Properties

Label 285.10.a.h.1.7
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(5.41213\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.41213 q^{2} -81.0000 q^{3} -470.885 q^{4} +625.000 q^{5} +519.382 q^{6} -7663.31 q^{7} +6302.38 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q-6.41213 q^{2} -81.0000 q^{3} -470.885 q^{4} +625.000 q^{5} +519.382 q^{6} -7663.31 q^{7} +6302.38 q^{8} +6561.00 q^{9} -4007.58 q^{10} +3714.99 q^{11} +38141.7 q^{12} +140010. q^{13} +49138.1 q^{14} -50625.0 q^{15} +200681. q^{16} -29426.7 q^{17} -42070.0 q^{18} -130321. q^{19} -294303. q^{20} +620728. q^{21} -23821.0 q^{22} +543534. q^{23} -510493. q^{24} +390625. q^{25} -897763. q^{26} -531441. q^{27} +3.60854e6 q^{28} +653112. q^{29} +324614. q^{30} -6.20437e6 q^{31} -4.51361e6 q^{32} -300915. q^{33} +188688. q^{34} -4.78957e6 q^{35} -3.08947e6 q^{36} -1.43083e7 q^{37} +835635. q^{38} -1.13408e7 q^{39} +3.93899e6 q^{40} -1.40634e7 q^{41} -3.98019e6 q^{42} +3.38510e7 q^{43} -1.74933e6 q^{44} +4.10062e6 q^{45} -3.48521e6 q^{46} +4.14880e7 q^{47} -1.62552e7 q^{48} +1.83728e7 q^{49} -2.50474e6 q^{50} +2.38357e6 q^{51} -6.59286e7 q^{52} -6.45117e7 q^{53} +3.40767e6 q^{54} +2.32187e6 q^{55} -4.82971e7 q^{56} +1.05560e7 q^{57} -4.18784e6 q^{58} +7.94519e7 q^{59} +2.38385e7 q^{60} +3.29941e7 q^{61} +3.97832e7 q^{62} -5.02790e7 q^{63} -7.38069e7 q^{64} +8.75063e7 q^{65} +1.92950e6 q^{66} -1.96309e8 q^{67} +1.38566e7 q^{68} -4.40262e7 q^{69} +3.07113e7 q^{70} -3.62019e8 q^{71} +4.13499e7 q^{72} -2.73499e8 q^{73} +9.17468e7 q^{74} -3.16406e7 q^{75} +6.13662e7 q^{76} -2.84692e7 q^{77} +7.27188e7 q^{78} -2.95732e8 q^{79} +1.25426e8 q^{80} +4.30467e7 q^{81} +9.01762e7 q^{82} +2.00828e8 q^{83} -2.92291e8 q^{84} -1.83917e7 q^{85} -2.17057e8 q^{86} -5.29021e7 q^{87} +2.34133e7 q^{88} +1.00715e9 q^{89} -2.62937e7 q^{90} -1.07294e9 q^{91} -2.55942e8 q^{92} +5.02554e8 q^{93} -2.66026e8 q^{94} -8.14506e7 q^{95} +3.65603e8 q^{96} -1.03608e9 q^{97} -1.17808e8 q^{98} +2.43741e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.41213 −0.283379 −0.141689 0.989911i \(-0.545253\pi\)
−0.141689 + 0.989911i \(0.545253\pi\)
\(3\) −81.0000 −0.577350
\(4\) −470.885 −0.919697
\(5\) 625.000 0.447214
\(6\) 519.382 0.163609
\(7\) −7663.31 −1.20636 −0.603178 0.797607i \(-0.706099\pi\)
−0.603178 + 0.797607i \(0.706099\pi\)
\(8\) 6302.38 0.544001
\(9\) 6561.00 0.333333
\(10\) −4007.58 −0.126731
\(11\) 3714.99 0.0765052 0.0382526 0.999268i \(-0.487821\pi\)
0.0382526 + 0.999268i \(0.487821\pi\)
\(12\) 38141.7 0.530987
\(13\) 140010. 1.35961 0.679805 0.733393i \(-0.262064\pi\)
0.679805 + 0.733393i \(0.262064\pi\)
\(14\) 49138.1 0.341855
\(15\) −50625.0 −0.258199
\(16\) 200681. 0.765538
\(17\) −29426.7 −0.0854520 −0.0427260 0.999087i \(-0.513604\pi\)
−0.0427260 + 0.999087i \(0.513604\pi\)
\(18\) −42070.0 −0.0944596
\(19\) −130321. −0.229416
\(20\) −294303. −0.411301
\(21\) 620728. 0.696490
\(22\) −23821.0 −0.0216799
\(23\) 543534. 0.404996 0.202498 0.979283i \(-0.435094\pi\)
0.202498 + 0.979283i \(0.435094\pi\)
\(24\) −510493. −0.314079
\(25\) 390625. 0.200000
\(26\) −897763. −0.385285
\(27\) −531441. −0.192450
\(28\) 3.60854e6 1.10948
\(29\) 653112. 0.171473 0.0857367 0.996318i \(-0.472676\pi\)
0.0857367 + 0.996318i \(0.472676\pi\)
\(30\) 324614. 0.0731681
\(31\) −6.20437e6 −1.20662 −0.603309 0.797507i \(-0.706151\pi\)
−0.603309 + 0.797507i \(0.706151\pi\)
\(32\) −4.51361e6 −0.760938
\(33\) −300915. −0.0441703
\(34\) 188688. 0.0242153
\(35\) −4.78957e6 −0.539499
\(36\) −3.08947e6 −0.306566
\(37\) −1.43083e7 −1.25511 −0.627554 0.778573i \(-0.715944\pi\)
−0.627554 + 0.778573i \(0.715944\pi\)
\(38\) 835635. 0.0650115
\(39\) −1.13408e7 −0.784971
\(40\) 3.93899e6 0.243285
\(41\) −1.40634e7 −0.777253 −0.388627 0.921395i \(-0.627050\pi\)
−0.388627 + 0.921395i \(0.627050\pi\)
\(42\) −3.98019e6 −0.197370
\(43\) 3.38510e7 1.50995 0.754977 0.655751i \(-0.227648\pi\)
0.754977 + 0.655751i \(0.227648\pi\)
\(44\) −1.74933e6 −0.0703616
\(45\) 4.10062e6 0.149071
\(46\) −3.48521e6 −0.114767
\(47\) 4.14880e7 1.24017 0.620086 0.784533i \(-0.287098\pi\)
0.620086 + 0.784533i \(0.287098\pi\)
\(48\) −1.62552e7 −0.441984
\(49\) 1.83728e7 0.455294
\(50\) −2.50474e6 −0.0566757
\(51\) 2.38357e6 0.0493357
\(52\) −6.59286e7 −1.25043
\(53\) −6.45117e7 −1.12305 −0.561523 0.827461i \(-0.689784\pi\)
−0.561523 + 0.827461i \(0.689784\pi\)
\(54\) 3.40767e6 0.0545363
\(55\) 2.32187e6 0.0342142
\(56\) −4.82971e7 −0.656259
\(57\) 1.05560e7 0.132453
\(58\) −4.18784e6 −0.0485919
\(59\) 7.94519e7 0.853631 0.426815 0.904339i \(-0.359635\pi\)
0.426815 + 0.904339i \(0.359635\pi\)
\(60\) 2.38385e7 0.237465
\(61\) 3.29941e7 0.305107 0.152554 0.988295i \(-0.451250\pi\)
0.152554 + 0.988295i \(0.451250\pi\)
\(62\) 3.97832e7 0.341930
\(63\) −5.02790e7 −0.402119
\(64\) −7.38069e7 −0.549905
\(65\) 8.75063e7 0.608036
\(66\) 1.92950e6 0.0125169
\(67\) −1.96309e8 −1.19016 −0.595079 0.803668i \(-0.702879\pi\)
−0.595079 + 0.803668i \(0.702879\pi\)
\(68\) 1.38566e7 0.0785899
\(69\) −4.40262e7 −0.233825
\(70\) 3.07113e7 0.152882
\(71\) −3.62019e8 −1.69071 −0.845354 0.534206i \(-0.820611\pi\)
−0.845354 + 0.534206i \(0.820611\pi\)
\(72\) 4.13499e7 0.181334
\(73\) −2.73499e8 −1.12721 −0.563603 0.826046i \(-0.690585\pi\)
−0.563603 + 0.826046i \(0.690585\pi\)
\(74\) 9.17468e7 0.355671
\(75\) −3.16406e7 −0.115470
\(76\) 6.13662e7 0.210993
\(77\) −2.84692e7 −0.0922925
\(78\) 7.27188e7 0.222444
