Properties

Label 285.10.a.h.1.8
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.751797\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.75180 q^{2} -81.0000 q^{3} -508.931 q^{4} +625.000 q^{5} +141.896 q^{6} +2356.35 q^{7} +1788.46 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q-1.75180 q^{2} -81.0000 q^{3} -508.931 q^{4} +625.000 q^{5} +141.896 q^{6} +2356.35 q^{7} +1788.46 q^{8} +6561.00 q^{9} -1094.87 q^{10} -58059.9 q^{11} +41223.4 q^{12} -35623.9 q^{13} -4127.85 q^{14} -50625.0 q^{15} +257440. q^{16} +567431. q^{17} -11493.5 q^{18} -130321. q^{19} -318082. q^{20} -190864. q^{21} +101709. q^{22} -1.17571e6 q^{23} -144866. q^{24} +390625. q^{25} +62405.9 q^{26} -531441. q^{27} -1.19922e6 q^{28} -1.92724e6 q^{29} +88684.7 q^{30} +2.50653e6 q^{31} -1.36668e6 q^{32} +4.70285e6 q^{33} -994024. q^{34} +1.47272e6 q^{35} -3.33910e6 q^{36} +8.97380e6 q^{37} +228296. q^{38} +2.88554e6 q^{39} +1.11779e6 q^{40} +1.69059e6 q^{41} +334355. q^{42} -9.56490e6 q^{43} +2.95485e7 q^{44} +4.10062e6 q^{45} +2.05961e6 q^{46} +6.17413e6 q^{47} -2.08526e7 q^{48} -3.48012e7 q^{49} -684296. q^{50} -4.59619e7 q^{51} +1.81301e7 q^{52} -7.25514e7 q^{53} +930977. q^{54} -3.62874e7 q^{55} +4.21425e6 q^{56} +1.05560e7 q^{57} +3.37612e6 q^{58} -1.64663e8 q^{59} +2.57646e7 q^{60} -9.49267e7 q^{61} -4.39092e6 q^{62} +1.54600e7 q^{63} -1.29415e8 q^{64} -2.22650e7 q^{65} -8.23844e6 q^{66} +1.74495e8 q^{67} -2.88783e8 q^{68} +9.52327e7 q^{69} -2.57990e6 q^{70} +1.58288e8 q^{71} +1.17341e7 q^{72} -5.12511e6 q^{73} -1.57203e7 q^{74} -3.16406e7 q^{75} +6.63244e7 q^{76} -1.36809e8 q^{77} -5.05488e6 q^{78} -2.90576e8 q^{79} +1.60900e8 q^{80} +4.30467e7 q^{81} -2.96156e6 q^{82} +2.26627e8 q^{83} +9.71368e7 q^{84} +3.54644e8 q^{85} +1.67558e7 q^{86} +1.56106e8 q^{87} -1.03838e8 q^{88} -8.41387e8 q^{89} -7.18346e6 q^{90} -8.39425e7 q^{91} +5.98357e8 q^{92} -2.03029e8 q^{93} -1.08158e7 q^{94} -8.14506e7 q^{95} +1.10701e8 q^{96} -1.02373e9 q^{97} +6.09647e7 q^{98} -3.80931e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.75180 −0.0774192 −0.0387096 0.999251i \(-0.512325\pi\)
−0.0387096 + 0.999251i \(0.512325\pi\)
\(3\) −81.0000 −0.577350
\(4\) −508.931 −0.994006
\(5\) 625.000 0.447214
\(6\) 141.896 0.0446980
\(7\) 2356.35 0.370936 0.185468 0.982650i \(-0.440620\pi\)
0.185468 + 0.982650i \(0.440620\pi\)
\(8\) 1788.46 0.154374
\(9\) 6561.00 0.333333
\(10\) −1094.87 −0.0346229
\(11\) −58059.9 −1.19566 −0.597832 0.801621i \(-0.703971\pi\)
−0.597832 + 0.801621i \(0.703971\pi\)
\(12\) 41223.4 0.573890
\(13\) −35623.9 −0.345937 −0.172968 0.984927i \(-0.555336\pi\)
−0.172968 + 0.984927i \(0.555336\pi\)
\(14\) −4127.85 −0.0287175
\(15\) −50625.0 −0.258199
\(16\) 257440. 0.982055
\(17\) 567431. 1.64776 0.823878 0.566767i \(-0.191806\pi\)
0.823878 + 0.566767i \(0.191806\pi\)
\(18\) −11493.5 −0.0258064
\(19\) −130321. −0.229416
\(20\) −318082. −0.444533
\(21\) −190864. −0.214160
\(22\) 101709. 0.0925674
\(23\) −1.17571e6 −0.876044 −0.438022 0.898964i \(-0.644321\pi\)
−0.438022 + 0.898964i \(0.644321\pi\)
\(24\) −144866. −0.0891281
\(25\) 390625. 0.200000
\(26\) 62405.9 0.0267822
\(27\) −531441. −0.192450
\(28\) −1.19922e6 −0.368712
\(29\) −1.92724e6 −0.505992 −0.252996 0.967467i \(-0.581416\pi\)
−0.252996 + 0.967467i \(0.581416\pi\)
\(30\) 88684.7 0.0199896
\(31\) 2.50653e6 0.487466 0.243733 0.969842i \(-0.421628\pi\)
0.243733 + 0.969842i \(0.421628\pi\)
\(32\) −1.36668e6 −0.230404
\(33\) 4.70285e6 0.690317
\(34\) −994024. −0.127568
\(35\) 1.47272e6 0.165887
\(36\) −3.33910e6 −0.331335
\(37\) 8.97380e6 0.787170 0.393585 0.919288i \(-0.371235\pi\)
0.393585 + 0.919288i \(0.371235\pi\)
\(38\) 228296. 0.0177612
\(39\) 2.88554e6 0.199727
\(40\) 1.11779e6 0.0690383
\(41\) 1.69059e6 0.0934351 0.0467175 0.998908i \(-0.485124\pi\)
0.0467175 + 0.998908i \(0.485124\pi\)
\(42\) 334355. 0.0165801
\(43\) −9.56490e6 −0.426651 −0.213325 0.976981i \(-0.568429\pi\)
−0.213325 + 0.976981i \(0.568429\pi\)
\(44\) 2.95485e7 1.18850
\(45\) 4.10062e6 0.149071
\(46\) 2.05961e6 0.0678226
\(47\) 6.17413e6 0.184559 0.0922795 0.995733i \(-0.470585\pi\)
0.0922795 + 0.995733i \(0.470585\pi\)
\(48\) −2.08526e7 −0.566990
\(49\) −3.48012e7 −0.862407
\(50\) −684296. −0.0154838
\(51\) −4.59619e7 −0.951332
\(52\) 1.81301e7 0.343863
\(53\) −7.25514e7 −1.26300 −0.631501 0.775375i \(-0.717561\pi\)
−0.631501 + 0.775375i \(0.717561\pi\)
\(54\) 930977. 0.0148993
\(55\) −3.62874e7 −0.534717
\(56\) 4.21425e6 0.0572630
\(57\) 1.05560e7 0.132453
\(58\) 3.37612e6 0.0391735
\(59\) −1.64663e8 −1.76914 −0.884569 0.466409i \(-0.845547\pi\)
−0.884569 + 0.466409i \(0.845547\pi\)
\(60\) 2.57646e7 0.256651
\(61\) −9.49267e7 −0.877817 −0.438909 0.898532i \(-0.644635\pi\)
−0.438909 + 0.898532i \(0.644635\pi\)
\(62\) −4.39092e6 −0.0377392
\(63\) 1.54600e7 0.123645
\(64\) −1.29415e8 −0.964217
\(65\) −2.22650e7 −0.154708
\(66\) −8.23844e6 −0.0534438
\(67\) 1.74495e8 1.05790 0.528951 0.848653i \(-0.322586\pi\)
0.528951 + 0.848653i \(0.322586\pi\)
\(68\) −2.88783e8 −1.63788
\(69\) 9.52327e7 0.505784
\(70\) −2.57990e6 −0.0128429
\(71\) 1.58288e8 0.739242 0.369621 0.929183i \(-0.379488\pi\)
0.369621 + 0.929183i \(0.379488\pi\)
\(72\) 1.17341e7 0.0514581
\(73\) −5.12511e6 −0.0211228 −0.0105614 0.999944i \(-0.503362\pi\)
−0.0105614 + 0.999944i \(0.503362\pi\)
\(74\) −1.57203e7 −0.0609421
\(75\) −3.16406e7 −0.115470
\(76\) 6.63244e7 0.228041
\(77\) −1.36809e8 −0.443515
\(78\) −5.05488e6 −0.0154627
