e9 0.0899600
\(193\) −2.49373e10 −1.29372 −0.646861 0.762608i \(-0.723919\pi\)
−0.646861 + 0.762608i \(0.723919\pi\)
\(194\) 1.16005e10 0.587989
\(195\) −2.44088e9 −0.120890
\(196\) −2.02816e9 −0.0981637
\(197\) 2.81285e10 1.33060 0.665301 0.746575i \(-0.268303\pi\)
0.665301 + 0.746575i \(0.268303\pi\)
\(198\) 4.40987e9 0.203907
\(199\) 9.44259e9 0.426827 0.213414 0.976962i \(-0.431542\pi\)
0.213414 + 0.976962i \(0.431542\pi\)
\(200\) −3.34625e9 −0.147885
\(201\) 1.32904e10 0.574324
\(202\) 1.09187e10 0.461415
\(203\) −1.50110e10 −0.620409
\(204\) 1.05061e10 0.424725
\(205\) −6.21038e9 −0.245598
\(206\) −1.80590e10 −0.698702
\(207\) 1.54421e10 0.584575
\(208\) 6.83469e9 0.253183
\(209\) −9.62348e9 −0.348878
\(210\) −3.09380e9 −0.109776
\(211\) −2.64016e10 −0.916979 −0.458490 0.888700i \(-0.651609\pi\)
−0.458490 + 0.888700i \(0.651609\pi\)
\(212\) −2.62708e10 −0.893227
\(213\) 2.03836e10 0.678535
\(214\) 1.14924e10 0.374582
\(215\) −4.24680e9 −0.135547
\(216\) 4.55253e9 0.142302
\(217\) 1.26112e9 0.0386090
\(218\) 2.04941e10 0.614574
\(219\) 9.03499e9 0.265417
\(220\) −1.98066e10 −0.570044
\(221\) 1.45723e10 0.410924
\(222\) 3.50931e9 0.0969690
\(223\) −1.06653e10 −0.288802 −0.144401 0.989519i \(-0.546126\pi\)
−0.144401 + 0.989519i \(0.546126\pi\)
\(224\) 3.81111e10 1.01143
\(225\) 2.56289e9 0.0666667
\(226\) 1.13536e10 0.289497
\(227\) 7.08993e10 1.77225 0.886126 0.463444i \(-0.153387\pi\)
0.886126 + 0.463444i \(0.153387\pi\)
\(228\) −4.53014e9 −0.111021
\(229\) −5.41317e10 −1.30074 −0.650372 0.759616i \(-0.725387\pi\)
−0.650372 + 0.759616i \(0.725387\pi\)
\(230\) 1.33892e10 0.315486
\(231\) −4.01599e10 −0.927981
\(232\) 1.91522e10 0.434033
\(233\) −6.94395e10 −1.54349 −0.771747 0.635930i \(-0.780617\pi\)
−0.771747 + 0.635930i \(0.780617\pi\)
\(234\) 2.87931e9 0.0627794
\(235\) 1.45208e10 0.310588
\(236\) −5.12535e9 −0.107552
\(237\) −2.48713e10 −0.512071
\(238\) 1.84703e10 0.373145
\(239\) 3.81772e10 0.756857 0.378428 0.925631i \(-0.376465\pi\)
0.378428 + 0.925631i \(0.376465\pi\)
\(240\) −7.17634e9 −0.139622
\(241\) 7.74173e10 1.47830 0.739148 0.673543i \(-0.235228\pi\)
0.739148 + 0.673543i \(0.235228\pi\)
\(242\) 2.81713e10 0.528004
\(243\) −3.48678e9 −0.0641500
\(244\) −4.81521e6 −8.69683e−5 0
\(245\) 2.95373e9 0.0523749
\(246\) 7.32590e9 0.127542
\(247\) −6.28341e9 −0.107414
\(248\) −1.60903e9 −0.0270105
\(249\) 1.79836e10 0.296469
\(250\) 2.22217e9 0.0359789
\(251\) −9.78869e10 −1.55666 −0.778329 0.627857i \(-0.783932\pi\)
−0.778329 + 0.627857i \(0.783932\pi\)
\(252\) −1.89048e10 −0.295304
\(253\) 1.73802e11 2.66694
\(254\) 4.82777e9 0.0727771
\(255\) −1.53007e10 −0.226611
\(256\) −1.74777e10 −0.254334
\(257\) −1.15233e11 −1.64770 −0.823848 0.566811i \(-0.808177\pi\)
−0.823848 + 0.566811i \(0.808177\pi\)
\(258\) 5.00962e9 0.0703908
\(259\) −3.19586e10 −0.441306
\(260\) −1.29322e10 −0.175507
\(261\) −1.46687e10 −0.195663
\(262\) −7.18359e9 −0.0941858
\(263\) 1.36007e11 1.75291 0.876457 0.481480i \(-0.159901\pi\)
0.876457 + 0.481480i \(0.159901\pi\)
\(264\) 5.12391e10 0.649207
\(265\) 3.82596e10 0.476578
\(266\) −7.96420e9 −0.0975382
\(267\) 3.20822e10 0.386335
\(268\) 7.04152e10 0.833796
\(269\) 3.25828e10 0.379406 0.189703 0.981842i \(-0.439248\pi\)
0.189703 + 0.981842i \(0.439248\pi\)
\(270\) −3.02324e9 −0.0346207
\(271\) 5.73435e10 0.645836 0.322918 0.946427i \(-0.395336\pi\)
0.322918 + 0.946427i \(0.395336\pi\)
\(272\) 4.28434e10 0.474596
\(273\) −2.62214e10 −0.285709
\(274\) 4.31216e10 0.462186
\(275\) 2.88455e10 0.304145
\(276\) 8.18153e10 0.848679
\(277\) 1.39079e11 1.41940 0.709699 0.704505i \(-0.248831\pi\)
0.709699 + 0.704505i \(0.248831\pi\)
\(278\) −3.35484e10 −0.336876
\(279\) 1.23236e9 0.0121764
\(280\) −3.59474e10 −0.349508
\(281\) −9.57958e10 −0.916575 −0.458287 0.888804i \(-0.651537\pi\)
−0.458287 + 0.888804i \(0.651537\pi\)
\(282\) −1.71290e10 −0.161291
\(283\) 6.26835e10 0.580917 0.290459 0.956888i \(-0.406192\pi\)
0.290459 + 0.956888i \(0.406192\pi\)
\(284\) 1.07996e11 0.985089
\(285\) 6.59750e9 0.0592349
\(286\) 3.24068e10 0.286411
\(287\) −6.67157e10 −0.580443
\(288\) 3.72419e10 0.318981
\(289\) −2.72414e10 −0.229715