\(79\) −2.95732e8 −0.854232 −0.427116 0.904197i \(-0.640470\pi\)
−0.427116 + 0.904197i \(0.640470\pi\)
\(80\) 1.25426e8 0.342359
\(81\) 4.30467e7 0.111111
\(82\) 9.01762e7 0.220257
\(83\) 2.00828e8 0.464486 0.232243 0.972658i \(-0.425393\pi\)
0.232243 + 0.972658i \(0.425393\pi\)
\(84\) −2.92291e8 −0.640559
\(85\) −1.83917e7 −0.0382153
\(86\) −2.17057e8 −0.427889
\(87\) −5.29021e7 −0.0990002
\(88\) 2.34133e7 0.0416189
\(89\) 1.00715e9 1.70153 0.850763 0.525549i \(-0.176140\pi\)
0.850763 + 0.525549i \(0.176140\pi\)
\(90\) −2.62937e7 −0.0422436
\(91\) −1.07294e9 −1.64017
\(92\) −2.55942e8 −0.372474
\(93\) 5.02554e8 0.696641
\(94\) −2.66026e8 −0.351439
\(95\) −8.14506e7 −0.102598
\(96\) 3.65603e8 0.439328
\(97\) −1.03608e9 −1.18829 −0.594143 0.804359i \(-0.702509\pi\)
−0.594143 + 0.804359i \(0.702509\pi\)
\(98\) −1.17808e8 −0.129021
\(99\) 2.43741e7 0.0255017
\(100\) −1.83939e8 −0.183939
\(101\) 8.71778e8 0.833603 0.416802 0.908997i \(-0.363151\pi\)
0.416802 + 0.908997i \(0.363151\pi\)
\(102\) −1.52837e7 −0.0139807
\(103\) 8.04502e8 0.704303 0.352151 0.935943i \(-0.385450\pi\)
0.352151 + 0.935943i \(0.385450\pi\)
\(104\) 8.82397e8 0.739629
\(105\) 3.87955e8 0.311480
\(106\) 4.13657e8 0.318247
\(107\) −4.78117e8 −0.352620 −0.176310 0.984335i \(-0.556416\pi\)
−0.176310 + 0.984335i \(0.556416\pi\)
\(108\) 2.50247e8 0.176996
\(109\) −2.64083e9 −1.79193 −0.895967 0.444122i \(-0.853516\pi\)
−0.895967 + 0.444122i \(0.853516\pi\)
\(110\) −1.48881e7 −0.00969557
\(111\) 1.15897e9 0.724637
\(112\) −1.53788e9 −0.923511
\(113\) 9.81702e8 0.566405 0.283202 0.959060i \(-0.408603\pi\)
0.283202 + 0.959060i \(0.408603\pi\)
\(114\) −6.76864e7 −0.0375344
\(115\) 3.39709e8 0.181120
\(116\) −3.07541e8 −0.157704
\(117\) 9.18607e8 0.453203
\(118\) −5.09455e8 −0.241901
\(119\) 2.25506e8 0.103085
\(120\) −3.19058e8 −0.140460
\(121\) −2.34415e9 −0.994147
\(122\) −2.11563e8 −0.0864609
\(123\) 1.13913e9 0.448747
\(124\) 2.92154e9 1.10972
\(125\) 2.44141e8 0.0894427
\(126\) 3.22395e8 0.113952
\(127\) 2.27426e9 0.775754 0.387877 0.921711i \(-0.373208\pi\)
0.387877 + 0.921711i \(0.373208\pi\)
\(128\) 2.78423e9 0.916769
\(129\) −2.74193e9 −0.871772
\(130\) −5.61102e8 −0.172304
\(131\) 4.37731e9 1.29863 0.649316 0.760519i \(-0.275055\pi\)
0.649316 + 0.760519i \(0.275055\pi\)
\(132\) 1.41696e8 0.0406233
\(133\) 9.98691e8 0.276757
\(134\) 1.25876e9 0.337265
\(135\) −3.32151e8 −0.0860663
\(136\) −1.85459e8 −0.0464860
\(137\) −1.51042e8 −0.0366316 −0.0183158 0.999832i \(-0.505830\pi\)
−0.0183158 + 0.999832i \(0.505830\pi\)
\(138\) 2.82302e8 0.0662610
\(139\) 7.19747e9 1.63536 0.817679 0.575674i \(-0.195260\pi\)
0.817679 + 0.575674i \(0.195260\pi\)
\(140\) 2.25534e9 0.496175
\(141\) −3.36053e9 −0.716014
\(142\) 2.32131e9 0.479111
\(143\) 5.20137e8 0.104017
\(144\) 1.31667e9 0.255179
\(145\) 4.08195e8 0.0766853
\(146\) 1.75371e9 0.319426
\(147\) −1.48819e9 −0.262864
\(148\) 6.73757e9 1.15432
\(149\) −1.93018e9 −0.320818 −0.160409 0.987051i \(-0.551281\pi\)
−0.160409 + 0.987051i \(0.551281\pi\)
\(150\) 2.02884e8 0.0327218
\(151\) −2.33185e9 −0.365009 −0.182505 0.983205i \(-0.558420\pi\)
−0.182505 + 0.983205i \(0.558420\pi\)
\(152\) −8.21333e8 −0.124802
\(153\) −1.93069e8 −0.0284840
\(154\) 1.82548e8 0.0261537
\(155\) −3.87773e9 −0.539616
\(156\) 5.34022e9 0.721935
\(157\) −1.51864e9 −0.199483 −0.0997414 0.995013i \(-0.531802\pi\)
−0.0997414 + 0.995013i \(0.531802\pi\)
\(158\) 1.89627e9 0.242071
\(159\) 5.22545e9 0.648390
\(160\) −2.82101e9 −0.340302
\(161\) −4.16527e9 −0.488570
\(162\) −2.76021e8 −0.0314865
\(163\) −2.33785e9 −0.259402 −0.129701 0.991553i \(-0.541402\pi\)
−0.129701 + 0.991553i \(0.541402\pi\)
\(164\) 6.62223e9 0.714837
\(165\) −1.88072e8 −0.0197536
\(166\) −1.28774e9 −0.131626
\(167\) 1.16628e10 1.16032 0.580162 0.814501i \(-0.302989\pi\)
0.580162 + 0.814501i \(0.302989\pi\)
\(168\) 3.91207e9 0.378891
\(169\) 8.99834e9 0.848540
\(170\) 1.17930e8 0.0108294
\(171\) −8.55036e8 −0.0764719
\(172\) −1.59399e10 −1.38870
\(173\) −1.18098e10 −1.00238 −0.501192 0.865336i \(-0.667105\pi\)
−0.501192 + 0.865336i \(0.667105\pi\)
\(174\) 3.39215e8 0.0280546
\(175\) −2.99348e9 −0.241271
\(176\) 7.45530e8 0.0585677
\(177\) −6.43560e9 −0.492844
\(178\) −6.45797e9 −0.482176
\(179\) 1.80580e10 1.31472 0.657358 0.753578i \(-0.271674\pi\)
0.657358 + 0.753578i \(0.271674\pi\)
\(180\) −1.93092e9 −0.137100
\(181\) 1.18421e10 0.820115 0.410058 0.912060i \(-0.365509\pi\)
0.410058 + 0.912060i \(0.365509\pi\)
\(182\) 6.87984e9 0.464790
\(183\) −2.67253e9 −0.176154
\(184\) 3.42556e9 0.220319
\(185\) −8.94271e9 −0.561301
\(186\) −3.22244e9 −0.197413
\(187\) −1.09320e8 −0.00653752
\(188\) −1.95361e10 −1.14058
\(189\) 4.07260e9 0.232163
\(190\) 5.22272e8 0.0290740
\(191\) 3.60910e9 0.196223 0.0981113 0.995175i \(-0.468720\pi\)
0.0981113 + 0.995175i \(0.468720\pi\)
\(192\) 5.97836e9 0.317488
\(193\) 3.17425e9 0.164677 0.0823386 0.996604i \(-0.473761\pi\)
0.0823386 + 0.996604i \(0.473761\pi\)
\(194\) 6.64349e9 0.336735
\(195\) −7.08801e9 −0.351050
\(196\) −8.65145e9 −0.418732
\(197\) −3.05926e10 −1.44717 −0.723583 0.690238i \(-0.757506\pi\)
−0.723583 + 0.690238i \(0.757506\pi\)
\(198\) −1.56290e8 −0.00722665
\(199\) −9.78742e9 −0.442415 −0.221207 0.975227i \(-0.571000\pi\)
−0.221207 + 0.975227i \(0.571000\pi\)
\(200\) 2.46187e9 0.108800
\(201\) 1.59011e10 0.687138
\(202\) −5.58995e9 −0.236225
\(203\) −5.00500e9 −0.206858
\(204\) −1.12238e9 −0.0453739
