Properties

Label 285.10.a.h.1.4
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(31.1284\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.1284 q^{2} -81.0000 q^{3} +520.237 q^{4} +625.000 q^{5} +2602.40 q^{6} +7291.16 q^{7} -264.644 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q-32.1284 q^{2} -81.0000 q^{3} +520.237 q^{4} +625.000 q^{5} +2602.40 q^{6} +7291.16 q^{7} -264.644 q^{8} +6561.00 q^{9} -20080.3 q^{10} -79218.6 q^{11} -42139.2 q^{12} +148225. q^{13} -234254. q^{14} -50625.0 q^{15} -257859. q^{16} -403746. q^{17} -210795. q^{18} -130321. q^{19} +325148. q^{20} -590584. q^{21} +2.54517e6 q^{22} +1.87315e6 q^{23} +21436.1 q^{24} +390625. q^{25} -4.76224e6 q^{26} -531441. q^{27} +3.79313e6 q^{28} -4.55234e6 q^{29} +1.62650e6 q^{30} +7.02490e6 q^{31} +8.42010e6 q^{32} +6.41671e6 q^{33} +1.29717e7 q^{34} +4.55698e6 q^{35} +3.41328e6 q^{36} +6.13512e6 q^{37} +4.18701e6 q^{38} -1.20062e7 q^{39} -165402. q^{40} +8.76411e6 q^{41} +1.89746e7 q^{42} +1.06044e7 q^{43} -4.12124e7 q^{44} +4.10062e6 q^{45} -6.01815e7 q^{46} -2.81069e7 q^{47} +2.08866e7 q^{48} +1.28074e7 q^{49} -1.25502e7 q^{50} +3.27035e7 q^{51} +7.71122e7 q^{52} +7.72880e7 q^{53} +1.70744e7 q^{54} -4.95116e7 q^{55} -1.92956e6 q^{56} +1.05560e7 q^{57} +1.46260e8 q^{58} -6.20883e7 q^{59} -2.63370e7 q^{60} +5.26078e7 q^{61} -2.25699e8 q^{62} +4.78373e7 q^{63} -1.38501e8 q^{64} +9.26407e7 q^{65} -2.06159e8 q^{66} +2.09648e8 q^{67} -2.10044e8 q^{68} -1.51726e8 q^{69} -1.46409e8 q^{70} -3.12113e8 q^{71} -1.73633e6 q^{72} -2.93380e8 q^{73} -1.97112e8 q^{74} -3.16406e7 q^{75} -6.77978e7 q^{76} -5.77596e8 q^{77} +3.85742e8 q^{78} +1.63179e8 q^{79} -1.61162e8 q^{80} +4.30467e7 q^{81} -2.81577e8 q^{82} +7.23532e8 q^{83} -3.07244e8 q^{84} -2.52342e8 q^{85} -3.40704e8 q^{86} +3.68739e8 q^{87} +2.09647e7 q^{88} +3.62855e8 q^{89} -1.31747e8 q^{90} +1.08073e9 q^{91} +9.74484e8 q^{92} -5.69017e8 q^{93} +9.03032e8 q^{94} -8.14506e7 q^{95} -6.82028e8 q^{96} -3.40208e8 q^{97} -4.11483e8 q^{98} -5.19753e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −32.1284 −1.41989 −0.709945 0.704257i \(-0.751280\pi\)
−0.709945 + 0.704257i \(0.751280\pi\)
\(3\) −81.0000 −0.577350
\(4\) 520.237 1.01609
\(5\) 625.000 0.447214
\(6\) 2602.40 0.819774
\(7\) 7291.16 1.14777 0.573886 0.818935i \(-0.305435\pi\)
0.573886 + 0.818935i \(0.305435\pi\)
\(8\) −264.644 −0.0228432
\(9\) 6561.00 0.333333
\(10\) −20080.3 −0.634994
\(11\) −79218.6 −1.63140 −0.815699 0.578476i \(-0.803648\pi\)
−0.815699 + 0.578476i \(0.803648\pi\)
\(12\) −42139.2 −0.586639
\(13\) 148225. 1.43938 0.719692 0.694293i \(-0.244283\pi\)
0.719692 + 0.694293i \(0.244283\pi\)
\(14\) −234254. −1.62971
\(15\) −50625.0 −0.258199
\(16\) −257859. −0.983653