\(79\) −2.90576e8 −0.839340 −0.419670 0.907677i \(-0.637854\pi\)
−0.419670 + 0.907677i \(0.637854\pi\)
\(80\) 1.60900e8 0.439188
\(81\) 4.30467e7 0.111111
\(82\) −2.96156e6 −0.00723367
\(83\) 2.26627e8 0.524157 0.262078 0.965047i \(-0.415592\pi\)
0.262078 + 0.965047i \(0.415592\pi\)
\(84\) 9.71368e7 0.212876
\(85\) 3.54644e8 0.736899
\(86\) 1.67558e7 0.0330310
\(87\) 1.56106e8 0.292135
\(88\) −1.03838e8 −0.184580
\(89\) −8.41387e8 −1.42148 −0.710740 0.703455i \(-0.751640\pi\)
−0.710740 + 0.703455i \(0.751640\pi\)
\(90\) −7.18346e6 −0.0115410
\(91\) −8.39425e7 −0.128320
\(92\) 5.98357e8 0.870793
\(93\) −2.03029e8 −0.281439
\(94\) −1.08158e7 −0.0142884
\(95\) −8.14506e7 −0.102598
\(96\) 1.10701e8 0.133024
\(97\) −1.02373e9 −1.17412 −0.587061 0.809543i \(-0.699715\pi\)
−0.587061 + 0.809543i \(0.699715\pi\)
\(98\) 6.09647e7 0.0667668
\(99\) −3.80931e8 −0.398555
\(100\) −1.98801e8 −0.198801
\(101\) −6.45588e8 −0.617318 −0.308659 0.951173i \(-0.599880\pi\)
−0.308659 + 0.951173i \(0.599880\pi\)
\(102\) 8.05159e7 0.0736514
\(103\) 8.91591e8 0.780546 0.390273 0.920699i \(-0.372381\pi\)
0.390273 + 0.920699i \(0.372381\pi\)
\(104\) −6.37121e7 −0.0534038
\(105\) −1.19290e8 −0.0957752
\(106\) 1.27095e8 0.0977806
\(107\) 1.81900e9 1.34154 0.670772 0.741663i \(-0.265963\pi\)
0.670772 + 0.741663i \(0.265963\pi\)
\(108\) 2.70467e8 0.191297
\(109\) 8.66242e8 0.587787 0.293893 0.955838i \(-0.405049\pi\)
0.293893 + 0.955838i \(0.405049\pi\)
\(110\) 6.35682e7 0.0413974
\(111\) −7.26878e8 −0.454473
\(112\) 6.06618e8 0.364279
\(113\) 2.42801e9 1.40087 0.700433 0.713718i \(-0.252990\pi\)
0.700433 + 0.713718i \(0.252990\pi\)
\(114\) −1.84920e7 −0.0102544
\(115\) −7.34820e8 −0.391779
\(116\) 9.80830e8 0.502959
\(117\) −2.33729e8 −0.115312
\(118\) 2.88456e8 0.136965
\(119\) 1.33707e9 0.611211
\(120\) −9.05410e7 −0.0398593
\(121\) 1.01301e9 0.429613
\(122\) 1.66292e8 0.0679599
\(123\) −1.36938e8 −0.0539448
\(124\) −1.27565e9 −0.484544
\(125\) 2.44141e8 0.0894427
\(126\) −2.70828e7 −0.00957251
\(127\) −1.63430e9 −0.557461 −0.278730 0.960369i \(-0.589914\pi\)
−0.278730 + 0.960369i \(0.589914\pi\)
\(128\) 9.26447e8 0.305053
\(129\) 7.74757e8 0.246327
\(130\) 3.90037e7 0.0119773
\(131\) 5.74382e9 1.70404 0.852021 0.523507i \(-0.175377\pi\)
0.852021 + 0.523507i \(0.175377\pi\)
\(132\) −2.39343e9 −0.686180
\(133\) −3.07082e8 −0.0850985
\(134\) −3.05679e8 −0.0819019
\(135\) −3.32151e8 −0.0860663
\(136\) 1.01483e9 0.254371
\(137\) 2.95005e9 0.715462 0.357731 0.933825i \(-0.383550\pi\)
0.357731 + 0.933825i \(0.383550\pi\)
\(138\) −1.66828e8 −0.0391574
\(139\) −1.29155e9 −0.293457 −0.146728 0.989177i \(-0.546874\pi\)
−0.146728 + 0.989177i \(0.546874\pi\)
\(140\) −7.49512e8 −0.164893
\(141\) −5.00104e8 −0.106555
\(142\) −2.77289e8 −0.0572315
\(143\) 2.06832e9 0.413624
\(144\) 1.68906e9 0.327352
\(145\) −1.20452e9 −0.226287
\(146\) 8.97816e6 0.00163531
\(147\) 2.81890e9 0.497911
\(148\) −4.56705e9 −0.782452
\(149\) 4.53638e7 0.00753999 0.00377000 0.999993i \(-0.498800\pi\)
0.00377000 + 0.999993i \(0.498800\pi\)
\(150\) 5.54279e7 0.00893960
\(151\) 7.12435e9 1.11519 0.557596 0.830113i \(-0.311724\pi\)
0.557596 + 0.830113i \(0.311724\pi\)
\(152\) −2.33074e8 −0.0354159
\(153\) 3.72292e9 0.549252
\(154\) 2.39662e8 0.0343365
\(155\) 1.56658e9 0.218002
\(156\) −1.46854e9 −0.198530
\(157\) 3.74317e8 0.0491689 0.0245845 0.999698i \(-0.492174\pi\)
0.0245845 + 0.999698i \(0.492174\pi\)
\(158\) 5.09030e8 0.0649810
\(159\) 5.87666e9 0.729195
\(160\) −8.54172e8 −0.103040
\(161\) −2.77039e9 −0.324956
\(162\) −7.54091e7 −0.00860213
\(163\) 1.28608e10 1.42700 0.713502 0.700653i \(-0.247108\pi\)
0.713502 + 0.700653i \(0.247108\pi\)
\(164\) −8.60392e8 −0.0928751
\(165\) 2.93928e9 0.308719
\(166\) −3.97005e8 −0.0405798
\(167\) 8.79645e9 0.875152 0.437576 0.899181i \(-0.355837\pi\)
0.437576 + 0.899181i \(0.355837\pi\)
\(168\) −3.41354e8 −0.0330608
\(169\) −9.33543e9 −0.880328
\(170\) −6.21265e8 −0.0570501
\(171\) −8.55036e8 −0.0764719
\(172\) 4.86788e9 0.424094
\(173\) −4.11872e9 −0.349587 −0.174793 0.984605i \(-0.555926\pi\)
−0.174793 + 0.984605i \(0.555926\pi\)
\(174\) −2.73466e8 −0.0226168
\(175\) 9.20449e8 0.0741871
\(176\) −1.49469e10 −1.17421
\(177\) 1.33377e10 1.02141
\(178\) 1.47394e9 0.110050
\(179\) 1.22320e10 0.890548 0.445274 0.895394i \(-0.353106\pi\)
0.445274 + 0.895394i \(0.353106\pi\)
\(180\) −2.08694e9 −0.148178
\(181\) −6.48331e9 −0.448997 −0.224498 0.974474i \(-0.572074\pi\)
−0.224498 + 0.974474i \(0.572074\pi\)
\(182\) 1.47050e8 0.00993446
\(183\) 7.68906e9 0.506808
\(184\) −2.10272e9 −0.135239
\(185\) 5.60863e9 0.352033
\(186\) 3.55665e8 0.0217888
\(187\) −3.29450e10 −1.97016
\(188\) −3.14221e9 −0.183453
\(189\) −1.25226e9 −0.0713866
\(190\) 1.42685e8 0.00794304
\(191\) −1.38010e10 −0.750344 −0.375172 0.926955i \(-0.622416\pi\)
−0.375172 + 0.926955i \(0.622416\pi\)
\(192\) 1.04826e10 0.556691
\(193\) −2.88704e10 −1.49777 −0.748884 0.662701i \(-0.769410\pi\)
−0.748884 + 0.662701i \(0.769410\pi\)
\(194\) 1.79337e9 0.0908996
\(195\) 1.80346e9 0.0893205
\(196\) 1.77114e10 0.857238
\(197\) 2.94524e10 1.39323 0.696615 0.717445i \(-0.254689\pi\)
0.696615 + 0.717445i \(0.254689\pi\)
\(198\) 6.67314e8 0.0308558
\(199\) 2.68901e10 1.21550 0.607748 0.794130i \(-0.292073\pi\)
0.607748 + 0.794130i \(0.292073\pi\)
\(200\) 6.98619e8 0.0308749
\(201\) −1.41341e10 −0.610780
\(202\) 1.13094e9 0.0477923
\(203\) −4.54124e9 −0.187691
\(204\) 2.33915e10 0.945630
\(205\) 1.05662e9 0.0417854