\(205\) −8.78962e9 −0.347598
\(206\) −5.15857e9 −0.199584
\(207\) 3.56613e9 0.134999
\(208\) 2.80974e10 1.04083
\(209\) −4.84142e8 −0.0175515
\(210\) −2.48762e9 −0.0882667
\(211\) 3.63779e10 1.26348 0.631738 0.775182i \(-0.282342\pi\)
0.631738 + 0.775182i \(0.282342\pi\)
\(212\) 3.03776e10 1.03286
\(213\) 2.93235e10 0.976131
\(214\) 3.06575e9 0.0999250
\(215\) 2.11569e10 0.675272
\(216\) −3.34934e9 −0.104693
\(217\) 4.75460e10 1.45561
\(218\) 1.69334e10 0.507796
\(219\) 2.21534e10 0.650793
\(220\) −1.09333e9 −0.0314667
\(221\) −4.12004e9 −0.116181
\(222\) −7.43149e9 −0.205347
\(223\) 1.95194e10 0.528561 0.264281 0.964446i \(-0.414865\pi\)
0.264281 + 0.964446i \(0.414865\pi\)
\(224\) 3.45892e10 0.917962
\(225\) 2.56289e9 0.0666667
\(226\) −6.29480e9 −0.160507
\(227\) 4.92901e10 1.23209 0.616047 0.787710i \(-0.288733\pi\)
0.616047 + 0.787710i \(0.288733\pi\)
\(228\) −4.97066e9 −0.121817
\(229\) 4.61647e10 1.10930 0.554651 0.832083i \(-0.312852\pi\)
0.554651 + 0.832083i \(0.312852\pi\)
\(230\) −2.17825e9 −0.0513255
\(231\) 2.30600e9 0.0532851
\(232\) 4.11616e9 0.0932817
\(233\) 7.63034e10 1.69606 0.848032 0.529946i \(-0.177788\pi\)
0.848032 + 0.529946i \(0.177788\pi\)
\(234\) −5.89022e9 −0.128428
\(235\) 2.59300e10 0.554622
\(236\) −3.74127e10 −0.785081
\(237\) 2.39543e10 0.493191
\(238\) −1.44598e9 −0.0292122
\(239\) 3.06912e10 0.608447 0.304223 0.952601i \(-0.401603\pi\)
0.304223 + 0.952601i \(0.401603\pi\)
\(240\) −1.01595e10 −0.197661
\(241\) −3.25607e10 −0.621752 −0.310876 0.950450i \(-0.600622\pi\)
−0.310876 + 0.950450i \(0.600622\pi\)
\(242\) 1.50310e10 0.281720
\(243\) −3.48678e9 −0.0641500
\(244\) −1.55364e10 −0.280606
\(245\) 1.14830e10 0.203614
\(246\) −7.30428e9 −0.127165
\(247\) −1.82463e10 −0.311916
\(248\) −3.91023e10 −0.656402
\(249\) −1.62671e10 −0.268171
\(250\) −1.56546e9 −0.0253462
\(251\) 2.11051e10 0.335626 0.167813 0.985819i \(-0.446330\pi\)
0.167813 + 0.985819i \(0.446330\pi\)
\(252\) 2.36756e10 0.369827
\(253\) 2.01922e9 0.0309843
\(254\) −1.45829e10 −0.219832
\(255\) 1.48973e9 0.0220636
\(256\) 1.99363e10 0.290112
\(257\) 1.18323e11 1.69189 0.845944 0.533272i \(-0.179038\pi\)
0.845944 + 0.533272i \(0.179038\pi\)
\(258\) 1.75816e10 0.247042
\(259\) 1.09649e11 1.51411
\(260\) −4.12054e10 −0.559209
\(261\) 4.28507e9 0.0571578
\(262\) −2.80678e10 −0.368005
\(263\) −7.49327e10 −0.965763 −0.482881 0.875686i \(-0.660410\pi\)
−0.482881 + 0.875686i \(0.660410\pi\)
\(264\) −1.89648e9 −0.0240287
\(265\) −4.03198e10 −0.502241
\(266\) −6.40373e9 −0.0784270
\(267\) −8.15791e10 −0.982377
\(268\) 9.24390e10 1.09458
\(269\) −9.65323e10 −1.12405 −0.562027 0.827119i \(-0.689978\pi\)
−0.562027 + 0.827119i \(0.689978\pi\)
\(270\) 2.12979e9 0.0243894
\(271\) 7.15254e10 0.805561 0.402781 0.915297i \(-0.368044\pi\)
0.402781 + 0.915297i \(0.368044\pi\)
\(272\) −5.90540e9 −0.0654168
\(273\) 8.69083e10 0.946955
\(274\) 9.68502e8 0.0103806
\(275\) 1.45117e9 0.0153010
\(276\) 2.07313e10 0.215048
\(277\) 7.09793e10 0.724390 0.362195 0.932102i \(-0.382027\pi\)
0.362195 + 0.932102i \(0.382027\pi\)
\(278\) −4.61511e10 −0.463426
\(279\) −4.07069e10 −0.402206
\(280\) −3.01857e10 −0.293488
\(281\) −8.31014e10 −0.795115 −0.397557 0.917577i \(-0.630142\pi\)
−0.397557 + 0.917577i \(0.630142\pi\)
\(282\) 2.15481e10 0.202903
\(283\) −1.48804e11 −1.37904 −0.689519 0.724268i \(-0.742178\pi\)
−0.689519 + 0.724268i \(0.742178\pi\)
\(284\) 1.70469e11 1.55494
\(285\) 6.59750e9 0.0592349
\(286\) −3.33518e9 −0.0294763
\(287\) 1.07772e11 0.937644
\(288\) −2.96138e10 −0.253646
\(289\) −1.17722e11 −0.992698
\(290\) −2.61740e9 −0.0217310
\(291\) 8.39226e10 0.686057
\(292\) 1.28787e11 1.03669
\(293\) −1.44391e11 −1.14455 −0.572275 0.820062i \(-0.693939\pi\)
−0.572275 + 0.820062i \(0.693939\pi\)
\(294\) 9.54249e9 0.0744901
\(295\) 4.96574e10 0.381755
\(296\) −9.01766e10 −0.682780
\(297\) −1.97430e9 −0.0147234
\(298\) 1.23766e10 0.0909131
\(299\) 7.61002e10 0.550637
\(300\) 1.48991e10 0.106197
\(301\) −2.59411e11 −1.82154
\(302\) 1.49521e10 0.103436
\(303\) −7.06140e10 −0.481281
\(304\) −2.61530e10 −0.175627
\(305\) 2.06213e10 0.136448
\(306\) 1.23798e9 0.00807176
\(307\) 2.59884e11 1.66977 0.834886 0.550423i \(-0.185533\pi\)
0.834886 + 0.550423i \(0.185533\pi\)
\(308\) 1.34057e10 0.0848811
\(309\) −6.51646e10 −0.406629
\(310\) 2.48645e10 0.152916
\(311\) −8.90718e9 −0.0539906 −0.0269953 0.999636i \(-0.508594\pi\)
−0.0269953 + 0.999636i \(0.508594\pi\)
\(312\) −7.14742e10 −0.427025
\(313\) 1.29555e11 0.762967 0.381483 0.924376i \(-0.375413\pi\)
0.381483 + 0.924376i \(0.375413\pi\)
\(314\) 9.73769e9 0.0565292
\(315\) −3.14244e10 −0.179833
\(316\) 1.39255e11 0.785634
\(317\) 1.75658e10 0.0977017 0.0488508 0.998806i \(-0.484444\pi\)
0.0488508 + 0.998806i \(0.484444\pi\)
\(318\) −3.35063e10 −0.183740
\(319\) 2.42631e9 0.0131186
\(320\) −4.61293e10 −0.245925
\(321\) 3.87275e10 0.203585
\(322\) 2.67082e10 0.138450
\(323\) 3.83492e9 0.0196040
\(324\) −2.02700e10 −0.102189
\(325\) 5.46915e10 0.271922
\(326\) 1.49906e10 0.0735089
\(327\) 2.13908e11 1.03457
\(328\) −8.86328e10 −0.422827
\(329\) −3.17936e11 −1.49609
\(330\) 1.20594e9 0.00559774
\(331\) 1.03775e11 0.475191 0.237595 0.971364i \(-0.423641\pi\)
0.237595 + 0.971364i \(0.423641\pi\)
\(332\) −9.45669e10 −0.427187
\(333\) −9.38770e10 −0.418369
\(334\) −7.47834e10 −0.328811
\(335\) −1.22693e11 −0.532254
\(336\) 1.24569e11 0.533190
\(337\) 1.52153e11 0.642608 0.321304 0.946976i \(-0.395879\pi\)