\(290\) −1.27186e10 −0.105596
\(291\) −1.03234e11 −0.843928
\(292\) 4.78691e10 0.385329
\(293\) −7.20022e10 −0.570744 −0.285372 0.958417i \(-0.592117\pi\)
−0.285372 + 0.958417i \(0.592117\pi\)
\(294\) −3.48428e9 −0.0271989
\(295\) 7.46433e9 0.0573841
\(296\) 4.07752e10 0.308734
\(297\) −3.92440e10 −0.292664
\(298\) 2.72399e10 0.200093
\(299\) 1.13480e11 0.821103
\(300\) 1.35787e10 0.0967858
\(301\) −4.56217e10 −0.320348
\(302\) −1.63948e10 −0.113416
\(303\) −9.71672e10 −0.662259
\(304\) −1.84736e10 −0.124057
\(305\) 7.01266e6 4.64016e−5 0
\(306\) 1.80490e10 0.117681
\(307\) 2.19126e11 1.40790 0.703948 0.710252i \(-0.251419\pi\)
0.703948 + 0.710252i \(0.251419\pi\)
\(308\) −2.12775e11 −1.34723
\(309\) 1.60710e11 1.00283
\(310\) 1.06853e9 0.00657139
\(311\) 8.30389e10 0.503338 0.251669 0.967813i \(-0.419021\pi\)
0.251669 + 0.967813i \(0.419021\pi\)
\(312\) 3.34552e10 0.199880
\(313\) −7.13234e10 −0.420032 −0.210016 0.977698i \(-0.567352\pi\)
−0.210016 + 0.977698i \(0.567352\pi\)
\(314\) 2.32495e8 0.00134968
\(315\) 2.75321e10 0.157559
\(316\) −1.31773e11 −0.743419
\(317\) 1.22647e10 0.0682165 0.0341083 0.999418i \(-0.489141\pi\)
0.0341083 + 0.999418i \(0.489141\pi\)
\(318\) −4.51319e10 −0.247492
\(319\) −1.65097e11 −0.892648
\(320\) −1.30707e10 −0.0696827
\(321\) −1.02272e11 −0.537630
\(322\) 1.43835e11 0.745613
\(323\) −3.93877e10 −0.201349
\(324\) −1.84736e10 −0.0931322
\(325\) 1.88339e10 0.0936409
\(326\) −4.49226e9 −0.0220285
\(327\) −1.82379e11 −0.882086
\(328\) 8.51209e10 0.406073
\(329\) 1.55991e11 0.734037
\(330\) −3.40268e10 −0.157946
\(331\) −1.70317e11 −0.779889 −0.389944 0.920838i \(-0.627506\pi\)
−0.389944 + 0.920838i \(0.627506\pi\)
\(332\) 9.52805e10 0.430410
\(333\) −3.12297e10 −0.139178
\(334\) 1.37236e11 0.603403
\(335\) −1.02550e11 −0.444869
\(336\) −7.70927e10 −0.329979
\(337\) 9.72564e10 0.410756 0.205378 0.978683i \(-0.434158\pi\)
0.205378 + 0.978683i \(0.434158\pi\)
\(338\) −7.53632e10 −0.314075
\(339\) −1.01037e11 −0.415510
\(340\) −8.10659e10 −0.328990
\(341\) 1.38703e10 0.0555508
\(342\) −7.78256e9 −0.0307613
\(343\) −2.39209e11 −0.933154
\(344\) 5.82076e10 0.224113
\(345\) −1.19152e11 −0.452810
\(346\) 1.44370e11 0.541546
\(347\) −1.28565e10 −0.0476037 −0.0238019 0.999717i \(-0.507577\pi\)
−0.0238019 + 0.999717i \(0.507577\pi\)
\(348\) −7.77173e10 −0.284061
\(349\) 2.08670e11 0.752915 0.376458 0.926434i \(-0.377142\pi\)
0.376458 + 0.926434i \(0.377142\pi\)
\(350\) 2.38719e10 0.0850318
\(351\) −2.56234e10 −0.0901060
\(352\) 4.19160e11 1.45525
\(353\) 2.05435e11 0.704187 0.352094 0.935965i \(-0.385470\pi\)
0.352094 + 0.935965i \(0.385470\pi\)
\(354\) −8.80509e9 −0.0298002
\(355\) −1.57281e11 −0.525591
\(356\) 1.69978e11 0.560876
\(357\) −1.64369e11 −0.535567
\(358\) −1.72099e11 −0.553740
\(359\) 4.80510e11 1.52678 0.763391 0.645936i \(-0.223533\pi\)
0.763391 + 0.645936i \(0.223533\pi\)
\(360\) −3.51276e10 −0.110227
\(361\) 1.69836e10 0.0526316
\(362\) −9.52794e10 −0.291615
\(363\) −2.50700e11 −0.757834
\(364\) −1.38926e11 −0.414789
\(365\) −6.97144e10 −0.205591
\(366\) −8.27228e6 −2.40969e−5 0
\(367\) −5.21160e11 −1.49959 −0.749797 0.661668i \(-0.769849\pi\)
−0.749797 + 0.661668i \(0.769849\pi\)
\(368\) 3.33638e11 0.948331
\(369\) −6.51940e10 −0.183058
\(370\) −2.70780e10 −0.0751119
\(371\) 4.11008e11 1.12634
\(372\) 6.52927e9 0.0176775
\(373\) −4.18600e10 −0.111972 −0.0559860 0.998432i \(-0.517830\pi\)
−0.0559860 + 0.998432i \(0.517830\pi\)
\(374\) 2.03143e11 0.536883
\(375\) −1.97754e10 −0.0516398
\(376\) −1.99025e11 −0.513526
\(377\) −1.07796e11 −0.274831
\(378\) −3.24775e10 −0.0818219
\(379\) −1.73975e11 −0.433123 −0.216561 0.976269i \(-0.569484\pi\)
−0.216561 + 0.976269i \(0.569484\pi\)
\(380\) 3.49548e10 0.0859965
\(381\) −4.29629e10 −0.104455
\(382\) 2.04631e11 0.491683
\(383\) −5.69818e11 −1.35314 −0.676568 0.736380i \(-0.736533\pi\)
−0.676568 + 0.736380i \(0.736533\pi\)
\(384\) 2.50824e11 0.588679
\(385\) 3.09876e11 0.718811
\(386\) −2.26979e11 −0.520408
\(387\) −4.45812e10 −0.101030
\(388\) −5.46955e11 −1.22520
\(389\) −3.80391e11 −0.842281 −0.421141 0.906995i \(-0.638370\pi\)
−0.421141 + 0.906995i \(0.638370\pi\)