\(206\) −1.56189e9 −0.0604292
\(207\) −7.71385e9 −0.292015
\(208\) −9.17102e9 −0.339729
\(209\) 7.56643e9 0.274304
\(210\) 2.08972e8 0.00741484
\(211\) 6.75862e9 0.234740 0.117370 0.993088i \(-0.462554\pi\)
0.117370 + 0.993088i \(0.462554\pi\)
\(212\) 3.69236e10 1.25543
\(213\) −1.28214e10 −0.426802
\(214\) −3.18651e9 −0.103861
\(215\) −5.97806e9 −0.190804
\(216\) −9.50463e8 −0.0297094
\(217\) 5.90625e9 0.180819
\(218\) −1.51748e9 −0.0455060
\(219\) 4.15134e8 0.0121952
\(220\) 1.84678e10 0.531512
\(221\) −2.02141e10 −0.570020
\(222\) 1.27334e9 0.0351849
\(223\) 4.99132e10 1.35159 0.675793 0.737091i \(-0.263801\pi\)
0.675793 + 0.737091i \(0.263801\pi\)
\(224\) −3.22037e9 −0.0854652
\(225\) 2.56289e9 0.0666667
\(226\) −4.25337e9 −0.108454
\(227\) 7.06331e10 1.76560 0.882800 0.469750i \(-0.155656\pi\)
0.882800 + 0.469750i \(0.155656\pi\)
\(228\) −5.37228e9 −0.131659
\(229\) 6.54968e10 1.57384 0.786920 0.617055i \(-0.211674\pi\)
0.786920 + 0.617055i \(0.211674\pi\)
\(230\) 1.28726e9 0.0303312
\(231\) 1.10816e10 0.256063
\(232\) −3.44679e9 −0.0781122
\(233\) 6.88175e9 0.152967 0.0764835 0.997071i \(-0.475631\pi\)
0.0764835 + 0.997071i \(0.475631\pi\)
\(234\) 4.09445e8 0.00892739
\(235\) 3.85883e9 0.0825373
\(236\) 8.38021e10 1.75853
\(237\) 2.35367e10 0.484593
\(238\) −2.34227e9 −0.0473195
\(239\) 6.39302e10 1.26741 0.633703 0.773576i \(-0.281534\pi\)
0.633703 + 0.773576i \(0.281534\pi\)
\(240\) −1.30329e10 −0.253565
\(241\) −8.45832e10 −1.61513 −0.807564 0.589779i \(-0.799215\pi\)
−0.807564 + 0.589779i \(0.799215\pi\)
\(242\) −1.77458e9 −0.0332603
\(243\) −3.48678e9 −0.0641500
\(244\) 4.83112e10 0.872556
\(245\) −2.17508e10 −0.385680
\(246\) 2.39887e8 0.00417636
\(247\) 4.64255e9 0.0793634
\(248\) 4.48283e9 0.0752523
\(249\) −1.83568e10 −0.302622
\(250\) −4.27685e8 −0.00692458
\(251\) 6.90916e8 0.0109874 0.00549368 0.999985i \(-0.498251\pi\)
0.00549368 + 0.999985i \(0.498251\pi\)
\(252\) −7.86808e9 −0.122904
\(253\) 6.82618e10 1.04745
\(254\) 2.86296e9 0.0431582
\(255\) −2.87262e10 −0.425449
\(256\) 6.46375e10 0.940600
\(257\) −3.93519e10 −0.562687 −0.281343 0.959607i \(-0.590780\pi\)
−0.281343 + 0.959607i \(0.590780\pi\)
\(258\) −1.35722e9 −0.0190704
\(259\) 2.11454e10 0.291990
\(260\) 1.13313e10 0.153780
\(261\) −1.26446e10 −0.168664
\(262\) −1.00620e10 −0.131926
\(263\) −1.07320e11 −1.38318 −0.691591 0.722289i \(-0.743090\pi\)
−0.691591 + 0.722289i \(0.743090\pi\)
\(264\) 8.41088e9 0.106567
\(265\) −4.53446e10 −0.564832
\(266\) 5.37945e8 0.00658826
\(267\) 6.81523e10 0.820692
\(268\) −8.88057e10 −1.05156
\(269\) −1.43277e11 −1.66836 −0.834182 0.551490i \(-0.814059\pi\)
−0.834182 + 0.551490i \(0.814059\pi\)
\(270\) 5.81860e8 0.00666318
\(271\) 8.69948e10 0.979786 0.489893 0.871783i \(-0.337036\pi\)
0.489893 + 0.871783i \(0.337036\pi\)
\(272\) 1.46079e11 1.61819
\(273\) 6.79934e9 0.0740858
\(274\) −5.16789e9 −0.0553905
\(275\) −2.26797e10 −0.239133
\(276\) −4.84669e10 −0.502753
\(277\) 5.49940e10 0.561250 0.280625 0.959818i \(-0.409458\pi\)
0.280625 + 0.959818i \(0.409458\pi\)
\(278\) 2.26253e9 0.0227192
\(279\) 1.64453e10 0.162489
\(280\) 2.63390e9 0.0256088
\(281\) −2.33120e9 −0.0223050 −0.0111525 0.999938i \(-0.503550\pi\)
−0.0111525 + 0.999938i \(0.503550\pi\)
\(282\) 8.76081e8 0.00824942
\(283\) 1.44127e11 1.33570 0.667848 0.744298i \(-0.267216\pi\)
0.667848 + 0.744298i \(0.267216\pi\)
\(284\) −8.05579e10 −0.734811
\(285\) 6.59750e9 0.0592349
\(286\) −3.62328e9 −0.0320225
\(287\) 3.98361e9 0.0346584
\(288\) −8.96676e9 −0.0768014
\(289\) 2.03390e11 1.71510
\(290\) 2.11008e9 0.0175189
\(291\) 8.29222e10 0.677880
\(292\) 2.60833e9 0.0209962
\(293\) 2.02740e11 1.60707 0.803534 0.595258i \(-0.202950\pi\)
0.803534 + 0.595258i \(0.202950\pi\)
\(294\) −4.93814e9 −0.0385479
\(295\) −1.02914e11 −0.791183
\(296\) 1.60493e10 0.121519
\(297\) 3.08554e10 0.230106
\(298\) −7.94681e7 −0.000583740 0
\(299\) 4.18835e10 0.303056
\(300\) 1.61029e10 0.114778
\(301\) −2.25383e10 −0.158260
\(302\) −1.24804e10 −0.0863372
\(303\) 5.22926e10 0.356409
\(304\) −3.35498e10 −0.225299
\(305\) −5.93292e10 −0.392572
\(306\) −6.52179e9 −0.0425227
\(307\) 8.27391e10 0.531604 0.265802 0.964028i \(-0.414363\pi\)
0.265802 + 0.964028i \(0.414363\pi\)
\(308\) 6.96266e10 0.440856
\(309\) −7.22189e10 −0.450648
\(310\) −2.74433e9 −0.0168775
\(311\) −1.59406e11 −0.966234 −0.483117 0.875556i \(-0.660495\pi\)
−0.483117 + 0.875556i \(0.660495\pi\)
\(312\) 5.16068e9 0.0308327
\(313\) −4.50058e10 −0.265045 −0.132522 0.991180i \(-0.542308\pi\)
−0.132522 + 0.991180i \(0.542308\pi\)
\(314\) −6.55727e8 −0.00380662
\(315\) 9.66251e9 0.0552958
\(316\) 1.47883e11 0.834309
\(317\) −9.80488e10 −0.545350 −0.272675 0.962106i \(-0.587908\pi\)
−0.272675 + 0.962106i \(0.587908\pi\)
\(318\) −1.02947e10 −0.0564537
\(319\) 1.11895e11 0.604997
\(320\) −8.08844e10 −0.431211
\(321\) −1.47339e11 −0.774541
\(322\) 4.85316e9 0.0251578
\(323\) −7.39482e10 −0.378021
\(324\) −2.19078e10 −0.110445
\(325\) −1.39156e10 −0.0691874
\(326\) −2.25296e10 −0.110478
\(327\) −7.01656e10 −0.339359
\(328\) 3.02355e9 0.0144240
\(329\) 1.45484e10 0.0684595
\(330\) −5.14903e9 −0.0239008
\(331\) −7.56927e10 −0.346600 −0.173300 0.984869i \(-0.555443\pi\)
−0.173300 + 0.984869i \(0.555443\pi\)
\(332\) −1.15338e11 −0.521015
\(333\) 5.88771e10 0.262390
\(334\) −1.54096e10 −0.0677536
\(335\) 1.09059e11 0.473108
\(336\) −4.91361e10 −0.210317
\(337\) 3.05022e9 0.0128824 0.00644121 0.999979i \(-0.497950\pi\)