0.321304 + 0.946976i \(0.395879\pi\)
\(338\) −5.76985e10 −0.240458
\(339\) −7.95179e10 −0.327014
\(340\) 8.66038e9 0.0351465
\(341\) −2.30492e10 −0.0923126
\(342\) 5.48260e9 0.0216705
\(343\) 1.68446e11 0.657109
\(344\) 2.13342e11 0.821417
\(345\) −2.75164e10 −0.104570
\(346\) 7.57257e10 0.284054
\(347\) −6.05703e10 −0.224273 −0.112137 0.993693i \(-0.535769\pi\)
−0.112137 + 0.993693i \(0.535769\pi\)
\(348\) 2.49108e10 0.0910502
\(349\) −1.54026e11 −0.555751 −0.277876 0.960617i \(-0.589630\pi\)
−0.277876 + 0.960617i \(0.589630\pi\)
\(350\) 1.91946e10 0.0683711
\(351\) −7.44071e10 −0.261657
\(352\) −1.67680e10 −0.0582158
\(353\) −1.68508e11 −0.577610 −0.288805 0.957388i \(-0.593258\pi\)
−0.288805 + 0.957388i \(0.593258\pi\)
\(354\) 4.12659e10 0.139661
\(355\) −2.26262e11 −0.756108
\(356\) −4.74251e11 −1.56489
\(357\) −1.82660e10 −0.0595164
\(358\) −1.15790e11 −0.372562
\(359\) 1.77806e11 0.564964 0.282482 0.959273i \(-0.408842\pi\)
0.282482 + 0.959273i \(0.408842\pi\)
\(360\) 2.58437e10 0.0810949
\(361\) 1.69836e10 0.0526316
\(362\) −7.59330e10 −0.232403
\(363\) 1.89876e11 0.573971
\(364\) 5.05232e11 1.50846
\(365\) −1.70937e11 −0.504102
\(366\) 1.71366e10 0.0499182
\(367\) 1.67690e11 0.482514 0.241257 0.970461i \(-0.422440\pi\)
0.241257 + 0.970461i \(0.422440\pi\)
\(368\) 1.09077e11 0.310040
\(369\) −9.22699e10 −0.259084
\(370\) 5.73418e10 0.159061
\(371\) 4.94374e11 1.35479
\(372\) −2.36645e11 −0.640699
\(373\) −4.60723e11 −1.23239 −0.616197 0.787592i \(-0.711328\pi\)
−0.616197 + 0.787592i \(0.711328\pi\)
\(374\) 7.00975e8 0.00185259
\(375\) −1.97754e10 −0.0516398
\(376\) 2.61473e11 0.674655
\(377\) 9.14423e10 0.233137
\(378\) −2.61140e10 −0.0657901
\(379\) 1.55061e10 0.0386034 0.0193017 0.999814i \(-0.493856\pi\)
0.0193017 + 0.999814i \(0.493856\pi\)
\(380\) 3.83538e10 0.0943589
\(381\) −1.84215e11 −0.447882
\(382\) −2.31420e10 −0.0556053
\(383\) −6.69455e11 −1.58974 −0.794872 0.606777i \(-0.792462\pi\)
−0.794872 + 0.606777i \(0.792462\pi\)
\(384\) −2.25523e11 −0.529297
\(385\) −1.77932e10 −0.0412745
\(386\) −2.03537e10 −0.0466660
\(387\) 2.22097e11 0.503318
\(388\) 4.87875e11 1.09286
\(389\) 5.47042e11 1.21129 0.605644 0.795735i \(-0.292915\pi\)
0.605644 + 0.795735i \(0.292915\pi\)
\(390\) 4.54492e10 0.0994800
\(391\) −1.59944e10 −0.0346078
\(392\) 1.15792e11 0.247680
\(393\) −3.54562e11 −0.749765
\(394\) 1.96164e11 0.410096
\(395\) −1.84832e11 −0.382024
\(396\) −1.14774e10 −0.0234539
\(397\) −3.07228e11 −0.620731 −0.310365 0.950617i \(-0.600451\pi\)
−0.310365 + 0.950617i \(0.600451\pi\)
\(398\) 6.27582e10 0.125371
\(399\) −8.08939e10 −0.159786
\(400\) 7.83911e10 0.153108
\(401\) −3.15152e11 −0.608654 −0.304327 0.952568i \(-0.598432\pi\)
−0.304327 + 0.952568i \(0.598432\pi\)
\(402\) −1.01960e11 −0.194720
\(403\) −8.68674e11 −1.64053
\(404\) −4.10507e11 −0.766662
\(405\) 2.69042e10 0.0496904
\(406\) 3.20927e10 0.0586191
\(407\) −5.31554e10 −0.0960223
\(408\) 1.50221e10 0.0268387
\(409\) 2.54256e11 0.449279 0.224639 0.974442i \(-0.427880\pi\)
0.224639 + 0.974442i \(0.427880\pi\)
\(410\) 5.63602e10 0.0985019
\(411\) 1.22344e10 0.0211493
\(412\) −3.78827e11 −0.647745
\(413\) −6.08864e11 −1.02978
\(414\) −2.28664e10 −0.0382558
\(415\) 1.25518e11 0.207725
\(416\) −6.31952e11 −1.03458
\(417\) −5.82995e11 −0.944175
\(418\) 3.10438e9 0.00497372
\(419\) −4.42107e11 −0.700751 −0.350376 0.936609i \(-0.613946\pi\)
−0.350376 + 0.936609i \(0.613946\pi\)
\(420\) −1.82682e11 −0.286467
\(421\) 4.54833e11 0.705640 0.352820 0.935691i \(-0.385223\pi\)
0.352820 + 0.935691i \(0.385223\pi\)
\(422\) −2.33260e11 −0.358042
\(423\) 2.72203e11 0.413391
\(424\) −4.06578e11 −0.610938
\(425\) −1.14948e10 −0.0170904
\(426\) −1.88026e11 −0.276615
\(427\) −2.52844e11 −0.368068
\(428\) 2.25138e11 0.324303
\(429\) −4.21311e10 −0.0600544
\(430\) −1.35661e11 −0.191358
\(431\) −4.64761e11 −0.648757 −0.324379 0.945927i \(-0.605155\pi\)
−0.324379 + 0.945927i \(0.605155\pi\)
\(432\) −1.06650e11 −0.147328
\(433\) 3.49673e10 0.0478043 0.0239022 0.999714i \(-0.492391\pi\)
0.0239022 + 0.999714i \(0.492391\pi\)
\(434\) −3.04871e11 −0.412489
\(435\) −3.30638e10 −0.0442743
\(436\) 1.24353e12 1.64803
\(437\) −7.08339e10 −0.0929126
\(438\) −1.42051e11 −0.184421
\(439\) 4.57704e11 0.588159 0.294079 0.955781i \(-0.404987\pi\)
0.294079 + 0.955781i \(0.404987\pi\)
\(440\) 1.46333e10 0.0186125
\(441\) 1.20544e11 0.151765
\(442\) 2.64182e10 0.0329233
\(443\) 1.24741e12 1.53884 0.769421 0.638742i \(-0.220545\pi\)
0.769421 + 0.638742i \(0.220545\pi\)
\(444\) −5.45743e11 −0.666446
\(445\) 6.29468e11 0.760946
\(446\) −1.25161e11 −0.149783
\(447\) 1.56344e11 0.185225
\(448\) 5.65606e11 0.663380
\(449\) −3.13180e11 −0.363651 −0.181826 0.983331i \(-0.558201\pi\)
−0.181826 + 0.983331i \(0.558201\pi\)
\(450\) −1.64336e10 −0.0188919
\(451\) −5.22454e10 −0.0594639
\(452\) −4.62269e11 −0.520920
\(453\) 1.88880e11 0.210738
\(454\) −3.16055e11 −0.349149
\(455\) −6.70588e11 −0.733508
\(456\) 6.65279e10 0.0720547
\(457\) −1.46629e12 −1.57252 −0.786259 0.617897i \(-0.787985\pi\)
−0.786259 + 0.617897i \(0.787985\pi\)
\(458\) −2.96014e11 −0.314353
\(459\) 1.56386e10 0.0164452
\(460\) −1.59964e11 −0.166575
\(461\) −8.71723e10 −0.0898927 −0.0449464 0.998989i \(-0.514312\pi\)
−0.0449464 + 0.998989i \(0.514312\pi\)
\(462\) −1.47864e10 −0.0150999
\(463\) −2.70929e11 −0.273994 −0.136997 0.990571i \(-0.543745\pi\)
−0.136997 + 0.990571i \(0.543745\pi\)