\(17\) −403746. −1.17243 −0.586217 0.810154i \(-0.699384\pi\)
−0.586217 + 0.810154i \(0.699384\pi\)
\(18\) −210795. −0.473297
\(19\) −130321. −0.229416
\(20\) 325148. 0.454408
\(21\) −590584. −0.662666
\(22\) 2.54517e6 2.31641
\(23\) 1.87315e6 1.39572 0.697860 0.716234i \(-0.254136\pi\)
0.697860 + 0.716234i \(0.254136\pi\)
\(24\) 21436.1 0.0131885
\(25\) 390625. 0.200000
\(26\) −4.76224e6 −2.04377
\(27\) −531441. −0.192450
\(28\) 3.79313e6 1.16624
\(29\) −4.55234e6 −1.19521 −0.597604 0.801792i \(-0.703880\pi\)
−0.597604 + 0.801792i \(0.703880\pi\)
\(30\) 1.62650e6 0.366614
\(31\) 7.02490e6 1.36619 0.683097 0.730327i \(-0.260633\pi\)
0.683097 + 0.730327i \(0.260633\pi\)
\(32\) 8.42010e6 1.41952
\(33\) 6.41671e6 0.941888
\(34\) 1.29717e7 1.66473
\(35\) 4.55698e6 0.513299
\(36\) 3.41328e6 0.338696
\(37\) 6.13512e6 0.538165 0.269082 0.963117i \(-0.413280\pi\)
0.269082 + 0.963117i \(0.413280\pi\)
\(38\) 4.18701e6 0.325745
\(39\) −1.20062e7 −0.831029
\(40\) −165402. −0.0102158
\(41\) 8.76411e6 0.484373 0.242187 0.970230i \(-0.422135\pi\)
0.242187 + 0.970230i \(0.422135\pi\)
\(42\) 1.89746e7 0.940914
\(43\) 1.06044e7 0.473020 0.236510 0.971629i \(-0.423996\pi\)
0.236510 + 0.971629i \(0.423996\pi\)
\(44\) −4.12124e7 −1.65764
\(45\) 4.10062e6 0.149071
\(46\) −6.01815e7 −1.98177
\(47\) −2.81069e7 −0.840181 −0.420091 0.907482i \(-0.638002\pi\)
−0.420091 + 0.907482i \(0.638002\pi\)
\(48\) 2.08866e7 0.567912
\(49\) 1.28074e7 0.317380
\(50\) −1.25502e7 −0.283978
\(51\) 3.27035e7 0.676905
\(52\) 7.71122e7 1.46254
\(53\) 7.72880e7 1.34546 0.672730 0.739888i \(-0.265122\pi\)
0.672730 + 0.739888i \(0.265122\pi\)
\(54\) 1.70744e7 0.273258
\(55\) −4.95116e7 −0.729584
\(56\) −1.92956e6 −0.0262188
\(57\) 1.05560e7 0.132453
\(58\) 1.46260e8 1.69706
\(59\) −6.20883e7 −0.667076 −0.333538 0.942737i \(-0.608243\pi\)
−0.333538 + 0.942737i \(0.608243\pi\)
\(60\) −2.63370e7 −0.262353
\(61\) 5.26078e7 0.486481 0.243240 0.969966i \(-0.421790\pi\)
0.243240 + 0.969966i \(0.421790\pi\)
\(62\) −2.25699e8 −1.93985
\(63\) 4.78373e7 0.382591
\(64\) −1.38501e8 −1.03191
\(65\) 9.26407e7 0.643712
\(66\) −2.06159e8 −1.33738
\(67\) 2.09648e8 1.27103 0.635513 0.772090i \(-0.280789\pi\)
0.635513 + 0.772090i \(0.280789\pi\)
\(68\) −2.10044e8 −1.19130
\(69\) −1.51726e8 −0.805819
\(70\) −1.46409e8 −0.728828
\(71\) −3.12113e8 −1.45764 −0.728818 0.684707i \(-0.759930\pi\)
−0.728818 + 0.684707i \(0.759930\pi\)
\(72\) −1.73633e6 −0.00761440
\(73\) −2.93380e8 −1.20914 −0.604572 0.796551i \(-0.706656\pi\)
−0.604572 + 0.796551i \(0.706656\pi\)
\(74\) −1.97112e8 −0.764135
\(75\) −3.16406e7 −0.115470
\(76\) −6.77978e7 −0.233107
\(77\) −5.77596e8 −1.87247
\(78\) 3.85742e8 1.17997
\(79\) 1.63179e8 0.471349 0.235674 0.971832i \(-0.424270\pi\)