0.00644121 + 0.999979i \(0.497950\pi\)
\(338\) 1.63538e10 0.0681543
\(339\) −1.96668e11 −0.808791
\(340\) −1.80490e11 −0.732482
\(341\) −1.45529e11 −0.582846
\(342\) 1.49785e9 0.00592039
\(343\) −1.77091e11 −0.690833
\(344\) −1.71065e10 −0.0658639
\(345\) 5.95204e10 0.226194
\(346\) 7.21516e9 0.0270647
\(347\) 1.64908e11 0.610605 0.305302 0.952255i \(-0.401242\pi\)
0.305302 + 0.952255i \(0.401242\pi\)
\(348\) −7.94472e10 −0.290384
\(349\) 3.32107e11 1.19830 0.599148 0.800639i \(-0.295506\pi\)
0.599148 + 0.800639i \(0.295506\pi\)
\(350\) −1.61244e9 −0.00574351
\(351\) 1.89320e10 0.0665756
\(352\) 7.93491e10 0.275486
\(353\) −3.81617e11 −1.30810 −0.654050 0.756451i \(-0.726931\pi\)
−0.654050 + 0.756451i \(0.726931\pi\)
\(354\) −2.33649e10 −0.0790769
\(355\) 9.89303e10 0.330599
\(356\) 4.28208e11 1.41296
\(357\) −1.08302e11 −0.352883
\(358\) −2.14279e10 −0.0689455
\(359\) −5.57645e11 −1.77187 −0.885937 0.463806i \(-0.846483\pi\)
−0.885937 + 0.463806i \(0.846483\pi\)
\(360\) 7.33382e9 0.0230128
\(361\) 1.69836e10 0.0526316
\(362\) 1.13574e10 0.0347610
\(363\) −8.20535e10 −0.248037
\(364\) 4.27209e10 0.127551
\(365\) −3.20320e9 −0.00944638
\(366\) −1.34697e10 −0.0392367
\(367\) 4.59178e11 1.32125 0.660623 0.750718i \(-0.270292\pi\)
0.660623 + 0.750718i \(0.270292\pi\)
\(368\) −3.02675e11 −0.860323
\(369\) 1.10919e10 0.0311450
\(370\) −9.82517e9 −0.0272541
\(371\) −1.70956e11 −0.468493
\(372\) 1.03328e11 0.279752
\(373\) 2.11696e10 0.0566268 0.0283134 0.999599i \(-0.490986\pi\)
0.0283134 + 0.999599i \(0.490986\pi\)
\(374\) 5.77129e10 0.152528
\(375\) −1.97754e10 −0.0516398
\(376\) 1.10422e10 0.0284912
\(377\) 6.86557e10 0.175041
\(378\) 2.19371e9 0.00552669
\(379\) 4.37116e11 1.08823 0.544115 0.839011i \(-0.316866\pi\)
0.544115 + 0.839011i \(0.316866\pi\)
\(380\) 4.14528e10 0.101983
\(381\) 1.32378e11 0.321850
\(382\) 2.41766e10 0.0580911
\(383\) 2.85588e11 0.678180 0.339090 0.940754i \(-0.389881\pi\)
0.339090 + 0.940754i \(0.389881\pi\)
\(384\) −7.50422e10 −0.176123
\(385\) −8.55059e10 −0.198346
\(386\) 5.05750e10 0.115956
\(387\) −6.27553e10 −0.142217
\(388\) 5.21009e11 1.16708
\(389\) −9.80733e10 −0.217159 −0.108579 0.994088i \(-0.534630\pi\)
−0.108579 + 0.994088i \(0.534630\pi\)
\(390\) −3.15930e9 −0.00691512
\(391\) −6.67136e11 −1.44351
\(392\) −6.22407e10 −0.133134
\(393\) −4.65250e11 −0.983829
\(394\) −5.15946e10 −0.107863
\(395\) −1.81610e11 −0.375364
\(396\) 1.93868e11 0.396166
\(397\) 3.16692e10 0.0639853 0.0319927 0.999488i \(-0.489815\pi\)
0.0319927 + 0.999488i \(0.489815\pi\)
\(398\) −4.71060e10 −0.0941028
\(399\) 2.48736e10 0.0491316
\(400\) 1.00562e11 0.196411
\(401\) −1.46868e11 −0.283646 −0.141823 0.989892i \(-0.545296\pi\)
−0.141823 + 0.989892i \(0.545296\pi\)
\(402\) 2.47600e10 0.0472861
\(403\) −8.92923e10 −0.168633
\(404\) 3.28560e11 0.613618
\(405\) 2.69042e10 0.0496904
\(406\) 7.95533e9 0.0145308
\(407\) −5.21018e11 −0.941192
\(408\) −8.22012e10 −0.146861
\(409\) 1.81133e11 0.320069 0.160035 0.987111i \(-0.448839\pi\)
0.160035 + 0.987111i \(0.448839\pi\)
\(410\) −1.85098e9 −0.00323500
\(411\) −2.38954e11 −0.413072
\(412\) −4.53759e11 −0.775867
\(413\) −3.88003e11 −0.656236
\(414\) 1.35131e10 0.0226075
\(415\) 1.41642e11 0.234410
\(416\) 4.86864e10 0.0797053
\(417\) 1.04616e11 0.169427
\(418\) −1.32548e10 −0.0212364
\(419\) 8.42722e11 1.33574 0.667869 0.744279i \(-0.267207\pi\)
0.667869 + 0.744279i \(0.267207\pi\)
\(420\) 6.07105e10 0.0952011
\(421\) 7.81778e9 0.0121287 0.00606435 0.999982i \(-0.498070\pi\)
0.00606435 + 0.999982i \(0.498070\pi\)
\(422\) −1.18397e10 −0.0181734
\(423\) 4.05084e10 0.0615197
\(424\) −1.29755e11 −0.194975
\(425\) 2.21653e11 0.329551
\(426\) 2.24604e10 0.0330426
\(427\) −2.23681e11 −0.325614
\(428\) −9.25745e11 −1.33350
\(429\) −1.67534e11 −0.238806
\(430\) 1.04724e10 0.0147719
\(431\) 7.35734e11 1.02701 0.513503 0.858088i \(-0.328347\pi\)
0.513503 + 0.858088i \(0.328347\pi\)
\(432\) −1.36814e11 −0.188997
\(433\) −1.04750e11 −0.143205 −0.0716024 0.997433i \(-0.522811\pi\)
−0.0716024 + 0.997433i \(0.522811\pi\)
\(434\) −1.03466e10 −0.0139988
\(435\) 9.75663e10 0.130647
\(436\) −4.40858e11 −0.584264
\(437\) 1.53220e11 0.200978
\(438\) −7.27231e8 −0.000944145 0
\(439\) −9.52578e11 −1.22408 −0.612041 0.790826i \(-0.709651\pi\)
−0.612041 + 0.790826i \(0.709651\pi\)
\(440\) −6.48988e10 −0.0825467
\(441\) −2.28331e11 −0.287469
\(442\) 3.54110e10 0.0441305
\(443\) −7.65967e11 −0.944916 −0.472458 0.881353i \(-0.656633\pi\)
−0.472458 + 0.881353i \(0.656633\pi\)
\(444\) 3.69931e11 0.451749
\(445\) −5.25867e11 −0.635705
\(446\) −8.74379e10 −0.104639
\(447\) −3.67446e9 −0.00435322
\(448\) −3.04947e11 −0.357662
\(449\) 8.80490e11 1.02239 0.511194 0.859465i \(-0.329203\pi\)
0.511194 + 0.859465i \(0.329203\pi\)
\(450\) −4.48966e9 −0.00516128
\(451\) −9.81553e10 −0.111717
\(452\) −1.23569e12 −1.39247
\(453\) −5.77073e11 −0.643856
\(454\) −1.23735e11 −0.136691
\(455\) −5.24640e10 −0.0573866
\(456\) 1.88790e10 0.0204474
\(457\) −8.66223e11 −0.928980 −0.464490 0.885578i \(-0.653762\pi\)
−0.464490 + 0.885578i \(0.653762\pi\)
\(458\) −1.14737e11 −0.121845
\(459\) −3.01556e11 −0.317111
\(460\) 3.73973e11 0.389431
\(461\) 1.50066e12 1.54749 0.773747 0.633495i \(-0.218380\pi\)
0.773747 + 0.633495i \(0.218380\pi\)
\(462\) −1.94126e10 −0.0198242
\(463\) −1.21900e12 −1.23279 −0.616393 0.787438i \(-0.711407\pi\)
−0.616393 + 0.787438i \(0.711407\pi\)
\(464\) −4.96147e11 −0.496912