\(464\) 1.31067e11 0.131269
\(465\) 3.14096e11 0.311548
\(466\) −4.89267e11 −0.480628
\(467\) −1.12023e12 −1.08988 −0.544941 0.838474i \(-0.683448\pi\)
−0.544941 + 0.838474i \(0.683448\pi\)
\(468\) −4.32558e11 −0.416810
\(469\) 1.50438e12 1.43575
\(470\) −1.66267e11 −0.157168
\(471\) 1.23010e11 0.115171
\(472\) 5.00736e11 0.464376
\(473\) 1.25756e11 0.115519
\(474\) −1.53598e11 −0.139760
\(475\) −5.09066e10 −0.0458831
\(476\) −1.06187e11 −0.0948074
\(477\) −4.23261e11 −0.374348
\(478\) −1.96796e11 −0.172421
\(479\) 1.75231e12 1.52090 0.760451 0.649395i \(-0.224978\pi\)
0.760451 + 0.649395i \(0.224978\pi\)
\(480\) 2.28502e11 0.196473
\(481\) −2.00331e12 −1.70646
\(482\) 2.08783e11 0.176191
\(483\) 3.37387e11 0.282076
\(484\) 1.10382e12 0.914313
\(485\) −6.47551e11 −0.531418
\(486\) 2.23577e10 0.0181788
\(487\) −2.13072e12 −1.71651 −0.858256 0.513221i \(-0.828452\pi\)
−0.858256 + 0.513221i \(0.828452\pi\)
\(488\) 2.07942e11 0.165979
\(489\) 1.89366e11 0.149766
\(490\) −7.36303e10 −0.0576998
\(491\) 1.15336e12 0.895570 0.447785 0.894141i \(-0.352213\pi\)
0.447785 + 0.894141i \(0.352213\pi\)
\(492\) −5.36401e11 −0.412711
\(493\) −1.92190e10 −0.0146527
\(494\) 1.16997e11 0.0883903
\(495\) 1.52338e10 0.0114047
\(496\) −1.24510e12 −0.923712
\(497\) 2.77426e12 2.03960
\(498\) 1.04307e11 0.0759941
\(499\) 3.30316e11 0.238494 0.119247 0.992865i \(-0.461952\pi\)
0.119247 + 0.992865i \(0.461952\pi\)
\(500\) −1.14962e11 −0.0822602
\(501\) −9.44687e11 −0.669913
\(502\) −1.35329e11 −0.0951093
\(503\) 8.53940e11 0.594800 0.297400 0.954753i \(-0.403880\pi\)
0.297400 + 0.954753i \(0.403880\pi\)
\(504\) −3.16877e11 −0.218753
\(505\) 5.44861e11 0.372799
\(506\) −1.29475e10 −0.00878030
\(507\) −7.28865e11 −0.489905
\(508\) −1.07092e12 −0.713458
\(509\) −2.38099e12 −1.57227 −0.786137 0.618052i \(-0.787922\pi\)
−0.786137 + 0.618052i \(0.787922\pi\)
\(510\) −9.55233e9 −0.00625236
\(511\) 2.09591e12 1.35981
\(512\) −1.55336e12 −0.998981
\(513\) 6.92579e10 0.0441511
\(514\) −7.58704e11 −0.479445
\(515\) 5.02813e11 0.314974
\(516\) 1.29113e12 0.801766
\(517\) 1.54128e11 0.0948797
\(518\) −7.03085e11 −0.429066
\(519\) 9.56591e11 0.578726
\(520\) 5.51498e11 0.330772
\(521\) 7.51808e11 0.447031 0.223515 0.974700i \(-0.428247\pi\)
0.223515 + 0.974700i \(0.428247\pi\)
\(522\) −2.74764e10 −0.0161973
\(523\) −1.25482e12 −0.733370 −0.366685 0.930345i \(-0.619507\pi\)
−0.366685 + 0.930345i \(0.619507\pi\)
\(524\) −2.06121e12 −1.19435
\(525\) 2.42472e11 0.139298
\(526\) 4.80478e11 0.273677
\(527\) 1.82574e11 0.103108
\(528\) −6.03879e10 −0.0338141
\(529\) −1.50572e12 −0.835978
\(530\) 2.58536e11 0.142324
\(531\) 5.21284e11 0.284544
\(532\) −4.70268e11 −0.254532
\(533\) −1.96902e12 −1.05676
\(534\) 5.23095e11 0.278385
\(535\) −2.98823e11 −0.157696
\(536\) −1.23722e12 −0.647447
\(537\) −1.46270e12 −0.759052
\(538\) 6.18977e11 0.318533
\(539\) 6.82547e10 0.0348324
\(540\) 1.56405e11 0.0791549
\(541\) 3.07388e12 1.54276 0.771381 0.636374i \(-0.219566\pi\)
0.771381 + 0.636374i \(0.219566\pi\)
\(542\) −4.58630e11 −0.228279
\(543\) −9.59209e11 −0.473494
\(544\) 1.32821e11 0.0650237
\(545\) −1.65052e12 −0.801377
\(546\) −5.57267e11 −0.268347
\(547\) −9.41163e11 −0.449492 −0.224746 0.974417i \(-0.572155\pi\)
−0.224746 + 0.974417i \(0.572155\pi\)
\(548\) 7.11235e10 0.0336900
\(549\) 2.16475e11 0.101702
\(550\) −9.30508e9 −0.00433599
\(551\) −8.51142e10 −0.0393387
\(552\) −2.77470e11 −0.127201
\(553\) 2.26628e12 1.03051
\(554\) −4.55128e11 −0.205277
\(555\) 7.24359e11 0.324068
\(556\) −3.38918e12 −1.50403
\(557\) 2.31315e12 1.01825 0.509127 0.860692i \(-0.329968\pi\)
0.509127 + 0.860692i \(0.329968\pi\)
\(558\) 2.61018e11 0.113977
\(559\) 4.73949e12 2.05295
\(560\) −9.61177e11 −0.413007
\(561\) 8.85494e9 0.00377444
\(562\) 5.32857e11 0.225319
\(563\) 1.13510e12 0.476152 0.238076 0.971247i \(-0.423483\pi\)
0.238076 + 0.971247i \(0.423483\pi\)
\(564\) 1.58242e12 0.658516
\(565\) 6.13564e11 0.253304
\(566\) 9.54151e11 0.390790
\(567\) −3.29880e11 −0.134040
\(568\) −2.28158e12 −0.919747
\(569\) 3.41521e12 1.36588 0.682939 0.730476i \(-0.260702\pi\)
0.682939 + 0.730476i \(0.260702\pi\)
\(570\) −4.23040e10 −0.0167859
\(571\) −8.45690e10 −0.0332927 −0.0166463 0.999861i \(-0.505299\pi\)
−0.0166463 + 0.999861i \(0.505299\pi\)
\(572\) −2.44924e11 −0.0956643
\(573\) −2.92337e11 −0.113289
\(574\) −6.91049e11 −0.265708
\(575\) 2.12318e11 0.0809993
\(576\) −4.84247e11 −0.183302
\(577\) 4.19306e12 1.57485 0.787426 0.616409i \(-0.211413\pi\)
0.787426 + 0.616409i \(0.211413\pi\)
\(578\) 7.54848e11 0.281309
\(579\) −2.57114e11 −0.0950764
\(580\) −1.92213e11 −0.0705272
\(581\) −1.53901e12 −0.560336
\(582\) −5.38122e11 −0.194414
\(583\) −2.39661e11 −0.0859188
\(584\) −1.72370e12 −0.613201
\(585\) 5.74129e11 0.202679
\(586\) 9.25852e11 0.324341
\(587\) −7.53756e11 −0.262035 −0.131018 0.991380i \(-0.541824\pi\)
−0.131018 + 0.991380i \(0.541824\pi\)
\(588\) 7.00767e11 0.241755
\(589\) 8.08559e11 0.276817
\(590\) −3.18410e11 −0.108181
\(591\) 2.47800e12 0.835521
\(592\) −2.87141e12 −0.960833
\(593\) 1.64013e12 0.544668 0.272334 0.962203i \(-0.412204\pi\)
0.272334 + 0.962203i \(0.412204\pi\)
\(594\) 1.26595e10 0.00417231
\(595\) 1.40941e11 0.0461012
\(596\) 9.08891e11 0.295056
\(597\) 7.92781e11 0.255428
\(598\) −4.87964e11 −0.156039
\(599\) 4.87701e12 1.54786 0.773932 0.633269i \(-0.218287\pi\)
0.773932 + 0.633269i \(0.218287\pi\)