\(390\) −2.22169e10 −0.0486287
\(391\) 7.11349e11 1.53917
\(392\) −4.04845e10 −0.0865967
\(393\) 6.39276e10 0.135183
\(394\) 2.56026e11 0.535243
\(395\) 1.91908e11 0.396649
\(396\) −2.07922e11 −0.424886
\(397\) 7.20671e10 0.145606 0.0728031 0.997346i \(-0.476806\pi\)
0.0728031 + 0.997346i \(0.476806\pi\)
\(398\) 8.59466e10 0.171694
\(399\) 7.08744e10 0.139995
\(400\) 5.53730e10 0.108150
\(401\) 4.17281e11 0.805896 0.402948 0.915223i \(-0.367986\pi\)
0.402948 + 0.915223i \(0.367986\pi\)
\(402\) 1.20970e11 0.231025
\(403\) 9.05624e9 0.0171031
\(404\) −5.14810e11 −0.961460
\(405\) 2.69042e10 0.0496904
\(406\) −1.36631e11 −0.249564
\(407\) −3.51493e11 −0.634953
\(408\) 2.09715e11 0.374678
\(409\) −7.33241e10 −0.129566 −0.0647831 0.997899i \(-0.520636\pi\)
−0.0647831 + 0.997899i \(0.520636\pi\)
\(410\) −5.65270e10 −0.0987935
\(411\) −3.83744e11 −0.663367
\(412\) 8.51470e11 1.45590
\(413\) 8.01864e10 0.135621
\(414\) 1.40555e11 0.235149
\(415\) −1.38762e11 −0.229644
\(416\) 2.73680e11 0.448046
\(417\) 2.98551e11 0.483512
\(418\) −8.75932e10 −0.140339
\(419\) −6.46164e11 −1.02419 −0.512094 0.858929i \(-0.671130\pi\)
−0.512094 + 0.858929i \(0.671130\pi\)
\(420\) 1.45870e11 0.228742
\(421\) 3.56296e11 0.552766 0.276383 0.961048i \(-0.410864\pi\)
0.276383 + 0.961048i \(0.410864\pi\)
\(422\) −2.40308e11 −0.368861
\(423\) 1.52433e11 0.231498
\(424\) −5.24395e11 −0.787975
\(425\) 1.18061e11 0.175532
\(426\) 1.85532e11 0.272945
\(427\) 7.53343e7 0.000109665 0
\(428\) −5.41856e11 −0.780525
\(429\) −2.88392e11 −0.411080
\(430\) −3.86544e10 −0.0545245
\(431\) 5.09663e11 0.711436 0.355718 0.934593i \(-0.384236\pi\)
0.355718 + 0.934593i \(0.384236\pi\)
\(432\) −7.53344e10 −0.104068
\(433\) −7.97045e11 −1.08965 −0.544825 0.838550i \(-0.683404\pi\)
−0.544825 + 0.838550i \(0.683404\pi\)
\(434\) 1.14788e10 0.0155307
\(435\) 1.13184e11 0.151560
\(436\) −9.66280e11 −1.28060
\(437\) −3.06727e11 −0.402332
\(438\) 8.22366e10 0.106766
\(439\) −6.82610e11 −0.877167 −0.438583 0.898691i \(-0.644520\pi\)
−0.438583 + 0.898691i \(0.644520\pi\)
\(440\) −3.95363e11 −0.502874
\(441\) 3.10071e10 0.0390380
\(442\) 1.32637e11 0.165297
\(443\) −6.88984e11 −0.849948 −0.424974 0.905206i \(-0.639717\pi\)
−0.424974 + 0.905206i \(0.639717\pi\)
\(444\) −1.65461e11 −0.202056
\(445\) −2.47548e11 −0.299254
\(446\) −9.70756e10 −0.116173
\(447\) −2.42411e11 −0.287190
\(448\) −1.40414e11 −0.164687
\(449\) −9.59035e11 −1.11359 −0.556796 0.830650i \(-0.687969\pi\)
−0.556796 + 0.830650i \(0.687969\pi\)
\(450\) 2.33275e10 0.0268171
\(451\) −7.33763e11 −0.835144
\(452\) −5.35312e11 −0.603232
\(453\) 1.45899e11 0.162784
\(454\) 6.45327e11 0.712900
\(455\) 2.02326e11 0.221309
\(456\) −9.04269e10 −0.0979390
\(457\) 1.28438e12 1.37743 0.688717 0.725031i \(-0.258174\pi\)
0.688717 + 0.725031i \(0.258174\pi\)
\(458\) −4.92707e11 −0.523232
\(459\) −1.60621e11 −0.168906
\(460\) −6.31291e11 −0.657384
\(461\) 9.19279e11 0.947967 0.473983 0.880534i \(-0.342816\pi\)
0.473983 + 0.880534i \(0.342816\pi\)
\(462\) −3.65536e11 −0.373286
\(463\) 1.40861e12 1.42454 0.712270 0.701905i \(-0.247667\pi\)
0.712270 + 0.701905i \(0.247667\pi\)
\(464\) −3.16927e11 −0.317415
\(465\) −9.50894e9 −0.00943179
\(466\) −6.32040e11 −0.620880
\(467\) −6.08957e11 −0.592462 −0.296231 0.955116i \(-0.595730\pi\)
−0.296231 + 0.955116i \(0.595730\pi\)
\(468\) −1.35757e11 −0.130815
\(469\) −1.10165e12 −1.05140
\(470\) 1.32168e11 0.124936
\(471\) −2.06900e9 −0.00193716
\(472\) −1.02308e11 −0.0948790
\(473\) −5.01764e11 −0.460919
\(474\) −2.26379e11 −0.205984
\(475\) −5.09066e10 −0.0458831
\(476\) −8.70860e11 −0.777530
\(477\) 4.01634e11 0.355220
\(478\) 3.47490e11 0.304450
\(479\) −2.06118e12 −1.78898 −0.894491 0.447085i \(-0.852462\pi\)
−0.894491 + 0.447085i \(0.852462\pi\)
\(480\) −2.87360e11 −0.247082
\(481\) −2.29498e11 −0.195491
\(482\) 7.04654e11 0.594654
\(483\) −1.28001e12 −1.07016
\(484\) −1.32825e12 −1.10021
\(485\) 7.96561e11 0.653704
\(486\) −3.17368e10 −0.0258048
\(487\) −1.18779e12 −0.956884 −0.478442 0.878119i \(-0.658798\pi\)
−0.478442 + 0.878119i \(0.658798\pi\)
\(488\) −9.61171e7 −7.67205e−5 0
\(489\) 3.99771e10 0.0316171