\(465\) −1.26893e11 −0.125863
\(466\) −1.20554e10 −0.0118426
\(467\) −1.56205e12 −1.51974 −0.759870 0.650075i \(-0.774737\pi\)
−0.759870 + 0.650075i \(0.774737\pi\)
\(468\) 1.18952e11 0.114621
\(469\) 4.11170e11 0.392413
\(470\) −6.75988e9 −0.00638997
\(471\) −3.03196e10 −0.0283877
\(472\) −2.94494e11 −0.273110
\(473\) 5.55337e11 0.510131
\(474\) −4.12314e10 −0.0375168
\(475\) −5.09066e10 −0.0458831
\(476\) −6.80475e11 −0.607548
\(477\) −4.76009e11 −0.421001
\(478\) −1.11993e11 −0.0981216
\(479\) −7.50341e11 −0.651251 −0.325626 0.945499i \(-0.605575\pi\)
−0.325626 + 0.945499i \(0.605575\pi\)
\(480\) 6.91879e10 0.0594901
\(481\) −3.19682e11 −0.272311
\(482\) 1.48172e11 0.125042
\(483\) 2.24402e11 0.187613
\(484\) −5.15550e11 −0.427038
\(485\) −6.39832e11 −0.525083
\(486\) 6.10814e9 0.00496644
\(487\) 2.26945e12 1.82827 0.914135 0.405410i \(-0.132871\pi\)
0.914135 + 0.405410i \(0.132871\pi\)
\(488\) −1.69773e11 −0.135513
\(489\) −1.04173e12 −0.823881
\(490\) 3.81029e10 0.0298590
\(491\) −9.86468e11 −0.765978 −0.382989 0.923753i \(-0.625105\pi\)
−0.382989 + 0.923753i \(0.625105\pi\)
\(492\) 6.96918e10 0.0536214
\(493\) −1.09357e12 −0.833752
\(494\) −8.13280e9 −0.00614425
\(495\) −2.38082e11 −0.178239
\(496\) 6.45279e11 0.478718
\(497\) 3.72983e11 0.274211
\(498\) 3.21574e10 0.0234287
\(499\) 5.57068e11 0.402213 0.201106 0.979569i \(-0.435546\pi\)
0.201106 + 0.979569i \(0.435546\pi\)
\(500\) −1.24251e11 −0.0889066
\(501\) −7.12513e11 −0.505269
\(502\) −1.21034e9 −0.000850633 0
\(503\) −2.37491e11 −0.165421 −0.0827107 0.996574i \(-0.526358\pi\)
−0.0827107 + 0.996574i \(0.526358\pi\)
\(504\) 2.76497e10 0.0190877
\(505\) −4.03492e11 −0.276073
\(506\) −1.19581e11 −0.0810931
\(507\) 7.56170e11 0.508257
\(508\) 8.31745e11 0.554119
\(509\) −2.86375e10 −0.0189106 −0.00945529 0.999955i \(-0.503010\pi\)
−0.00945529 + 0.999955i \(0.503010\pi\)
\(510\) 5.03225e10 0.0329379
\(511\) −1.20766e10 −0.00783518
\(512\) −5.87573e11 −0.377874
\(513\) 6.92579e10 0.0441511
\(514\) 6.89365e10 0.0435628
\(515\) 5.57245e11 0.349071
\(516\) −3.94298e11 −0.244851
\(517\) −3.58469e11 −0.220671
\(518\) −3.70425e10 −0.0226056
\(519\) 3.33616e11 0.201834
\(520\) −3.98201e10 −0.0238829
\(521\) 1.63234e12 0.970604 0.485302 0.874347i \(-0.338710\pi\)
0.485302 + 0.874347i \(0.338710\pi\)
\(522\) 2.21507e10 0.0130578
\(523\) 1.88974e12 1.10444 0.552222 0.833697i \(-0.313780\pi\)
0.552222 + 0.833697i \(0.313780\pi\)
\(524\) −2.92321e12 −1.69383
\(525\) −7.45564e10 −0.0428320
\(526\) 1.88003e11 0.107085
\(527\) 1.42228e12 0.803225
\(528\) 1.21070e12 0.677929
\(529\) −4.18853e11 −0.232547
\(530\) 7.94345e10 0.0437288
\(531\) −1.08035e12 −0.589713
\(532\) 1.56284e11 0.0845884
\(533\) −6.02253e10 −0.0323226
\(534\) −1.19389e11 −0.0635373
\(535\) 1.13687e12 0.599957
\(536\) 3.12077e11 0.163313
\(537\) −9.90788e11 −0.514158
\(538\) 2.50992e11 0.129163
\(539\) 2.02056e12 1.03115
\(540\) 1.69042e11 0.0855504
\(541\) 1.97521e12 0.991349 0.495674 0.868508i \(-0.334921\pi\)
0.495674 + 0.868508i \(0.334921\pi\)
\(542\) −1.52397e11 −0.0758543
\(543\) 5.25148e11 0.259228
\(544\) −7.75494e11 −0.379650
\(545\) 5.41401e11 0.262866
\(546\) −1.19111e10 −0.00573566
\(547\) 2.07818e12 0.992522 0.496261 0.868173i \(-0.334706\pi\)
0.496261 + 0.868173i \(0.334706\pi\)
\(548\) −1.50137e12 −0.711174
\(549\) −6.22814e11 −0.292606
\(550\) 3.97301e10 0.0185135
\(551\) 2.51159e11 0.116083
\(552\) 1.70320e11 0.0780801
\(553\) −6.84699e11 −0.311341
\(554\) −9.63383e10 −0.0434515
\(555\) −4.54299e11 −0.203247
\(556\) 6.57310e11 0.291698
\(557\) −2.52229e12 −1.11032 −0.555158 0.831745i \(-0.687342\pi\)
−0.555158 + 0.831745i \(0.687342\pi\)
\(558\) −2.88088e10 −0.0125797
\(559\) 3.40740e11 0.147594
\(560\) 3.79136e11 0.162911
\(561\) 2.66854e12 1.13747
\(562\) 4.08379e9 0.00172683
\(563\) −4.08264e12 −1.71259 −0.856295 0.516486i \(-0.827240\pi\)
−0.856295 + 0.516486i \(0.827240\pi\)
\(564\) 2.54519e11 0.105916
\(565\) 1.51750e12 0.626486
\(566\) −2.52482e11 −0.103408
\(567\) 1.01433e11 0.0412151
\(568\) 2.83093e11 0.114120
\(569\) 7.72902e11 0.309114 0.154557 0.987984i \(-0.450605\pi\)
0.154557 + 0.987984i \(0.450605\pi\)
\(570\) −1.15575e10 −0.00458592
\(571\) 3.13559e12 1.23440 0.617202 0.786805i \(-0.288266\pi\)
0.617202 + 0.786805i \(0.288266\pi\)
\(572\) −1.05263e12 −0.411145
\(573\) 1.11788e12 0.433211
\(574\) −6.97848e9 −0.00268323
\(575\) −4.59263e11 −0.175209
\(576\) −8.49092e11 −0.321406
\(577\) −1.45919e12 −0.548051 −0.274025 0.961722i \(-0.588355\pi\)
−0.274025 + 0.961722i \(0.588355\pi\)
\(578\) −3.56298e11 −0.132782
\(579\) 2.33850e12 0.864737
\(580\) 6.13019e11 0.224930
\(581\) 5.34013e11 0.194428
\(582\) −1.45263e11 −0.0524809
\(583\) 4.21233e12 1.51013
\(584\) −9.16608e9 −0.00326081
\(585\) −1.46080e11 −0.0515692
\(586\) −3.55159e11 −0.124418
\(587\) 2.87039e12 0.997861 0.498930 0.866642i \(-0.333726\pi\)
0.498930 + 0.866642i \(0.333726\pi\)
\(588\) −1.43463e12 −0.494926
\(589\) −3.26653e11 −0.111832
\(590\) 1.80285e11 0.0612527
\(591\) −2.38564e12 −0.804381
\(592\) 2.31021e12 0.773044
\(593\) 9.23971e10 0.0306840 0.0153420 0.999882i \(-0.495116\pi\)
0.0153420 + 0.999882i \(0.495116\pi\)
\(594\) −5.40524e10 −0.0178146
\(595\) 8.35666e11 0.273342
\(596\) −2.30870e10 −0.00749480
\(597\) −2.17810e12 −0.701767
\(598\) −7.33714e10 −0.0234623
\(599\) −3.35276e12 −1.06410 −0.532049 0.846714i \(-0.678578\pi\)
−0.532049 + 0.846714i \(0.678578\pi\)
\(600\) −5.65881e10 −0.0178256