\(600\) −1.99411e11 −0.0628158
\(601\) 5.04535e12 1.57745 0.788727 0.614744i \(-0.210741\pi\)
0.788727 + 0.614744i \(0.210741\pi\)
\(602\) 1.66338e12 0.516186
\(603\) −1.28799e12 −0.396719
\(604\) 1.09803e12 0.335698
\(605\) −1.46509e12 −0.444596
\(606\) 4.52786e11 0.136385
\(607\) 1.16776e12 0.349144 0.174572 0.984644i \(-0.444146\pi\)
0.174572 + 0.984644i \(0.444146\pi\)
\(608\) 5.88219e11 0.174571
\(609\) 4.05405e11 0.119430
\(610\) −1.32227e11 −0.0386665
\(611\) 5.80874e12 1.68615
\(612\) 9.09132e10 0.0261966
\(613\) −1.32333e12 −0.378527 −0.189264 0.981926i \(-0.560610\pi\)
−0.189264 + 0.981926i \(0.560610\pi\)
\(614\) −1.66641e12 −0.473178
\(615\) 7.11959e11 0.200686
\(616\) −1.79424e11 −0.0502072
\(617\) −3.75725e12 −1.04373 −0.521864 0.853029i \(-0.674763\pi\)
−0.521864 + 0.853029i \(0.674763\pi\)
\(618\) 4.17844e11 0.115230
\(619\) 1.15710e12 0.316783 0.158392 0.987376i \(-0.449369\pi\)
0.158392 + 0.987376i \(0.449369\pi\)
\(620\) 1.82596e12 0.496283
\(621\) −2.88856e11 −0.0779416
\(622\) 5.71140e10 0.0152998
\(623\) −7.71810e12 −2.05265
\(624\) −2.27589e12 −0.600926
\(625\) 1.52588e11 0.0400000
\(626\) −8.30725e11 −0.216209
\(627\) 3.92155e10 0.0101334
\(628\) 7.15103e11 0.183464
\(629\) 4.21048e11 0.107251
\(630\) 2.01497e11 0.0509608
\(631\) 6.07532e12 1.52559 0.762793 0.646643i \(-0.223827\pi\)
0.762793 + 0.646643i \(0.223827\pi\)
\(632\) −1.86381e12 −0.464703
\(633\) −2.94661e12 −0.729468
\(634\) −1.12634e11 −0.0276866
\(635\) 1.42142e12 0.346928
\(636\) −2.46058e12 −0.596322
\(637\) 2.57237e12 0.619022
\(638\) −1.55578e10 −0.00371754
\(639\) −2.37521e12 −0.563569
\(640\) 1.74014e12 0.409992
\(641\) −2.93024e12 −0.685555 −0.342778 0.939417i \(-0.611368\pi\)
−0.342778 + 0.939417i \(0.611368\pi\)
\(642\) −2.48325e11 −0.0576917
\(643\) 3.91581e12 0.903383 0.451691 0.892174i \(-0.350821\pi\)
0.451691 + 0.892174i \(0.350821\pi\)
\(644\) 1.96136e12 0.449336
\(645\) −1.71371e12 −0.389868
\(646\) −2.45900e10 −0.00555536
\(647\) 6.29965e12 1.41334 0.706671 0.707543i \(-0.250196\pi\)
0.706671 + 0.707543i \(0.250196\pi\)
\(648\) 2.71297e11 0.0604446
\(649\) 2.95163e11 0.0653072
\(650\) −3.50689e11 −0.0770569
\(651\) −3.85123e12 −0.840397
\(652\) 1.10086e12 0.238571
\(653\) −6.86506e12 −1.47753 −0.738763 0.673965i \(-0.764590\pi\)
−0.738763 + 0.673965i \(0.764590\pi\)
\(654\) −1.37160e12 −0.293176
\(655\) 2.73582e12 0.580766
\(656\) −2.82226e12 −0.595017
\(657\) −1.79443e12 −0.375735
\(658\) 2.03864e12 0.423960
\(659\) 5.67110e12 1.17134 0.585670 0.810550i \(-0.300832\pi\)
0.585670 + 0.810550i \(0.300832\pi\)
\(660\) 8.85600e10 0.0181673
\(661\) 8.49879e11 0.173161 0.0865806 0.996245i \(-0.472406\pi\)
0.0865806 + 0.996245i \(0.472406\pi\)
\(662\) −6.65420e11 −0.134659
\(663\) 3.33723e11 0.0670773
\(664\) 1.26570e12 0.252681
\(665\) 6.24182e11 0.123769
\(666\) 6.01951e11 0.118557
\(667\) 3.54989e11 0.0694461
\(668\) −5.49184e12 −1.06715
\(669\) −1.58107e12 −0.305165
\(670\) 7.86725e11 0.150830
\(671\) 1.22573e11 0.0233423
\(672\) −2.80173e12 −0.529986
\(673\) 9.43446e12 1.77276 0.886378 0.462962i \(-0.153213\pi\)
0.886378 + 0.462962i \(0.153213\pi\)
\(674\) −9.75625e11 −0.182101
\(675\) −2.07594e11 −0.0384900
\(676\) −4.23718e12 −0.780399
\(677\) −5.95829e12 −1.09012 −0.545058 0.838399i \(-0.683492\pi\)
−0.545058 + 0.838399i \(0.683492\pi\)
\(678\) 5.09879e11 0.0926688
\(679\) 7.93982e12 1.43350
\(680\) −1.15912e11 −0.0207892
\(681\) −3.99250e12 −0.711350
\(682\) 1.47794e11 0.0261594
\(683\) −4.27586e12 −0.751848 −0.375924 0.926650i \(-0.622675\pi\)
−0.375924 + 0.926650i \(0.622675\pi\)
\(684\) 4.02623e11 0.0703310
\(685\) −9.44014e10 −0.0163822
\(686\) −1.08010e12 −0.186211
\(687\) −3.73934e12 −0.640456
\(688\) 6.79326e12 1.15593
\(689\) −9.03230e12 −1.52690
\(690\) 1.76439e11 0.0296328
\(691\) 2.63866e12 0.440284 0.220142 0.975468i \(-0.429348\pi\)
0.220142 + 0.975468i \(0.429348\pi\)
\(692\) 5.56104e12 0.921888
\(693\) −1.86786e11 −0.0307642
\(694\) 3.88385e11 0.0635542
\(695\) 4.49842e12 0.731355
\(696\) −3.33409e11 −0.0538562
\(697\) 4.13840e11 0.0664178
\(698\) 9.87637e11 0.157488
\(699\) −6.18057e12 −0.979223
\(700\) 1.40958e12 0.221896
\(701\) 6.86502e12 1.07377 0.536884 0.843656i \(-0.319601\pi\)
0.536884 + 0.843656i \(0.319601\pi\)
\(702\) 4.77108e11 0.0741480
\(703\) 1.86468e12 0.287942
\(704\) −2.74192e11 −0.0420706
\(705\) −2.10033e12 −0.320211
\(706\) 1.08050e12 0.163682
\(707\) −6.68070e12 −1.00562
\(708\) 3.03043e12 0.453267
\(709\) 6.47288e12 0.962031 0.481016 0.876712i \(-0.340268\pi\)
0.481016 + 0.876712i \(0.340268\pi\)
\(710\) 1.45082e12 0.214265
\(711\) −1.94029e12 −0.284744
\(712\) 6.34744e12 0.925632
\(713\) −3.37228e12 −0.488676
\(714\) 1.17124e11 0.0168657
\(715\) 3.25086e11 0.0465179
\(716\) −8.50325e12 −1.20914
\(717\) −2.48598e12 −0.351287
\(718\) −1.14011e12 −0.160099
\(719\) 1.14013e13 1.59102 0.795508 0.605944i \(-0.207204\pi\)
0.795508 + 0.605944i \(0.207204\pi\)
\(720\) 8.22919e11 0.114120
\(721\) −6.16515e12 −0.849640
\(722\) −1.08901e11 −0.0149147
\(723\) 2.63742e12 0.358969
\(724\) −5.57626e12 −0.754257
\(725\) 2.55122e11 0.0342947
\(726\) −1.21751e12 −0.162651
\(727\) −7.60440e12 −1.00963 −0.504813 0.863229i \(-0.668438\pi\)
−0.504813 + 0.863229i \(0.668438\pi\)
\(728\) −6.76209e12 −0.892256
\(729\) 2.82430e11 0.0370370
\(730\) 1.09607e12 0.142852
\(731\) −9.96125e11 −0.129029
\(732\) 1.25845e12 0.162008
\(733\) 6.68325e12 0.855105 0.427553 0.903990i \(-0.359376\pi\)