\(490\) 2.68849e10 0.0210681
\(491\) 1.01285e12 0.786460 0.393230 0.919440i \(-0.371358\pi\)
0.393230 + 0.919440i \(0.371358\pi\)
\(492\) −3.45410e11 −0.265762
\(493\) −6.75720e11 −0.515176
\(494\) −5.71917e10 −0.0432078
\(495\) 3.02808e11 0.226696
\(496\) 2.66260e10 0.0197532
\(497\) −1.68961e12 −1.24217
\(498\) 1.63687e11 0.119257
\(499\) 1.10300e12 0.796382 0.398191 0.917303i \(-0.369638\pi\)
0.398191 + 0.917303i \(0.369638\pi\)
\(500\) −1.04774e11 −0.0749700
\(501\) −1.22128e12 −0.866052
\(502\) −8.90969e11 −0.626175
\(503\) −2.17428e12 −1.51447 −0.757233 0.653144i \(-0.773449\pi\)
−0.757233 + 0.653144i \(0.773449\pi\)
\(504\) −3.77362e11 −0.260508
\(505\) 7.49747e11 0.512984
\(506\) 1.58195e12 1.07279
\(507\) 6.70666e11 0.450786
\(508\) −2.27626e11 −0.151647
\(509\) 6.36726e11 0.420458 0.210229 0.977652i \(-0.432579\pi\)
0.210229 + 0.977652i \(0.432579\pi\)
\(510\) −1.39267e11 −0.0911555
\(511\) −7.48915e11 −0.485890
\(512\) 1.42637e12 0.917315
\(513\) 6.92579e10 0.0441511
\(514\) −1.04885e12 −0.662796
\(515\) −1.24004e12 −0.776791
\(516\) −2.36199e11 −0.146675
\(517\) 1.71564e12 1.05614
\(518\) −2.90888e11 −0.177518
\(519\) −1.28477e12 −0.777271
\(520\) −2.58142e11 −0.154826
\(521\) −2.37643e12 −1.41304 −0.706521 0.707692i \(-0.749736\pi\)
−0.706521 + 0.707692i \(0.749736\pi\)
\(522\) −1.33514e11 −0.0787066
\(523\) −2.16146e12 −1.26325 −0.631626 0.775273i \(-0.717612\pi\)
−0.631626 + 0.775273i \(0.717612\pi\)
\(524\) 3.38700e11 0.196257
\(525\) −2.12439e11 −0.122044
\(526\) 1.23794e12 0.705121
\(527\) 5.67692e10 0.0320601
\(528\) −8.47893e11 −0.474776
\(529\) 3.73839e12 2.07555
\(530\) 3.48240e11 0.191707
\(531\) 7.83576e10 0.0427716
\(532\) 3.75506e11 0.203242
\(533\) −4.79092e11 −0.257126
\(534\) 2.92013e11 0.155406
\(535\) 7.89135e11 0.416447
\(536\) 1.40557e12 0.735547
\(537\) 1.53153e12 0.794772
\(538\) 2.96570e11 0.152618
\(539\) 3.48987e11 0.178098
\(540\) 1.42544e11 0.0721399
\(541\) 2.68093e12 1.34554 0.672771 0.739851i \(-0.265104\pi\)
0.672771 + 0.739851i \(0.265104\pi\)
\(542\) 5.21941e11 0.259792
\(543\) 8.47903e11 0.418549
\(544\) 1.71557e12 0.839871
\(545\) 1.40725e12 0.683261
\(546\) −2.38668e11 −0.114928
\(547\) 6.88362e11 0.328756 0.164378 0.986397i \(-0.447438\pi\)
0.164378 + 0.986397i \(0.447438\pi\)
\(548\) −2.03315e12 −0.963067
\(549\) 7.36161e7 3.45857e−5 0
\(550\) 2.62552e11 0.122344
\(551\) 2.91363e11 0.134664
\(552\) 1.63313e12 0.748677
\(553\) 2.06159e12 0.937432
\(554\) 1.26590e12 0.570962
\(555\) 2.40970e11 0.107807
\(556\) 1.58178e12 0.701956
\(557\) 2.15568e12 0.948932 0.474466 0.880274i \(-0.342641\pi\)
0.474466 + 0.880274i \(0.342641\pi\)
\(558\) 1.12170e10 0.00489803
\(559\) −3.27614e11 −0.141909
\(560\) 5.94851e11 0.255601
\(561\) −1.80779e12 −0.770577
\(562\) −8.71935e11 −0.368698
\(563\) 3.41510e12 1.43257 0.716285 0.697807i \(-0.245841\pi\)
0.716285 + 0.697807i \(0.245841\pi\)
\(564\) 8.07620e11 0.336086
\(565\) 7.79605e11 0.321852
\(566\) 5.70547e11 0.233678
\(567\) 2.89021e11 0.117437
\(568\) 2.15573e12 0.869013
\(569\) −1.10361e12 −0.441378 −0.220689 0.975344i \(-0.570831\pi\)
−0.220689 + 0.975344i \(0.570831\pi\)
\(570\) 6.00506e10 0.0238276
\(571\) 2.26641e12 0.892227 0.446114 0.894976i \(-0.352808\pi\)
0.446114 + 0.894976i \(0.352808\pi\)
\(572\) −1.52796e12 −0.596800
\(573\) −1.82103e12 −0.705703
\(574\) −6.07247e11 −0.233487
\(575\) 9.19384e11 0.350745
\(576\) −1.37211e11 −0.0519384
\(577\) −1.29552e12 −0.486579 −0.243290 0.969954i \(-0.578227\pi\)
−0.243290 + 0.969954i \(0.578227\pi\)
\(578\) −2.47952e11 −0.0924042
\(579\) 2.01992e12 0.746930
\(580\) 5.99671e11 0.220033
\(581\) −1.49067e12 −0.542736
\(582\) −9.39641e11 −0.339475
\(583\) 4.52042e12 1.62058
\(584\) 9.55522e11 0.339925
\(585\) 1.97711e11 0.0697958
\(586\) −6.55365e11 −0.229585
\(587\) 3.07246e12 1.06811 0.534053 0.845451i \(-0.320668\pi\)
0.534053 + 0.845451i \(0.320668\pi\)
\(588\) 1.64281e11 0.0566748
\(589\) −2.44783e10 −0.00838036
\(590\) 6.79405e10 0.0230831
\(591\) −2.27841e12 −0.768224
\(592\) −6.74740e11 −0.225782
\(593\) −5.63854e12 −1.87249 −0.936247 0.351341i \(-0.885726\pi\)
−0.936247 + 0.351341i \(0.885726\pi\)