0.235674 + 0.971832i \(0.424270\pi\)
\(80\) −1.61162e8 −0.439903
\(81\) 4.30467e7 0.111111
\(82\) −2.81577e8 −0.687757
\(83\) 7.23532e8 1.67343 0.836713 0.547642i \(-0.184474\pi\)
0.836713 + 0.547642i \(0.184474\pi\)
\(84\) −3.07244e8 −0.673327
\(85\) −2.52342e8 −0.524329
\(86\) −3.40704e8 −0.671637
\(87\) 3.68739e8 0.690053
\(88\) 2.09647e7 0.0372663
\(89\) 3.62855e8 0.613025 0.306512 0.951867i \(-0.400838\pi\)
0.306512 + 0.951867i \(0.400838\pi\)
\(90\) −1.31747e8 −0.211665
\(91\) 1.08073e9 1.65208
\(92\) 9.74484e8 1.41817
\(93\) −5.69017e8 −0.788773
\(94\) 9.03032e8 1.19297
\(95\) −8.14506e7 −0.102598
\(96\) −6.82028e8 −0.819562
\(97\) −3.40208e8 −0.390186 −0.195093 0.980785i \(-0.562501\pi\)
−0.195093 + 0.980785i \(0.562501\pi\)
\(98\) −4.11483e8 −0.450645
\(99\) −5.19753e8 −0.543799
\(100\) 2.03218e8 0.203218
\(101\) 3.72499e8 0.356188 0.178094 0.984013i \(-0.443007\pi\)
0.178094 + 0.984013i \(0.443007\pi\)
\(102\) −1.05071e9 −0.961131
\(103\) −1.86027e9 −1.62858 −0.814288 0.580462i \(-0.802872\pi\)
−0.814288 + 0.580462i \(0.802872\pi\)
\(104\) −3.92269e7 −0.0328801
\(105\) −3.69115e8 −0.296353
\(106\) −2.48314e9 −1.91041
\(107\) −1.30461e9 −0.962171 −0.481085 0.876674i \(-0.659757\pi\)
−0.481085 + 0.876674i \(0.659757\pi\)
\(108\) −2.76475e8 −0.195546
\(109\) −2.06573e9 −1.40169 −0.700847 0.713311i \(-0.747195\pi\)
−0.700847 + 0.713311i \(0.747195\pi\)
\(110\) 1.59073e9 1.03593
\(111\) −4.96945e8 −0.310710
\(112\) −1.88009e9 −1.12901
\(113\) 2.50106e9 1.44302 0.721508 0.692406i \(-0.243449\pi\)
0.721508 + 0.692406i \(0.243449\pi\)
\(114\) −3.39148e8 −0.188069
\(115\) 1.17072e9 0.624185
\(116\) −2.36829e9 −1.21444
\(117\) 9.72505e8 0.479795
\(118\) 1.99480e9 0.947175
\(119\) −2.94378e9 −1.34569
\(120\) 1.33976e7 0.00589809
\(121\) 3.91764e9 1.66146
\(122\) −1.69021e9 −0.690749
\(123\) −7.09893e8 −0.279653
\(124\) 3.65461e9 1.38817
\(125\) 2.44141e8 0.0894427
\(126\) −1.53694e9 −0.543237
\(127\) −3.84679e9 −1.31215 −0.656073 0.754697i \(-0.727784\pi\)
−0.656073 + 0.754697i \(0.727784\pi\)
\(128\) 1.38732e8 0.0456805
\(129\) −8.58960e8 −0.273098
\(130\) −2.97640e9 −0.914001
\(131\) −2.73361e9 −0.810991 −0.405496 0.914097i \(-0.632901\pi\)
−0.405496 + 0.914097i \(0.632901\pi\)
\(132\) 3.33821e9 0.957041
\(133\) −9.50192e8 −0.263317
\(134\) −6.73567e9 −1.80472
\(135\) −3.32151e8 −0.0860663
\(136\) 1.06849e8 0.0267821
\(137\) 6.50870e9 1.57853 0.789263 0.614055i \(-0.210463\pi\)
0.789263 + 0.614055i \(0.210463\pi\)
\(138\) 4.87471e9 1.14418
\(139\) −4.74208e9 −1.07746 −0.538732 0.842477i \(-0.681096\pi\)
−0.538732 + 0.842477i \(0.681096\pi\)
\(140\) 2.37071e9 0.521557
\(141\) 2.27666e9 0.485079
\(142\) 1.00277e10 2.06968
\(143\) −1.17422e10 −2.34821