0.427553 + 0.903990i \(0.359376\pi\)
\(734\) −1.07525e12 −0.136734
\(735\) −9.30121e11 −0.117556
\(736\) −2.45330e12 −0.308177
\(737\) −7.29288e11 −0.0910532
\(738\) 5.91646e11 0.0734190
\(739\) −3.91666e12 −0.483076 −0.241538 0.970391i \(-0.577652\pi\)
−0.241538 + 0.970391i \(0.577652\pi\)
\(740\) 4.21098e12 0.516227
\(741\) 1.47795e12 0.180085
\(742\) −3.16999e12 −0.383919
\(743\) −6.29435e11 −0.0757707 −0.0378854 0.999282i \(-0.512062\pi\)
−0.0378854 + 0.999282i \(0.512062\pi\)
\(744\) 3.16729e12 0.378974
\(745\) −1.20636e12 −0.143474
\(746\) 2.95421e12 0.349234
\(747\) 1.31763e12 0.154829
\(748\) 5.14772e10 0.00601254
\(749\) 3.66396e12 0.425385
\(750\) 1.26802e11 0.0146336
\(751\) −1.11542e12 −0.127955 −0.0639776 0.997951i \(-0.520379\pi\)
−0.0639776 + 0.997951i \(0.520379\pi\)
\(752\) 8.32587e12 0.949400
\(753\) −1.70951e12 −0.193774
\(754\) −5.86340e11 −0.0660661
\(755\) −1.45740e12 −0.163237
\(756\) −1.91772e12 −0.213520
\(757\) 8.27028e12 0.915354 0.457677 0.889119i \(-0.348682\pi\)
0.457677 + 0.889119i \(0.348682\pi\)
\(758\) −9.94270e10 −0.0109394
\(759\) −1.63557e11 −0.0178888
\(760\) −5.13333e11 −0.0558133
\(761\) 6.37906e12 0.689486 0.344743 0.938697i \(-0.387966\pi\)
0.344743 + 0.938697i \(0.387966\pi\)
\(762\) 1.18121e12 0.126920
\(763\) 2.02375e13 2.16171
\(764\) −1.69947e12 −0.180465
\(765\) −1.20668e11 −0.0127384
\(766\) 4.29263e12 0.450500
\(767\) 1.11241e13 1.16060
\(768\) −1.61484e12 −0.167496
\(769\) 9.45187e12 0.974651 0.487326 0.873220i \(-0.337972\pi\)
0.487326 + 0.873220i \(0.337972\pi\)
\(770\) 1.14092e11 0.0116963
\(771\) −9.58419e12 −0.976811
\(772\) −1.49471e12 −0.151453
\(773\) 9.55983e12 0.963036 0.481518 0.876436i \(-0.340086\pi\)
0.481518 + 0.876436i \(0.340086\pi\)
\(774\) −1.42411e12 −0.142630
\(775\) −2.42358e12 −0.241324
\(776\) −6.52978e12 −0.646429
\(777\) −8.88159e12 −0.874170
\(778\) −3.50770e12 −0.343253
\(779\) 1.83275e12 0.178314
\(780\) 3.33764e12 0.322859
\(781\) −1.34490e12 −0.129348
\(782\) 1.02558e11 0.00980710
\(783\) −3.47091e11 −0.0330001
\(784\) 3.68707e12 0.348545
\(785\) −9.49148e11 −0.0892114
\(786\) 2.27350e12 0.212468
\(787\) 9.28420e12 0.862697 0.431349 0.902185i \(-0.358038\pi\)
0.431349 + 0.902185i \(0.358038\pi\)
\(788\) 1.44056e13 1.33095
\(789\) 6.06955e12 0.557584
\(790\) 1.18517e12 0.108257
\(791\) −7.52309e12 −0.683286
\(792\) 1.53615e11 0.0138730
\(793\) 4.61951e12 0.414827
\(794\) 1.96998e12 0.175902
\(795\) 3.26591e12 0.289969
\(796\) 4.60875e12 0.406887
\(797\) 1.07459e13 0.943368 0.471684 0.881768i \(-0.343646\pi\)
0.471684 + 0.881768i \(0.343646\pi\)
\(798\) 5.18702e11 0.0452799
\(799\) −1.22086e12 −0.105975
\(800\) −1.76313e12 −0.152188
\(801\) 6.60790e12 0.567175
\(802\) 2.02080e12 0.172480
\(803\) −1.01605e12 −0.0862372
\(804\) −7.48756e12 −0.631958
\(805\) −2.60329e12 −0.218495
\(806\) 5.57005e12 0.464891
\(807\) 7.81912e12 0.648973
\(808\) 5.49427e12 0.453481
\(809\) 5.05042e12 0.414533 0.207267 0.978285i \(-0.433543\pi\)
0.207267 + 0.978285i \(0.433543\pi\)
\(810\) −1.72513e11 −0.0140812
\(811\) −1.06064e13 −0.860945 −0.430473 0.902604i \(-0.641653\pi\)
−0.430473 + 0.902604i \(0.641653\pi\)
\(812\) 2.35678e12 0.190247
\(813\) −5.79356e12 −0.465091
\(814\) 3.40839e11 0.0272107
\(815\) −1.46116e12 −0.116008
\(816\) 4.78337e11 0.0377684
\(817\) −4.41150e12 −0.346407
\(818\) −1.63032e12 −0.127316
\(819\) −7.03957e12 −0.546724
\(820\) 4.13890e12 0.319685
\(821\) −9.46900e12 −0.727377 −0.363689 0.931521i \(-0.618483\pi\)
−0.363689 + 0.931521i \(0.618483\pi\)
\(822\) −7.84487e10 −0.00599325
\(823\) 2.36475e12 0.179675 0.0898373 0.995956i \(-0.471365\pi\)
0.0898373 + 0.995956i \(0.471365\pi\)
\(824\) 5.07028e12 0.383141
\(825\) −1.17545e11 −0.00883406
\(826\) 3.90412e12 0.291818
\(827\) 5.78008e12 0.429694 0.214847 0.976648i \(-0.431075\pi\)
0.214847 + 0.976648i \(0.431075\pi\)
\(828\) −1.67923e12 −0.124158
\(829\) 2.52841e13 1.85931 0.929655 0.368430i \(-0.120105\pi\)
0.929655 + 0.368430i \(0.120105\pi\)
\(830\) −8.04835e11 −0.0588647
\(831\) −5.74932e12 −0.418227
\(832\) −1.03337e13 −0.747656
\(833\) −5.40651e11 −0.0389058
\(834\) 3.73824e12 0.267559
\(835\) 7.28925e12 0.518912
\(836\) 2.27975e11 0.0161421
\(837\) 3.29726e12 0.232214
\(838\) 2.83484e12 0.198578
\(839\) 2.54151e13 1.77077 0.885385 0.464858i \(-0.153895\pi\)
0.885385 + 0.464858i \(0.153895\pi\)
\(840\) 2.44504e12 0.169445
\(841\) −1.40806e13 −0.970597
\(842\) −2.91645e12 −0.199963
\(843\) 6.73121e12 0.459060
\(844\) −1.71298e13 −1.16201
\(845\) 5.62396e12 0.379478
\(846\) −1.74540e12 −0.117146
\(847\) 1.79639e13 1.19929
\(848\) −1.29463e13 −0.859734
\(849\) 1.20531e13 0.796188
\(850\) 7.37063e10 0.00484305
\(851\) −7.77706e12 −0.508314
\(852\) −1.38080e13 −0.897744
\(853\) −9.95854e12 −0.644058 −0.322029 0.946730i \(-0.604365\pi\)
−0.322029 + 0.946730i \(0.604365\pi\)
\(854\) 1.62127e12 0.104303
\(855\) −5.34398e11 −0.0341993
\(856\) −3.01327e12 −0.191826
\(857\) −3.04083e13 −1.92565 −0.962827 0.270120i \(-0.912937\pi\)
−0.962827 + 0.270120i \(0.912937\pi\)
\(858\) 2.70150e11 0.0170181
\(859\) 1.98580e13 1.24442 0.622209 0.782851i \(-0.286236\pi\)
0.622209 + 0.782851i \(0.286236\pi\)
\(860\) −9.96245e12 −0.621045
\(861\) −8.72954e12 −0.541349
\(862\) 2.98011e12 0.183844
\(863\) −2.58816e13 −1.58833 −0.794167 0.607700i \(-0.792093\pi\)
−0.794167 + 0.607700i \(0.792093\pi\)
\(864\) 2.39872e12 0.146443
\(865\) −7.38110e12 −0.448279