\(594\) −3.57199e11 −0.117726
\(595\) 1.26828e12 0.414848
\(596\) −1.28434e12 −0.416938
\(597\) −7.64849e11 −0.246429
\(598\) 1.03289e12 0.330294
\(599\) −3.28316e12 −1.04201 −0.521004 0.853554i \(-0.674442\pi\)
−0.521004 + 0.853554i \(0.674442\pi\)
\(600\) 2.71046e11 0.0853813
\(601\) 1.38459e11 0.0432898 0.0216449 0.999766i \(-0.493110\pi\)
0.0216449 + 0.999766i \(0.493110\pi\)
\(602\) −4.15250e11 −0.128862
\(603\) −1.07652e12 −0.331586
\(604\) 7.73003e11 0.236328
\(605\) 1.93441e12 0.587015
\(606\) −8.84418e11 −0.266398
\(607\) −8.17186e11 −0.244327 −0.122164 0.992510i \(-0.538983\pi\)
−0.122164 + 0.992510i \(0.538983\pi\)
\(608\) −7.39735e11 −0.219538
\(609\) 1.21589e12 0.358193
\(610\) 6.38294e7 1.86654e−5 0
\(611\) 1.12019e12 0.325166
\(612\) −8.50998e11 −0.245215
\(613\) 7.82596e11 0.223854 0.111927 0.993716i \(-0.464298\pi\)
0.111927 + 0.993716i \(0.464298\pi\)
\(614\) 1.99449e12 0.566335
\(615\) 5.03041e11 0.141796
\(616\) −4.24723e12 −1.18848
\(617\) −4.18412e12 −1.16231 −0.581154 0.813794i \(-0.697399\pi\)
−0.581154 + 0.813794i \(0.697399\pi\)
\(618\) 1.46278e12 0.403396
\(619\) 3.59757e12 0.984921 0.492461 0.870335i \(-0.336098\pi\)
0.492461 + 0.870335i \(0.336098\pi\)
\(620\) −5.03802e10 −0.0136929
\(621\) −1.25081e12 −0.337505
\(622\) 7.55822e11 0.202471
\(623\) −2.65931e12 −0.707251
\(624\) −5.53610e11 −0.146175
\(625\) 1.52588e11 0.0400000
\(626\) −6.49187e11 −0.168961
\(627\) 7.79502e11 0.201425
\(628\) −1.09619e10 −0.00281235
\(629\) −1.43861e12 −0.366451
\(630\) 2.50598e11 0.0633790
\(631\) 3.77704e12 0.948462 0.474231 0.880401i \(-0.342726\pi\)
0.474231 + 0.880401i \(0.342726\pi\)
\(632\) −2.63033e12 −0.655819
\(633\) 2.13853e12 0.529418
\(634\) 1.11633e11 0.0274405
\(635\) 3.31504e11 0.0809109
\(636\) 2.12793e12 0.515705
\(637\) 2.27862e11 0.0548333
\(638\) −1.50271e12 −0.359073
\(639\) −1.65107e12 −0.391753
\(640\) −1.93537e12 −0.455989
\(641\) 7.15759e11 0.167458 0.0837289 0.996489i \(-0.473317\pi\)
0.0837289 + 0.996489i \(0.473317\pi\)
\(642\) −9.30881e11 −0.216265
\(643\) 7.72725e11 0.178269 0.0891345 0.996020i \(-0.471590\pi\)
0.0891345 + 0.996020i \(0.471590\pi\)
\(644\) −6.78171e12 −1.55365
\(645\) 3.43991e11 0.0782578
\(646\) −3.58507e11 −0.0809938
\(647\) 8.14391e12 1.82711 0.913553 0.406720i \(-0.133328\pi\)
0.913553 + 0.406720i \(0.133328\pi\)
\(648\) −3.68755e11 −0.0821582
\(649\) 8.81919e11 0.195132
\(650\) 1.71427e11 0.0376677
\(651\) −1.02151e11 −0.0222909
\(652\) 2.11806e11 0.0459013
\(653\) 6.54498e12 1.40864 0.704318 0.709885i \(-0.251253\pi\)
0.704318 + 0.709885i \(0.251253\pi\)
\(654\) −1.66002e12 −0.354824
\(655\) −4.93269e11 −0.104712
\(656\) −1.40856e12 −0.296967
\(657\) −7.31834e11 −0.153239
\(658\) 1.41983e12 0.295271
\(659\) 6.27993e12 1.29709 0.648545 0.761176i \(-0.275378\pi\)
0.648545 + 0.761176i \(0.275378\pi\)
\(660\) 1.60434e12 0.329115
\(661\) 4.81592e12 0.981235 0.490617 0.871375i \(-0.336771\pi\)
0.490617 + 0.871375i \(0.336771\pi\)
\(662\) −1.55023e12 −0.313715
\(663\) −1.18035e12 −0.237247
\(664\) 1.90191e12 0.379694
\(665\) −5.46870e11 −0.108439
\(666\) −2.84254e11 −0.0559851
\(667\) −5.26208e12 −1.02942
\(668\) −6.47055e12 −1.25732
\(669\) 8.63888e11 0.166740
\(670\) −9.33409e11 −0.178951
\(671\) 8.28553e8 0.000157786 0
\(672\) −3.08700e12 −0.583949
\(673\) 7.99063e12 1.50146 0.750729 0.660610i \(-0.229702\pi\)
0.750729 + 0.660610i \(0.229702\pi\)
\(674\) 8.85230e11 0.165229
\(675\) −2.07594e11 −0.0384900
\(676\) 3.55331e12 0.654446
\(677\) −1.65437e12 −0.302680 −0.151340 0.988482i \(-0.548359\pi\)
−0.151340 + 0.988482i \(0.548359\pi\)
\(678\) −9.19640e11 −0.167141
\(679\) 8.55714e12 1.54495
\(680\) −1.61817e12 −0.290224
\(681\) −5.74284e12 −1.02321
\(682\) 1.26248e11 0.0223457
\(683\) 1.38265e12 0.243120 0.121560 0.992584i \(-0.461210\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(684\) 3.66941e11 0.0640980
\(685\) 2.96099e12 0.513842
\(686\) −2.17728e12 −0.375367
\(687\) 4.38466e12 0.750985
\(688\) −9.63207e11 −0.163897
\(689\) 2.95149e12 0.498948
\(690\) −1.08453e12 −0.182146
\(691\) 1.04232e13 1.73921 0.869604 0.493749i \(-0.164374\pi\)
0.869604 + 0.493749i \(0.164374\pi\)