\(144\) −1.69181e9 −0.327884
\(145\) −2.84521e9 −0.534513
\(146\) 9.42585e9 1.71685
\(147\) −1.03740e9 −0.183240
\(148\) 3.19172e9 0.546823
\(149\) −8.80321e9 −1.46320 −0.731598 0.681736i \(-0.761225\pi\)
−0.731598 + 0.681736i \(0.761225\pi\)
\(150\) 1.01656e9 0.163955
\(151\) 1.18413e10 1.85355 0.926775 0.375617i \(-0.122569\pi\)
0.926775 + 0.375617i \(0.122569\pi\)
\(152\) 3.44886e7 0.00524059
\(153\) −2.64898e9 −0.390812
\(154\) 1.85572e10 2.65871
\(155\) 4.39056e9 0.610981
\(156\) −6.24609e9 −0.844399
\(157\) 3.14790e9 0.413497 0.206749 0.978394i \(-0.433712\pi\)
0.206749 + 0.978394i \(0.433712\pi\)
\(158\) −5.24269e9 −0.669263
\(159\) −6.26033e9 −0.776802
\(160\) 5.26256e9 0.634830
\(161\) 1.36575e10 1.60197
\(162\) −1.38302e9 −0.157766
\(163\) 3.35730e9 0.372517 0.186258 0.982501i \(-0.440364\pi\)
0.186258 + 0.982501i \(0.440364\pi\)
\(164\) 4.55941e9 0.492166
\(165\) 4.01044e9 0.421225
\(166\) −2.32460e10 −2.37608
\(167\) 3.82304e9 0.380351 0.190176 0.981750i \(-0.439094\pi\)
0.190176 + 0.981750i \(0.439094\pi\)
\(168\) 1.56294e8 0.0151374
\(169\) 1.13662e10 1.07183
\(170\) 8.10734e9 0.744489
\(171\) −8.55036e8 −0.0764719
\(172\) 5.51682e9 0.480630
\(173\) −1.21506e10 −1.03131 −0.515655 0.856796i \(-0.672451\pi\)
−0.515655 + 0.856796i \(0.672451\pi\)
\(174\) −1.18470e10 −0.979800
\(175\) 2.84811e9 0.229554
\(176\) 2.04272e10 1.60473
\(177\) 5.02915e9 0.385137
\(178\) −1.16580e10 −0.870428
\(179\) 2.63642e10 1.91945 0.959724 0.280946i \(-0.0906481\pi\)
0.959724 + 0.280946i \(0.0906481\pi\)
\(180\) 2.13330e9 0.151469
\(181\) 2.36407e10 1.63722 0.818609 0.574351i \(-0.194746\pi\)
0.818609 + 0.574351i \(0.194746\pi\)
\(182\) −3.47223e10 −2.34578
\(183\) −4.26123e9 −0.280870
\(184\) −4.95719e8 −0.0318827
\(185\) 3.83445e9 0.240675
\(186\) 1.82816e10 1.11997
\(187\) 3.19842e10 1.91271
\(188\) −1.46223e10 −0.853698
\(189\) −3.87482e9 −0.220889
\(190\) 2.61688e9 0.145678
\(191\) 1.19414e9 0.0649240 0.0324620 0.999473i \(-0.489665\pi\)
0.0324620 + 0.999473i \(0.489665\pi\)
\(192\) 1.12186e10 0.595775
\(193\) −1.39173e10 −0.722017 −0.361008 0.932563i \(-0.617567\pi\)
−0.361008 + 0.932563i \(0.617567\pi\)
\(194\) 1.09304e10 0.554021
\(195\) −7.50390e9 −0.371647
\(196\) 6.66291e9 0.322486
\(197\) −2.14918e10 −1.01666 −0.508330 0.861162i \(-0.669737\pi\)
−0.508330 + 0.861162i \(0.669737\pi\)
\(198\) 1.66989e10 0.772135
\(199\) 1.08704e10 0.491366 0.245683 0.969350i \(-0.420988\pi\)
0.245683 + 0.969350i \(0.420988\pi\)
\(200\) −1.03376e8 −0.00456864
\(201\) −1.69815e10 −0.733827
\(202\) −1.19678e10 −0.505748
\(203\) −3.31918e10 −1.37183
\(204\) 1.70136e10 0.687795
\(205\) 5.47757e9 0.216618
\(206\) 5.97675e10 2.31240
\(207\) 1.22898e10 0.465240
\(208\) −3.82212e10 −1.41586