\(601\) 3.50482e12 1.09580 0.547899 0.836545i \(-0.315428\pi\)
0.547899 + 0.836545i \(0.315428\pi\)
\(602\) 3.94824e10 0.0122524
\(603\) 1.14486e12 0.352634
\(604\) −3.62581e12 −1.10851
\(605\) 6.33129e11 0.192129
\(606\) −9.16060e10 −0.0275929
\(607\) −1.85938e12 −0.555928 −0.277964 0.960591i \(-0.589660\pi\)
−0.277964 + 0.960591i \(0.589660\pi\)
\(608\) 1.78107e11 0.0528584
\(609\) 3.67840e11 0.108363
\(610\) 1.03933e11 0.0303926
\(611\) −2.19947e11 −0.0638457
\(612\) −1.89471e12 −0.545960
\(613\) −8.50969e11 −0.243412 −0.121706 0.992566i \(-0.538836\pi\)
−0.121706 + 0.992566i \(0.538836\pi\)
\(614\) −1.44942e11 −0.0411564
\(615\) −8.55859e10 −0.0241248
\(616\) −2.44679e11 −0.0684673
\(617\) 6.08736e12 1.69101 0.845504 0.533970i \(-0.179300\pi\)
0.845504 + 0.533970i \(0.179300\pi\)
\(618\) 1.26513e11 0.0348888
\(619\) 6.82662e12 1.86895 0.934475 0.356028i \(-0.115869\pi\)
0.934475 + 0.356028i \(0.115869\pi\)
\(620\) −7.97281e11 −0.216695
\(621\) 6.24822e11 0.168595
\(622\) 2.79247e11 0.0748051
\(623\) −1.98260e12 −0.527277
\(624\) 7.42852e11 0.196143
\(625\) 1.52588e11 0.0400000
\(626\) 7.88410e10 0.0205195
\(627\) −6.12880e11 −0.158370
\(628\) −1.90501e11 −0.0488742
\(629\) 5.09201e12 1.29706
\(630\) −1.69267e10 −0.00428096
\(631\) −3.66188e12 −0.919543 −0.459771 0.888037i \(-0.652069\pi\)
−0.459771 + 0.888037i \(0.652069\pi\)
\(632\) −5.19685e11 −0.129573
\(633\) −5.47449e11 −0.135527
\(634\) 1.71762e11 0.0422206
\(635\) −1.02144e12 −0.249304
\(636\) −2.99082e12 −0.724824
\(637\) 1.23976e12 0.298338
\(638\) −1.96017e11 −0.0468384
\(639\) 1.03853e12 0.246414
\(640\) 5.79029e11 0.136424
\(641\) 1.90725e12 0.446217 0.223109 0.974794i \(-0.428380\pi\)
0.223109 + 0.974794i \(0.428380\pi\)
\(642\) 2.58108e11 0.0599644
\(643\) 5.31123e12 1.22531 0.612655 0.790351i \(-0.290102\pi\)
0.612655 + 0.790351i \(0.290102\pi\)
\(644\) 1.40994e12 0.323008
\(645\) 4.84223e11 0.110161
\(646\) 1.29542e11 0.0292661
\(647\) −6.23349e12 −1.39850 −0.699249 0.714878i \(-0.746482\pi\)
−0.699249 + 0.714878i \(0.746482\pi\)
\(648\) 7.69875e10 0.0171527
\(649\) 9.56031e12 2.11530
\(650\) 2.43773e10 0.00535643
\(651\) −4.78406e11 −0.104396
\(652\) −6.54529e12 −1.41845
\(653\) 2.85345e12 0.614132 0.307066 0.951688i \(-0.400653\pi\)
0.307066 + 0.951688i \(0.400653\pi\)
\(654\) 1.22916e11 0.0262729
\(655\) 3.58989e12 0.762071
\(656\) 4.35224e11 0.0917584
\(657\) −3.36259e10 −0.00704092
\(658\) −2.54858e10 −0.00530008
\(659\) −1.25192e12 −0.258579 −0.129290 0.991607i \(-0.541270\pi\)
−0.129290 + 0.991607i \(0.541270\pi\)
\(660\) −1.49589e12 −0.306869
\(661\) −1.04559e12 −0.213036 −0.106518 0.994311i \(-0.533970\pi\)
−0.106518 + 0.994311i \(0.533970\pi\)
\(662\) 1.32598e11 0.0268335
\(663\) 1.63734e12 0.329101
\(664\) 4.05315e11 0.0809163
\(665\) −1.91926e11 −0.0380572
\(666\) −1.03141e11 −0.0203140
\(667\) 2.26587e12 0.443271
\(668\) −4.47679e12 −0.869907
\(669\) −4.04297e12 −0.780339
\(670\) −1.91049e11 −0.0366276
\(671\) 5.51144e12 1.04958
\(672\) 2.60850e11 0.0493433
\(673\) −6.02090e12 −1.13134 −0.565670 0.824632i \(-0.691382\pi\)
−0.565670 + 0.824632i \(0.691382\pi\)
\(674\) −5.34337e9 −0.000997346 0
\(675\) −2.07594e11 −0.0384900
\(676\) 4.75109e12 0.875051
\(677\) −2.46156e12 −0.450361 −0.225181 0.974317i \(-0.572297\pi\)
−0.225181 + 0.974317i \(0.572297\pi\)
\(678\) 3.44523e11 0.0626159
\(679\) −2.41227e12 −0.435524
\(680\) 6.34269e11 0.113758
\(681\) −5.72128e12 −1.01937
\(682\) 2.54937e11 0.0451235
\(683\) 5.07863e12 0.893004 0.446502 0.894783i \(-0.352670\pi\)
0.446502 + 0.894783i \(0.352670\pi\)
\(684\) 4.35155e11 0.0760136
\(685\) 1.84378e12 0.319964
\(686\) 3.10228e11 0.0534837
\(687\) −5.30524e12 −0.908657
\(688\) −2.46239e12 −0.418994
\(689\) 2.58456e12 0.436919
\(690\) −1.04268e11 −0.0175117
\(691\) 8.74918e11 0.145988 0.0729938 0.997332i \(-0.476745\pi\)
0.0729938 + 0.997332i \(0.476745\pi\)
\(692\) 2.09614e12 0.347491
\(693\) −8.97607e11 −0.147838
\(694\) −2.88886e11 −0.0472725
\(695\) −8.07218e11 −0.131238
\(696\) 2.79190e11 0.0450981
\(697\) 9.59291e11 0.153958
\(698\) −5.81784e11 −0.0927711
\(699\) −5.57422e11 −0.0883155
\(700\) −4.68445e11 −0.0737425
\(701\) −2.83110e12 −0.442817 −0.221408 0.975181i \(-0.571065\pi\)
−0.221408 + 0.975181i \(0.571065\pi\)
\(702\) −3.31651e10 −0.00515423
\(703\) −1.16947e12 −0.180589
\(704\) 7.51382e12 1.15288
\(705\) −3.12565e11 −0.0476529
\(706\) 6.68515e11 0.101272
\(707\) −1.52123e12 −0.228985
\(708\) −6.78797e12 −1.01529
\(709\) 8.42005e12 1.25143 0.625715 0.780052i \(-0.284807\pi\)
0.625715 + 0.780052i \(0.284807\pi\)
\(710\) −1.73306e11 −0.0255947
\(711\) −1.90647e12 −0.279780
\(712\) −1.50479e12 −0.219440
\(713\) −2.94695e12 −0.427042
\(714\) 1.89724e11 0.0273199
\(715\) 1.29270e12 0.184978
\(716\) −6.22522e12 −0.885210
\(717\) −5.17835e12 −0.731737
\(718\) 9.76880e11 0.137177
\(719\) −6.19860e12 −0.864995 −0.432498 0.901635i \(-0.642368\pi\)
−0.432498 + 0.901635i \(0.642368\pi\)
\(720\) 1.05566e12 0.146396
\(721\) 2.10090e12 0.289532
\(722\) −2.97517e10 −0.00407469
\(723\) 6.85124e12 0.932495
\(724\) 3.29956e12 0.446306
\(725\) −7.52826e11 −0.101198
\(726\) 1.43741e11 0.0192029
\(727\) 1.23433e12 0.163880 0.0819400 0.996637i \(-0.473888\pi\)
0.0819400 + 0.996637i \(0.473888\pi\)
\(728\) −1.50128e11 −0.0198094
\(729\) 2.82430e11 0.0370370
\(730\) 5.61135e9 0.000731331 0
\(731\) −5.42742e12 −0.703016
\(732\) −3.91320e12 −0.503770
\(733\) 1.44420e13 1.84782 0.923911 0.382608i \(-0.124974\pi\)