\(692\) −6.80695e12 −1.12843
\(693\) 3.25295e12 0.535770
\(694\) −1.17020e11 −0.0191489
\(695\) −2.30364e12 −0.374526
\(696\) −1.55133e12 −0.250589
\(697\) −3.00320e12 −0.481988
\(698\) 1.89932e12 0.302865
\(699\) 5.62460e12 0.891137
\(700\) −1.12554e12 −0.177183
\(701\) 5.06089e11 0.0791581 0.0395791 0.999216i \(-0.487398\pi\)
0.0395791 + 0.999216i \(0.487398\pi\)
\(702\) −2.33224e11 −0.0362457
\(703\) 6.20316e11 0.0957886
\(704\) −1.54432e12 −0.236952
\(705\) −1.17618e12 −0.179318
\(706\) 1.86987e12 0.283264
\(707\) 8.05424e12 1.21238
\(708\) 4.15153e11 0.0620953
\(709\) 2.76713e12 0.411265 0.205632 0.978629i \(-0.434075\pi\)
0.205632 + 0.978629i \(0.434075\pi\)
\(710\) −1.43157e12 −0.211422
\(711\) 2.01457e12 0.295644
\(712\) 3.39295e12 0.494786
\(713\) 4.42083e11 0.0640621
\(714\) −1.49609e12 −0.215435
\(715\) 2.22525e12 0.318421
\(716\) 8.11435e12 1.15384
\(717\) −3.09235e12 −0.436971
\(718\) 4.37361e12 0.614158
\(719\) −1.71873e12 −0.239843 −0.119922 0.992783i \(-0.538264\pi\)
−0.119922 + 0.992783i \(0.538264\pi\)
\(720\) 5.81284e11 0.0806106
\(721\) −1.33213e13 −1.83585
\(722\) 1.54585e11 0.0211714
\(723\) −6.27081e12 −0.853495
\(724\) 4.49235e12 0.607645
\(725\) −8.73334e11 −0.117398
\(726\) −2.28187e12 −0.304843
\(727\) 1.26842e13 1.68406 0.842030 0.539430i \(-0.181360\pi\)
0.842030 + 0.539430i \(0.181360\pi\)
\(728\) −2.77312e12 −0.365913
\(729\) 2.82430e11 0.0370370
\(730\) −6.34542e11 −0.0827004
\(731\) −2.05366e12 −0.266011
\(732\) 3.90032e8 5.02111e−5 0
\(733\) 5.97034e12 0.763891 0.381945 0.924185i \(-0.375254\pi\)
0.381945 + 0.924185i \(0.375254\pi\)
\(734\) −4.74361e12 −0.603221
\(735\) −2.39252e11 −0.0302387
\(736\) 1.33598e13 1.67822
\(737\) −1.21164e13 −1.51275
\(738\) −5.93398e11 −0.0736363
\(739\) 3.12083e12 0.384920 0.192460 0.981305i \(-0.438353\pi\)
0.192460 + 0.981305i \(0.438353\pi\)
\(740\) 1.27671e12 0.156512
\(741\) 5.08956e11 0.0620152
\(742\) 3.74101e12 0.453076
\(743\) −2.65382e12 −0.319464 −0.159732 0.987160i \(-0.551063\pi\)
−0.159732 + 0.987160i \(0.551063\pi\)
\(744\) 1.30332e11 0.0155945
\(745\) 1.87046e12 0.222456
\(746\) −3.81010e11 −0.0450414
\(747\) −1.45667e12 −0.171167
\(748\) −9.57803e12 −1.11871
\(749\) 8.47737e12 0.984222
\(750\) −1.79996e11 −0.0207724
\(751\) −1.03430e13 −1.18650 −0.593248 0.805020i \(-0.702155\pi\)
−0.593248 + 0.805020i \(0.702155\pi\)
\(752\) 3.29342e12 0.375550
\(753\) 7.92884e12 0.898736
\(754\) −9.81159e11 −0.110552
\(755\) −1.12577e12 −0.126092
\(756\) 1.53129e12 0.170494
\(757\) −1.77921e13 −1.96922 −0.984612 0.174755i \(-0.944087\pi\)
−0.984612 + 0.174755i \(0.944087\pi\)
\(758\) −1.58353e12 −0.174226
\(759\) −1.40780e13 −1.53976
\(760\) 6.97738e11 0.0758632
\(761\) 9.71641e12 1.05021 0.525103 0.851038i \(-0.324027\pi\)
0.525103 + 0.851038i \(0.324027\pi\)
\(762\) −3.91049e11 −0.0420179
\(763\) 1.51175e13 1.61480
\(764\) −9.64818e12 −1.02453
\(765\) 1.23936e12 0.130834
\(766\) −5.18649e12 −0.544307
\(767\) 5.75827e11 0.0600776
\(768\) 1.41569e12 0.146840
\(769\) 1.59058e13 1.64017 0.820083 0.572244i \(-0.193927\pi\)
0.820083 + 0.572244i \(0.193927\pi\)
\(770\) 2.82050e12 0.289146
\(771\) 9.33385e12 0.951297
\(772\) 1.07019e13 1.08438
\(773\) −2.98616e12 −0.300819 −0.150409 0.988624i \(-0.548059\pi\)
−0.150409 + 0.988624i \(0.548059\pi\)
\(774\) −4.05779e11 −0.0406401
\(775\) 7.33715e10 0.00730583
\(776\) −1.09178e13 −1.08083
\(777\) 2.58865e12 0.254788
\(778\) −3.46233e12 −0.338813
\(779\) 1.29495e12 0.125989
\(780\) 1.04751e12 0.101329
\(781\) −1.85829e13 −1.78724
\(782\) 6.47472e12 0.619142
\(783\) 1.18816e12 0.112966
\(784\) 6.69929e11 0.0633296
\(785\) 1.59645e10 0.00150052
\(786\) 5.81870e11 0.0543782
\(787\) 7.99268e12 0.742688 0.371344 0.928495i \(-0.378897\pi\)
0.371344 + 0.928495i \(0.378897\pi\)
\(788\) −1.20714e13 −1.11530
\(789\) −1.10166e13 −1.01205
\(790\) 1.74675e12 0.159554
\(791\) 8.37500e12 0.760660
\(792\) −4.15036e12 −0.374820
\(793\) 5.40983e8 4.85796e−5 0
\(794\) 6.55956e11 0.0585710
\(795\) −3.09903e12 −0.275153
\(796\) −4.05232e12 −0.357762
\(797\) −4.03790e12 −0.354481 −0.177240 0.984168i \(-0.556717\pi\)
−0.177240 + 0.984168i \(0.556717\pi\)