\(209\) 1.03238e10 0.374268
\(210\) 1.18591e10 0.420789
\(211\) 3.41697e10 1.18678 0.593390 0.804915i \(-0.297789\pi\)
0.593390 + 0.804915i \(0.297789\pi\)
\(212\) 4.02081e10 1.36711
\(213\) 2.52811e10 0.841567
\(214\) 4.19149e10 1.36618
\(215\) 6.62777e9 0.211541
\(216\) 1.40643e8 0.00439617
\(217\) 5.12197e10 1.56808
\(218\) 6.63685e10 1.99025
\(219\) 2.37638e10 0.698099
\(220\) −2.57578e10 −0.741321
\(221\) −5.98454e10 −1.68758
\(222\) 1.59661e10 0.441174
\(223\) 3.30933e10 0.896125 0.448063 0.894002i \(-0.352114\pi\)
0.448063 + 0.894002i \(0.352114\pi\)
\(224\) 6.13923e10 1.62929
\(225\) 2.56289e9 0.0666667
\(226\) −8.03552e10 −2.04892
\(227\) −3.26706e10 −0.816658 −0.408329 0.912835i \(-0.633888\pi\)
−0.408329 + 0.912835i \(0.633888\pi\)
\(228\) 5.49162e9 0.134584
\(229\) 2.37442e10 0.570556 0.285278 0.958445i \(-0.407914\pi\)
0.285278 + 0.958445i \(0.407914\pi\)
\(230\) −3.76135e10 −0.886274
\(231\) 4.67852e10 1.08107
\(232\) 1.20475e9 0.0273024
\(233\) 4.15480e10 0.923524 0.461762 0.887004i \(-0.347217\pi\)
0.461762 + 0.887004i \(0.347217\pi\)
\(234\) −3.12451e10 −0.681256
\(235\) −1.75668e10 −0.375741
\(236\) −3.23006e10 −0.677808
\(237\) −1.32175e10 −0.272133
\(238\) 9.45791e10 1.91073
\(239\) −2.27926e10 −0.451860 −0.225930 0.974144i \(-0.572542\pi\)
−0.225930 + 0.974144i \(0.572542\pi\)
\(240\) 1.30541e10 0.253978
\(241\) −8.44183e9 −0.161198 −0.0805991 0.996747i \(-0.525683\pi\)
−0.0805991 + 0.996747i \(0.525683\pi\)
\(242\) −1.25868e11 −2.35909
\(243\) −3.48678e9 −0.0641500
\(244\) 2.73685e10 0.494307
\(245\) 8.00465e9 0.141937
\(246\) 2.28077e10 0.397077
\(247\) −1.93168e10 −0.330217
\(248\) −1.85910e9 −0.0312082
\(249\) −5.86061e10 −0.966153
\(250\) −7.84386e9 −0.126999
\(251\) −2.20811e10 −0.351147 −0.175573 0.984466i \(-0.556178\pi\)
−0.175573 + 0.984466i \(0.556178\pi\)
\(252\) 2.48867e10 0.388746
\(253\) −1.48389e11 −2.27698
\(254\) 1.23592e11 1.86310
\(255\) 2.04397e10 0.302721
\(256\) 6.64553e10 0.967052
\(257\) −5.61451e10 −0.802811 −0.401405 0.915901i \(-0.631478\pi\)
−0.401405 + 0.915901i \(0.631478\pi\)
\(258\) 2.75970e10 0.387770
\(259\) 4.47322e10 0.617690
\(260\) 4.81951e10 0.654068
\(261\) −2.98679e10 −0.398403
\(262\) 8.78268e10 1.15152
\(263\) −6.01213e10 −0.774867 −0.387434 0.921898i \(-0.626638\pi\)
−0.387434 + 0.921898i \(0.626638\pi\)
\(264\) −1.69814e9 −0.0215157
\(265\) 4.83050e10 0.601708
\(266\) 3.05282e10 0.373881
\(267\) −2.93913e10 −0.353930
\(268\) 1.09067e11 1.29147
\(269\) −1.19158e11 −1.38751 −0.693757 0.720209i \(-0.744046\pi\)
−0.693757 + 0.720209i \(0.744046\pi\)
\(270\) 1.06715e10 0.122205
\(271\) 1.12190e11 1.26355 0.631776 0.775151i \(-0.282326\pi\)
0.631776 + 0.775151i \(0.282326\pi\)
\(272\) 1.04110e11 1.15327