\(866\) −2.24215e11 −0.0135467
\(867\) 9.53548e12 0.573134
\(868\) −2.23887e13 −1.33872
\(869\) −1.09864e12 −0.0653532
\(870\) 2.12009e11 0.0125464
\(871\) −2.74853e13 −1.61815
\(872\) −1.66435e13 −0.974814
\(873\) −6.79773e12 −0.396095
\(874\) 4.54196e11 0.0263294
\(875\) −1.87093e12 −0.107900
\(876\) −1.04317e13 −0.598532
\(877\) −8.70251e12 −0.496760 −0.248380 0.968663i \(-0.579898\pi\)
−0.248380 + 0.968663i \(0.579898\pi\)
\(878\) −2.93486e12 −0.166672
\(879\) 1.16956e13 0.660807
\(880\) 4.65956e11 0.0261923
\(881\) 2.28612e13 1.27852 0.639260 0.768991i \(-0.279241\pi\)
0.639260 + 0.768991i \(0.279241\pi\)
\(882\) −7.72941e11 −0.0430069
\(883\) −1.35938e13 −0.752521 −0.376261 0.926514i \(-0.622790\pi\)
−0.376261 + 0.926514i \(0.622790\pi\)
\(884\) 1.94006e12 0.106852
\(885\) −4.02225e12 −0.220407
\(886\) −7.99858e12 −0.436075
\(887\) 3.64841e12 0.197901 0.0989503 0.995092i \(-0.468452\pi\)
0.0989503 + 0.995092i \(0.468452\pi\)
\(888\) 7.30430e12 0.394203
\(889\) −1.74284e13 −0.935836
\(890\) −4.03623e12 −0.215636
\(891\) 1.59918e11 0.00850058
\(892\) −9.19140e12 −0.486116
\(893\) −5.40676e12 −0.284515
\(894\) −1.00250e12 −0.0524887
\(895\) 1.12863e13 0.587959
\(896\) −2.13364e13 −1.10595
\(897\) −6.16412e12 −0.317911
\(898\) 2.00815e12 0.103051
\(899\) −4.05215e12 −0.206903
\(900\) −1.20683e12 −0.0613131
\(901\) 1.89837e12 0.0959664
\(902\) 3.35004e11 0.0168508
\(903\) 2.10123e13 1.05167
\(904\) 6.18706e12 0.308125
\(905\) 7.40131e12 0.366767
\(906\) −1.21112e12 −0.0597187
\(907\) 5.50332e12 0.270018 0.135009 0.990844i \(-0.456894\pi\)
0.135009 + 0.990844i \(0.456894\pi\)
\(908\) −2.32100e13 −1.13315
\(909\) 5.71973e12 0.277868
\(910\) 4.29990e12 0.207860
\(911\) −7.69595e12 −0.370194 −0.185097 0.982720i \(-0.559260\pi\)
−0.185097 + 0.982720i \(0.559260\pi\)
\(912\) 2.11839e12 0.101398
\(913\) 7.46075e11 0.0355356
\(914\) 9.40201e12 0.445618
\(915\) −1.67033e12 −0.0787783
\(916\) −2.17382e13 −1.02022
\(917\) −3.35447e13 −1.56661
\(918\) −1.00277e11 −0.00466023
\(919\) 2.58741e13 1.19659 0.598295 0.801276i \(-0.295845\pi\)
0.598295 + 0.801276i \(0.295845\pi\)
\(920\) 2.14097e12 0.0985294
\(921\) −2.10506e13 −0.964043
\(922\) 5.58960e11 0.0254737
\(923\) −5.06863e13 −2.29870
\(924\) −1.08586e12 −0.0490061
\(925\) −5.58919e12 −0.251022
\(926\) 1.73723e12 0.0776440
\(927\) 5.27833e12 0.234768
\(928\) −2.94790e12 −0.130481
\(929\) −9.64147e12 −0.424690 −0.212345 0.977195i \(-0.568110\pi\)
−0.212345 + 0.977195i \(0.568110\pi\)
\(930\) −2.01402e12 −0.0882859
\(931\) −2.39436e12 −0.104452
\(932\) −3.59301e13 −1.55986
\(933\) 7.21482e11 0.0311715
\(934\) 7.18303e12 0.308849
\(935\) −6.83251e10 −0.00292367
\(936\) 5.78941e12 0.246543
\(937\) 4.04477e13 1.71422 0.857109 0.515136i \(-0.172259\pi\)
0.857109 + 0.515136i \(0.172259\pi\)
\(938\) −9.64628e12 −0.406862
\(939\) −1.04940e13 −0.440499
\(940\) −1.22100e13 −0.510084
\(941\) 3.16912e13 1.31761 0.658803 0.752316i \(-0.271063\pi\)
0.658803 + 0.752316i \(0.271063\pi\)
\(942\) −7.88753e11 −0.0326371
\(943\) −7.64393e12 −0.314785
\(944\) 1.59445e13 0.653487
\(945\) 2.54537e12 0.103827
\(946\) −8.06366e11 −0.0327357
\(947\) −3.27669e13 −1.32392 −0.661958 0.749541i \(-0.730274\pi\)
−0.661958 + 0.749541i \(0.730274\pi\)
\(948\) −1.12797e13 −0.453586
\(949\) −3.82927e13 −1.53256
\(950\) 3.26420e11 0.0130023
\(951\) −1.42283e12 −0.0564081
\(952\) 1.42123e12 0.0560786
\(953\) −7.92564e12 −0.311255 −0.155627 0.987816i \(-0.549740\pi\)
−0.155627 + 0.987816i \(0.549740\pi\)
\(954\) 2.71401e12 0.106082
\(955\) 2.25569e12 0.0877534
\(956\) −1.44520e13 −0.559587
\(957\) −1.96531e11 −0.00757404
\(958\) −1.12360e13 −0.430991
\(959\) 1.15748e12 0.0441907
\(960\) 3.73648e12 0.141985
\(961\) 1.20546e13 0.455928
\(962\) 1.28455e13 0.483574
\(963\) −3.13692e12 −0.117540
\(964\) 1.53323e13 0.571823
\(965\) 1.98391e12 0.0736459
\(966\) −2.16337e12 −0.0799343
\(967\) −1.06196e13 −0.390560 −0.195280 0.980748i \(-0.562562\pi\)
−0.195280 + 0.980748i \(0.562562\pi\)
\(968\) −1.47737e13 −0.540817
\(969\) −3.10629e11 −0.0113184
\(970\) 4.15218e12 0.150592
\(971\) 3.86349e13 1.39474 0.697370 0.716711i \(-0.254353\pi\)
0.697370 + 0.716711i \(0.254353\pi\)
\(972\) 1.64187e12 0.0589986
\(973\) −5.51564e13 −1.97282
\(974\) 1.36625e13 0.486423
\(975\) −4.43001e12 −0.156994
\(976\) 6.62130e12 0.233571
\(977\) −7.02829e12 −0.246788 −0.123394 0.992358i \(-0.539378\pi\)
−0.123394 + 0.992358i \(0.539378\pi\)
\(978\) −1.21424e12 −0.0424404
\(979\) 3.74155e12 0.130176
\(980\) −5.40716e12 −0.187263
\(981\) −1.73265e13 −0.597311
\(982\) −7.39551e12 −0.253785
\(983\) 1.99085e13 0.680061 0.340031 0.940414i \(-0.389563\pi\)
0.340031 + 0.940414i \(0.389563\pi\)
\(984\) 7.17926e12 0.244119
\(985\) −1.91204e13 −0.647192
\(986\) 1.23234e11 0.00415228
\(987\) 2.57528e13 0.863768
\(988\) 8.59188e12 0.286868
\(989\) 1.83992e13 0.611526
\(990\) −9.76811e10 −0.00323186
\(991\) −4.60084e13 −1.51533 −0.757663 0.652646i \(-0.773659\pi\)
−0.757663 + 0.652646i \(0.773659\pi\)
\(992\) 2.80041e13 0.918162
\(993\) −8.40580e12 −0.274352
\(994\) −1.77889e13 −0.577978
\(995\) −6.11714e12 −0.197854
\(996\) 7.65992e12 0.246636
\(997\) 2.86397e13 0.917994 0.458997 0.888438i \(-0.348209\pi\)
0.458997 + 0.888438i \(0.348209\pi\)
\(998\) −2.11803e12 −0.0675840
\(999\) 7.60403e12 0.241546
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.7 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.7 15 1.1 even 1 trivial