\(798\) 6.45100e11 0.0563137
\(799\) 7.02191e12 0.609530
\(800\) 2.21729e12 0.191389
\(801\) −2.59866e12 −0.223051
\(802\) 3.79810e12 0.324177
\(803\) −8.23684e12 −0.699102
\(804\) −5.70363e12 −0.481392
\(805\) 9.87659e12 0.828945
\(806\) 8.24301e10 0.00687984
\(807\) −2.63921e12 −0.219050
\(808\) −1.02762e13 −0.848168
\(809\) 1.81646e10 0.00149093 0.000745464 1.00000i \(-0.499763\pi\)
0.000745464 1.00000i \(0.499763\pi\)
\(810\) 2.44883e11 0.0199883
\(811\) −7.94110e12 −0.644595 −0.322298 0.946638i \(-0.604455\pi\)
−0.322298 + 0.946638i \(0.604455\pi\)
\(812\) 6.44203e12 0.520021
\(813\) −4.64482e12 −0.372873
\(814\) −3.19929e12 −0.255414
\(815\) −3.08466e11 −0.0244905
\(816\) −3.47032e12 −0.274008
\(817\) 8.85515e11 0.0695339
\(818\) −6.67397e11 −0.0521188
\(819\) 2.12393e12 0.164954
\(820\) 2.66520e12 0.205858
\(821\) −2.38451e13 −1.83171 −0.915853 0.401514i \(-0.868484\pi\)
−0.915853 + 0.401514i \(0.868484\pi\)
\(822\) −3.49285e12 −0.266843
\(823\) −8.19985e11 −0.0623027 −0.0311513 0.999515i \(-0.509917\pi\)
−0.0311513 + 0.999515i \(0.509917\pi\)
\(824\) 1.69963e13 1.28435
\(825\) −2.33648e12 −0.175598
\(826\) 7.29858e11 0.0545542
\(827\) 2.12676e13 1.58104 0.790520 0.612436i \(-0.209810\pi\)
0.790520 + 0.612436i \(0.209810\pi\)
\(828\) −6.62704e12 −0.489985
\(829\) 2.38648e13 1.75494 0.877471 0.479629i \(-0.159229\pi\)
0.877471 + 0.479629i \(0.159229\pi\)
\(830\) −1.26302e12 −0.0923758
\(831\) −1.12654e13 −0.819489
\(832\) −1.00833e12 −0.0729534
\(833\) 1.42836e12 0.102786
\(834\) 2.71742e12 0.194496
\(835\) 9.42343e12 0.670841
\(836\) 4.12995e12 0.292426
\(837\) −9.98211e10 −0.00703004
\(838\) −5.88140e12 −0.411986
\(839\) 1.56706e13 1.09184 0.545918 0.837839i \(-0.316181\pi\)
0.545918 + 0.837839i \(0.316181\pi\)
\(840\) 2.91174e12 0.201788
\(841\) −9.50863e12 −0.655445
\(842\) 3.24301e12 0.222354
\(843\) 7.75946e12 0.529185
\(844\) 1.13303e13 0.768603
\(845\) −5.17489e12 −0.349177
\(846\) 1.38745e12 0.0931216
\(847\) 2.07806e13 1.38734
\(848\) 8.67758e12 0.576259
\(849\) −5.07736e12 −0.335393
\(850\) 1.07459e12 0.0706088
\(851\) −1.12030e13 −0.732238
\(852\) −8.74768e12 −0.568741
\(853\) 2.17264e12 0.140513 0.0702565 0.997529i \(-0.477618\pi\)
0.0702565 + 0.997529i \(0.477618\pi\)
\(854\) 6.85694e8 4.41133e−5 0
\(855\) −5.34398e11 −0.0341993
\(856\) −1.08161e13 −0.688553
\(857\) 1.93131e13 1.22303 0.611517 0.791231i \(-0.290560\pi\)
0.611517 + 0.791231i \(0.290560\pi\)
\(858\) −2.62495e12 −0.165359
\(859\) −2.47882e13 −1.55337 −0.776687 0.629887i \(-0.783101\pi\)
−0.776687 + 0.629887i \(0.783101\pi\)
\(860\) 1.82253e12 0.113614
\(861\) 5.40397e12 0.335119
\(862\) 4.63897e12 0.286179
\(863\) −1.89315e13 −1.16181 −0.580907 0.813970i \(-0.697302\pi\)
−0.580907 + 0.813970i \(0.697302\pi\)
\(864\) −3.01659e12 −0.184164
\(865\) 9.91335e12 0.602071
\(866\) −7.25472e12 −0.438319
\(867\) 2.20655e12 0.132626
\(868\) −5.41215e11 −0.0323617
\(869\) 2.26741e13 1.34878
\(870\) 1.03020e12 0.0609659
\(871\) −7.91106e12 −0.465750
\(872\) −1.92881e13 −1.12970
\(873\) 8.36198e12 0.487242
\(874\) −2.79183e12 −0.161841
\(875\) 1.63919e12 0.0945352
\(876\) −3.87739e12 −0.222470
\(877\) 1.98006e13 1.13026 0.565131 0.825001i \(-0.308826\pi\)
0.565131 + 0.825001i \(0.308826\pi\)
\(878\) −6.21313e12 −0.352846
\(879\) 5.83218e12 0.329519
\(880\) 6.54239e12 0.367760
\(881\) −1.46871e13 −0.821379 −0.410689 0.911775i \(-0.634712\pi\)
−0.410689 + 0.911775i \(0.634712\pi\)
\(882\) 2.82227e11 0.0157033
\(883\) −1.32350e13 −0.732659 −0.366330 0.930485i \(-0.619386\pi\)
−0.366330 + 0.930485i \(0.619386\pi\)
\(884\) −6.25373e12 −0.344432
\(885\) −6.04611e11 −0.0331307
\(886\) −6.27115e12 −0.341897
\(887\) −2.36475e13 −1.28271 −0.641355 0.767245i \(-0.721627\pi\)
−0.641355 + 0.767245i \(0.721627\pi\)
\(888\) −3.30279e12 −0.178247
\(889\) 3.56122e12 0.191223
\(890\) −2.25319e12 −0.120377
\(891\) 3.17876e12 0.168970
\(892\) 4.57704e12 0.242071
\(893\) −3.02778e12 −0.159328
\(894\) −2.20643e12 −0.115524
\(895\) −1.18174e13 −0.615627
\(896\) −2.07909e13 −1.07768
\(897\) −9.19185e12 −0.474064
\(898\) −8.72915e12 −0.447949
\(899\) −4.19940e11 −0.0214422