0.923911 + 0.382608i \(0.124974\pi\)
\(734\) −8.04386e11 −0.102290
\(735\) 1.76181e12 0.222672
\(736\) 1.60682e12 0.201844
\(737\) −1.01311e13 −1.26490
\(738\) −1.94308e10 −0.00241122
\(739\) 1.34207e13 1.65529 0.827646 0.561250i \(-0.189679\pi\)
0.827646 + 0.561250i \(0.189679\pi\)
\(740\) −2.85441e12 −0.349923
\(741\) −3.76046e11 −0.0458205
\(742\) 2.99481e11 0.0362703
\(743\) 2.23655e11 0.0269234 0.0134617 0.999909i \(-0.495715\pi\)
0.0134617 + 0.999909i \(0.495715\pi\)
\(744\) −3.63109e11 −0.0434469
\(745\) 2.83523e10 0.00337199
\(746\) −3.70848e10 −0.00438400
\(747\) 1.48690e12 0.174719
\(748\) 1.67667e13 1.95835
\(749\) 4.28620e12 0.497627
\(750\) 3.46425e10 0.00399791
\(751\) −6.03105e11 −0.0691852 −0.0345926 0.999401i \(-0.511013\pi\)
−0.0345926 + 0.999401i \(0.511013\pi\)
\(752\) 1.58947e12 0.181247
\(753\) −5.59642e10 −0.00634356
\(754\) −1.20271e11 −0.0135516
\(755\) 4.45272e12 0.498729
\(756\) 6.37315e11 0.0709587
\(757\) 4.20225e12 0.465104 0.232552 0.972584i \(-0.425292\pi\)
0.232552 + 0.972584i \(0.425292\pi\)
\(758\) −7.65739e11 −0.0842498
\(759\) −5.52920e12 −0.604748
\(760\) −1.45671e11 −0.0158385
\(761\) −7.62991e11 −0.0824685 −0.0412343 0.999150i \(-0.513129\pi\)
−0.0412343 + 0.999150i \(0.513129\pi\)
\(762\) −2.31899e11 −0.0249174
\(763\) 2.04117e12 0.218031
\(764\) 7.02376e12 0.745847
\(765\) 2.32682e12 0.245633
\(766\) −5.00292e11 −0.0525042
\(767\) 5.86594e12 0.612010
\(768\) −5.23564e12 −0.543056
\(769\) 1.43120e13 1.47582 0.737909 0.674900i \(-0.235813\pi\)
0.737909 + 0.674900i \(0.235813\pi\)
\(770\) 1.49789e11 0.0153558
\(771\) 3.18750e12 0.324867
\(772\) 1.46930e13 1.48879
\(773\) −2.10625e12 −0.212179 −0.106090 0.994357i \(-0.533833\pi\)
−0.106090 + 0.994357i \(0.533833\pi\)
\(774\) 1.09935e11 0.0110103
\(775\) 9.79112e11 0.0974932
\(776\) −1.83091e12 −0.181254
\(777\) −1.71278e12 −0.168580
\(778\) 1.71804e11 0.0168123
\(779\) −2.20319e11 −0.0214355
\(780\) −9.17838e11 −0.0887852
\(781\) −9.19021e12 −0.883885
\(782\) 1.16869e12 0.111755
\(783\) 1.02421e12 0.0973782
\(784\) −8.95922e12 −0.846931
\(785\) 2.33948e11 0.0219890
\(786\) 8.15023e11 0.0761673
\(787\) 1.73423e13 1.61146 0.805730 0.592283i \(-0.201773\pi\)
0.805730 + 0.592283i \(0.201773\pi\)
\(788\) −1.49892e13 −1.38488
\(789\) 8.69291e12 0.798580
\(790\) 3.18144e11 0.0290604
\(791\) 5.72123e12 0.519631
\(792\) −6.81281e11 −0.0615266
\(793\) 3.38166e12 0.303669
\(794\) −5.54781e10 −0.00495369
\(795\) 3.67291e12 0.326106
\(796\) −1.36852e13 −1.20821
\(797\) 8.59161e12 0.754245 0.377122 0.926163i \(-0.376914\pi\)
0.377122 + 0.926163i \(0.376914\pi\)
\(798\) −4.35735e10 −0.00380373
\(799\) 3.50339e12 0.304108
\(800\) −5.33858e11 −0.0460809
\(801\) −5.52034e12 −0.473827
\(802\) 2.57282e11 0.0219596
\(803\) 2.97564e11 0.0252557
\(804\) 7.19326e12 0.607119
\(805\) −1.73149e12 −0.145325
\(806\) 1.56422e11 0.0130554
\(807\) 1.16054e13 0.963230
\(808\) −1.15461e12 −0.0952981
\(809\) 6.28613e12 0.515959 0.257979 0.966150i \(-0.416943\pi\)
0.257979 + 0.966150i \(0.416943\pi\)
\(810\) −4.71307e10 −0.00384699
\(811\) 2.78577e12 0.226126 0.113063 0.993588i \(-0.463934\pi\)
0.113063 + 0.993588i \(0.463934\pi\)
\(812\) 2.31118e12 0.186566
\(813\) −7.04658e12 −0.565680
\(814\) 9.12718e11 0.0728663
\(815\) 8.03803e12 0.638176
\(816\) −1.18324e13 −0.934261
\(817\) 1.24651e12 0.0978804
\(818\) −3.17309e11 −0.0247795
\(819\) −5.50746e11 −0.0427734
\(820\) −5.37745e11 −0.0415350
\(821\) 9.14280e11 0.0702320 0.0351160 0.999383i \(-0.488820\pi\)
0.0351160 + 0.999383i \(0.488820\pi\)
\(822\) 4.18599e11 0.0319797
\(823\) −1.61379e13 −1.22616 −0.613081 0.790020i \(-0.710070\pi\)
−0.613081 + 0.790020i \(0.710070\pi\)
\(824\) 1.59458e12 0.120496
\(825\) 1.83705e12 0.138063
\(826\) 6.79703e11 0.0508053
\(827\) −5.31430e12 −0.395067 −0.197534 0.980296i \(-0.563293\pi\)
−0.197534 + 0.980296i \(0.563293\pi\)
\(828\) 3.92582e12 0.290264
\(829\) −1.54164e13 −1.13367 −0.566836 0.823831i \(-0.691833\pi\)
−0.566836 + 0.823831i \(0.691833\pi\)
\(830\) −2.48128e11 −0.0181478
\(831\) −4.45451e12 −0.324038
\(832\) 4.61027e12 0.333558
\(833\) −1.97473e13 −1.42104
\(834\) −1.83265e11 −0.0131169
\(835\) 5.49778e12 0.391380
\(836\) −3.85079e12 −0.272660
\(837\) −1.33207e12 −0.0938129
\(838\) −1.47628e12 −0.103412
\(839\) −1.15781e13 −0.806692 −0.403346 0.915048i \(-0.632153\pi\)
−0.403346 + 0.915048i \(0.632153\pi\)
\(840\) −2.13346e11 −0.0147852
\(841\) −1.07929e13 −0.743972
\(842\) −1.36952e10 −0.000938994 0
\(843\) 1.88827e11 0.0128778
\(844\) −3.43967e12 −0.233333
\(845\) −5.83465e12 −0.393695
\(846\) −7.09625e10 −0.00476280
\(847\) 2.38700e12 0.159359
\(848\) −1.86776e13 −1.24034
\(849\) −1.16743e13 −0.771164
\(850\) −3.88291e11 −0.0255136
\(851\) −1.05506e13 −0.689596
\(852\) 6.52519e12 0.424243
\(853\) 1.83106e13 1.18422 0.592108 0.805859i \(-0.298296\pi\)
0.592108 + 0.805859i \(0.298296\pi\)
\(854\) 3.91843e11 0.0252088
\(855\) −5.34398e11 −0.0341993
\(856\) 3.25321e12 0.207100
\(857\) 7.14208e12 0.452284 0.226142 0.974094i \(-0.427389\pi\)
0.226142 + 0.974094i \(0.427389\pi\)
\(858\) 2.93486e11 0.0184882
\(859\) 1.28128e13 0.802925 0.401463 0.915875i \(-0.368502\pi\)
0.401463 + 0.915875i \(0.368502\pi\)
\(860\) 3.04242e12 0.189660
\(861\) −3.22673e11 −0.0200100
\(862\) −1.28886e12 −0.0795100
\(863\) 6.68648e12 0.410345 0.205172 0.978726i \(-0.434225\pi\)
0.205172 + 0.978726i \(0.434225\pi\)
\(864\) 7.26307e11 0.0443413
\(865\) −2.57420e12 −0.156340