\(900\) −1.09987e12 −0.0558793
\(901\) 1.85015e13 0.935287
\(902\) −6.67873e12 −0.335942
\(903\) 3.69536e12 0.184953
\(904\) −1.06855e13 −0.532151
\(905\) −6.54246e12 −0.324207
\(906\) 1.32798e12 0.0654809
\(907\) −1.44762e13 −0.710268 −0.355134 0.934815i \(-0.615565\pi\)
−0.355134 + 0.934815i \(0.615565\pi\)
\(908\) −3.04267e13 −1.48548
\(909\) 7.87055e12 0.382356
\(910\) 1.84157e12 0.0890230
\(911\) −1.48193e13 −0.712846 −0.356423 0.934325i \(-0.616004\pi\)
−0.356423 + 0.934325i \(0.616004\pi\)
\(912\) 1.49637e12 0.0716244
\(913\) −1.63949e13 −0.780892
\(914\) 1.16905e13 0.554081
\(915\) −5.68025e8 −2.67900e−5 0
\(916\) 2.32308e13 1.09027
\(917\) −5.29899e12 −0.247475
\(918\) −1.46197e12 −0.0679433
\(919\) 3.46419e13 1.60207 0.801036 0.598617i \(-0.204283\pi\)
0.801036 + 0.598617i \(0.204283\pi\)
\(920\) −1.26013e13 −0.579923
\(921\) −1.77492e13 −0.812849
\(922\) 8.36730e12 0.381326
\(923\) −1.21332e13 −0.550261
\(924\) 1.72348e13 0.777824
\(925\) −1.85934e12 −0.0835066
\(926\) 1.28212e13 0.573030
\(927\) −1.30175e13 −0.578986
\(928\) −1.26906e13 −0.561715
\(929\) −5.53709e12 −0.243900 −0.121950 0.992536i \(-0.538915\pi\)
−0.121950 + 0.992536i \(0.538915\pi\)
\(930\) −8.65506e10 −0.00379400
\(931\) −6.15893e11 −0.0268678
\(932\) 2.98002e13 1.29374
\(933\) −6.72615e12 −0.290602
\(934\) −5.54274e12 −0.238322
\(935\) 1.39490e13 0.596886
\(936\) −2.70987e12 −0.115401
\(937\) −1.21162e13 −0.513496 −0.256748 0.966478i \(-0.582651\pi\)
−0.256748 + 0.966478i \(0.582651\pi\)
\(938\) −1.00272e13 −0.422930
\(939\) 5.77720e12 0.242506
\(940\) −6.23163e12 −0.260331
\(941\) 1.74126e13 0.723954 0.361977 0.932187i \(-0.382102\pi\)
0.361977 + 0.932187i \(0.382102\pi\)
\(942\) −1.88321e10 −0.000779236 0
\(943\) −2.33870e13 −0.963102
\(944\) 1.69297e12 0.0693865
\(945\) −2.23010e12 −0.0909666
\(946\) −4.56707e12 −0.185407
\(947\) −2.11907e13 −0.856189 −0.428094 0.903734i \(-0.640815\pi\)
−0.428094 + 0.903734i \(0.640815\pi\)
\(948\) 1.06736e13 0.429213
\(949\) −5.37803e12 −0.215241
\(950\) −4.63353e11 −0.0184568
\(951\) −9.93439e11 −0.0393848
\(952\) −1.73834e13 −0.685911
\(953\) −3.52382e13 −1.38387 −0.691935 0.721959i \(-0.743242\pi\)
−0.691935 + 0.721959i \(0.743242\pi\)
\(954\) 3.65568e12 0.142890
\(955\) 1.40512e13 0.546635
\(956\) −1.63839e13 −0.634390
\(957\) 1.33728e13 0.515371
\(958\) −1.87609e13 −0.719629
\(959\) 3.18088e13 1.21440
\(960\) 1.05873e12 0.0402313
\(961\) −2.64043e13 −0.998666
\(962\) −2.08890e12 −0.0786374
\(963\) 8.28403e12 0.310401
\(964\) −3.32239e13 −1.23909
\(965\) −1.55858e13 −0.578570
\(966\) −1.16506e13 −0.430480
\(967\) −2.32572e13 −0.855337 −0.427669 0.903936i \(-0.640665\pi\)
−0.427669 + 0.903936i \(0.640665\pi\)
\(968\) −2.65135e13 −0.970572
\(969\) 3.19040e12 0.116249
\(970\) 7.25031e12 0.262957
\(971\) 1.17934e12 0.0425749 0.0212874 0.999773i \(-0.493223\pi\)
0.0212874 + 0.999773i \(0.493223\pi\)
\(972\) 1.49636e12 0.0537699
\(973\) −2.47471e13 −0.885149
\(974\) −1.08113e13 −0.384913
\(975\) −1.52555e12 −0.0540636
\(976\) 1.59053e9 5.61069e−5 0
\(977\) 1.86181e13 0.653747 0.326874 0.945068i \(-0.394005\pi\)
0.326874 + 0.945068i \(0.394005\pi\)
\(978\) 3.63873e11 0.0127182
\(979\) −2.92481e13 −1.01760
\(980\) −1.26760e12 −0.0439001
\(981\) 1.47727e13 0.509272
\(982\) 9.21894e12 0.316358
\(983\) 3.31516e13 1.13244 0.566219 0.824255i \(-0.308406\pi\)
0.566219 + 0.824255i \(0.308406\pi\)
\(984\) −6.89479e12 −0.234446
\(985\) 1.75803e13 0.595064
\(986\) −6.15041e12 −0.207233
\(987\) −1.26353e13 −0.423796
\(988\) 2.69654e12 0.0900329
\(989\) −1.59926e13 −0.531539
\(990\) 2.75617e12 0.0911901
\(991\) −5.96892e11 −0.0196591 −0.00982957 0.999952i \(-0.503129\pi\)
−0.00982957 + 0.999952i \(0.503129\pi\)
\(992\) 1.06618e12 0.0349564
\(993\) 1.37957e13 0.450269
\(994\) −1.53788e13 −0.499672
\(995\) 5.90162e12 0.190883
\(996\) −7.71772e12 −0.248498
\(997\) −1.01387e13 −0.324979 −0.162490 0.986710i \(-0.551952\pi\)
−0.162490 + 0.986710i \(0.551952\pi\)
\(998\) 1.00395e13 0.320350
\(999\) 2.52961e12 0.0803542
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.9 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.9 15 1.1 even 1 trivial