\(866\) 1.83500e11 0.0110868
\(867\) −1.64746e13 −0.990214
\(868\) −3.00588e12 −0.179735
\(869\) 1.68708e13 1.00357
\(870\) −1.70916e11 −0.0101146
\(871\) −6.21618e12 −0.365967
\(872\) 1.54924e12 0.0907392
\(873\) −6.71670e12 −0.391374
\(874\) −2.68410e11 −0.0155596
\(875\) 5.75281e11 0.0331775
\(876\) −2.11275e11 −0.0121221
\(877\) 1.15846e13 0.661275 0.330637 0.943758i \(-0.392736\pi\)
0.330637 + 0.943758i \(0.392736\pi\)
\(878\) 1.66872e12 0.0947674
\(879\) −1.64219e13 −0.927842
\(880\) −9.34183e12 −0.525122
\(881\) 2.93410e13 1.64090 0.820452 0.571715i \(-0.193722\pi\)
0.820452 + 0.571715i \(0.193722\pi\)
\(882\) 3.99989e11 0.0222556
\(883\) 1.46420e13 0.810544 0.405272 0.914196i \(-0.367177\pi\)
0.405272 + 0.914196i \(0.367177\pi\)
\(884\) 1.02876e13 0.566603
\(885\) 8.33606e12 0.456789
\(886\) 1.34182e12 0.0731547
\(887\) 1.03872e13 0.563434 0.281717 0.959497i \(-0.409096\pi\)
0.281717 + 0.959497i \(0.409096\pi\)
\(888\) −1.30000e12 −0.0701590
\(889\) −3.85098e12 −0.206782
\(890\) 9.21211e11 0.0492158
\(891\) −2.49929e12 −0.132852
\(892\) −2.54024e13 −1.34349
\(893\) −8.04618e11 −0.0423407
\(894\) 6.43691e9 0.000337022 0
\(895\) 7.64497e12 0.398265
\(896\) 2.18303e12 0.113155
\(897\) −3.39256e12 −0.174969
\(898\) −1.54244e12 −0.0791525
\(899\) −4.83066e12 −0.246654
\(900\) −1.30434e12 −0.0662671
\(901\) −4.11679e13 −2.08112
\(902\) 1.71948e11 0.00864904
\(903\) 1.82560e12 0.0913714
\(904\) 4.34240e12 0.216258
\(905\) −4.05207e12 −0.200797
\(906\) 1.01091e12 0.0498468
\(907\) −1.98457e12 −0.0973720 −0.0486860 0.998814i \(-0.515503\pi\)
−0.0486860 + 0.998814i \(0.515503\pi\)
\(908\) −3.59474e13 −1.75502
\(909\) −4.23570e12 −0.205773
\(910\) 9.19063e10 0.00444282
\(911\) −7.84441e12 −0.377336 −0.188668 0.982041i \(-0.560417\pi\)
−0.188668 + 0.982041i \(0.560417\pi\)
\(912\) 2.71753e12 0.130076
\(913\) −1.31580e13 −0.626715
\(914\) 1.51745e12 0.0719209
\(915\) 4.80567e12 0.226652
\(916\) −3.33334e13 −1.56441
\(917\) 1.35345e13 0.632090
\(918\) 5.28265e11 0.0245505
\(919\) 1.67705e13 0.775577 0.387789 0.921748i \(-0.373239\pi\)
0.387789 + 0.921748i \(0.373239\pi\)
\(920\) −1.31420e12 −0.0604806
\(921\) −6.70187e12 −0.306922
\(922\) −2.62886e12 −0.119806
\(923\) −5.63886e12 −0.255731
\(924\) −5.63975e12 −0.254528
\(925\) 3.50539e12 0.157434
\(926\) 2.13543e12 0.0954414
\(927\) 5.84973e12 0.260182
\(928\) 2.63391e12 0.116583
\(929\) 2.22554e13 0.980314 0.490157 0.871634i \(-0.336939\pi\)
0.490157 + 0.871634i \(0.336939\pi\)
\(930\) 2.22290e11 0.00974423
\(931\) 4.53533e12 0.197850
\(932\) −3.50234e12 −0.152050
\(933\) 1.29119e13 0.557856
\(934\) 2.73640e12 0.117657
\(935\) −2.05906e13 −0.881084
\(936\) −4.18015e11 −0.0178013
\(937\) −3.38299e13 −1.43375 −0.716874 0.697202i \(-0.754428\pi\)
−0.716874 + 0.697202i \(0.754428\pi\)
\(938\) −7.20287e11 −0.0303803
\(939\) 3.64547e12 0.153024
\(940\) −1.96388e12 −0.0820426
\(941\) −2.83560e13 −1.17894 −0.589471 0.807790i \(-0.700664\pi\)
−0.589471 + 0.807790i \(0.700664\pi\)
\(942\) 5.31139e10 0.00219775
\(943\) −1.98764e12 −0.0818532
\(944\) −4.23908e13 −1.73739
\(945\) −7.82663e11 −0.0319251
\(946\) −9.72838e11 −0.0394939
\(947\) −2.46660e13 −0.996606 −0.498303 0.867003i \(-0.666043\pi\)
−0.498303 + 0.867003i \(0.666043\pi\)
\(948\) −1.19785e13 −0.481689
\(949\) 1.82577e11 0.00730714
\(950\) 8.91781e10 0.00355224
\(951\) 7.94195e12 0.314858
\(952\) 2.39129e12 0.0943554
\(953\) −3.26739e12 −0.128317 −0.0641583 0.997940i \(-0.520436\pi\)
−0.0641583 + 0.997940i \(0.520436\pi\)
\(954\) 8.33872e11 0.0325935
\(955\) −8.62563e12 −0.335564
\(956\) −3.25361e13 −1.25981
\(957\) −9.06350e12 −0.349295
\(958\) 1.31444e12 0.0504194
\(959\) 6.95135e12 0.265390
\(960\) 6.55164e12 0.248960
\(961\) −2.01570e13 −0.762377
\(962\) 5.60018e11 0.0210821
\(963\) 1.19344e13 0.447182
\(964\) 4.30470e13 1.60545
\(965\) −1.80440e13 −0.669822
\(966\) −3.93106e11 −0.0145249
\(967\) −3.32399e13 −1.22248 −0.611239 0.791446i \(-0.709328\pi\)
−0.611239 + 0.791446i \(0.709328\pi\)
\(968\) 1.81172e12 0.0663213
\(969\) 5.98980e12 0.218251
\(970\) 1.12086e12 0.0406515
\(971\) −3.55720e13 −1.28417 −0.642083 0.766635i \(-0.721930\pi\)
−0.642083 + 0.766635i \(0.721930\pi\)
\(972\) 1.77453e12 0.0637655
\(973\) −3.04334e12 −0.108854
\(974\) −3.97562e12 −0.141543
\(975\) 1.12716e12 0.0399453
\(976\) −2.44379e13 −0.862065
\(977\) −8.55177e12 −0.300283 −0.150141 0.988665i \(-0.547973\pi\)
−0.150141 + 0.988665i \(0.547973\pi\)
\(978\) 1.82490e12 0.0637842
\(979\) 4.88508e13 1.69961
\(980\) 1.10696e13 0.383368
\(981\) 5.68341e12 0.195929
\(982\) 1.72809e12 0.0593014
\(983\) −5.17654e13 −1.76827 −0.884135 0.467231i \(-0.845252\pi\)
−0.884135 + 0.467231i \(0.845252\pi\)
\(984\) −2.44908e11 −0.00832769
\(985\) 1.84077e13 0.623071
\(986\) 1.91572e12 0.0645484
\(987\) −1.17842e12 −0.0395251
\(988\) −2.36274e12 −0.0788877
\(989\) 1.12456e13 0.373765
\(990\) 4.17071e11 0.0137991
\(991\) 3.06829e13 1.01057 0.505284 0.862953i \(-0.331388\pi\)
0.505284 + 0.862953i \(0.331388\pi\)
\(992\) −3.42561e12 −0.112314
\(993\) 6.13111e12 0.200109
\(994\) −6.53390e11 −0.0212292
\(995\) 1.68063e13 0.543586
\(996\) 9.34236e12 0.300808
\(997\) −3.08781e13 −0.989743 −0.494872 0.868966i \(-0.664785\pi\)
−0.494872 + 0.868966i \(0.664785\pi\)
\(998\) −9.75871e11 −0.0311390
\(999\) −4.76905e12 −0.151491
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.8 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.8 15 1.1 even 1 trivial