\(273\) −8.75394e10 −0.953832
\(274\) −2.09114e11 −2.24133
\(275\) −3.09448e10 −0.326280
\(276\) −7.89332e10 −0.818783
\(277\) 1.33746e11 1.36496 0.682482 0.730902i \(-0.260900\pi\)
0.682482 + 0.730902i \(0.260900\pi\)
\(278\) 1.52356e11 1.52988
\(279\) 4.60904e10 0.455398
\(280\) −1.20598e9 −0.0117254
\(281\) −2.70035e10 −0.258369 −0.129185 0.991621i \(-0.541236\pi\)
−0.129185 + 0.991621i \(0.541236\pi\)
\(282\) −7.31456e10 −0.688759
\(283\) 1.15317e11 1.06870 0.534349 0.845264i \(-0.320557\pi\)
0.534349 + 0.845264i \(0.320557\pi\)
\(284\) −1.62373e11 −1.48109
\(285\) 6.59750e9 0.0592349
\(286\) 3.77258e11 3.33420
\(287\) 6.39005e10 0.555950
\(288\) 5.52443e10 0.473174
\(289\) 4.44233e10 0.374603
\(290\) 9.14122e10 0.758950
\(291\) 2.75568e10 0.225274
\(292\) −1.52627e11 −1.22860
\(293\) −1.63123e11 −1.29304 −0.646519 0.762898i \(-0.723776\pi\)
−0.646519 + 0.762898i \(0.723776\pi\)
\(294\) 3.33301e10 0.260180
\(295\) −3.88052e10 −0.298325
\(296\) −1.62362e9 −0.0122934
\(297\) 4.21000e10 0.313963
\(298\) 2.82833e11 2.07758
\(299\) 2.77649e11 2.00898
\(300\) −1.64606e10 −0.117328
\(301\) 7.73187e10 0.542919
\(302\) −3.80444e11 −2.63184
\(303\) −3.01725e10 −0.205645
\(304\) 3.36044e10 0.225666
\(305\) 3.28799e10 0.217561
\(306\) 8.51076e10 0.554909
\(307\) −4.88233e10 −0.313693 −0.156846 0.987623i \(-0.550133\pi\)
−0.156846 + 0.987623i \(0.550133\pi\)
\(308\) −3.00487e11 −1.90260
\(309\) 1.50682e11 0.940258
\(310\) −1.41062e11 −0.867525
\(311\) −8.38590e10 −0.508309 −0.254155 0.967164i \(-0.581797\pi\)
−0.254155 + 0.967164i \(0.581797\pi\)
\(312\) 3.17738e9 0.0189833
\(313\) 1.30273e10 0.0767193 0.0383596 0.999264i \(-0.487787\pi\)
0.0383596 + 0.999264i \(0.487787\pi\)
\(314\) −1.01137e11 −0.587121
\(315\) 2.98983e10 0.171100
\(316\) 8.48917e10 0.478932
\(317\) −2.85804e10 −0.158965 −0.0794826 0.996836i \(-0.525327\pi\)
−0.0794826 + 0.996836i \(0.525327\pi\)
\(318\) 2.01135e11 1.10297
\(319\) 3.60630e11 1.94986
\(320\) −8.65631e10 −0.461486
\(321\) 1.05673e11 0.555510
\(322\) −4.38793e11 −2.27462
\(323\) 5.26166e10 0.268975
\(324\) 2.23945e10 0.112899
\(325\) 5.79004e10 0.287877
\(326\) −1.07865e11 −0.528933
\(327\) 1.67324e11 0.809269
\(328\) −2.31937e9 −0.0110646
\(329\) −2.04932e11 −0.964337
\(330\) −1.28849e11 −0.598094
\(331\) 3.24561e11 1.48618 0.743088 0.669194i \(-0.233360\pi\)
0.743088 + 0.669194i \(0.233360\pi\)
\(332\) 3.76408e11 1.70035
\(333\) 4.02525e10 0.179388
\(334\) −1.22828e11 −0.540057
\(335\) 1.31030e11 0.568420
\(336\) 1.52287e11 0.651834
\(337\) −3.95093e11 −1.66865 −0.834325 0.551274i \(-0.814142\pi\)
−0.834325 + 0.551274i \(0.814142\pi\)
\(338\) −3.65178e11 −1.52188
\(339\) −2.02586e11 −0.833126
\(340\) −1.31277e11 −0.532764
\(341\) −5.56503e11 −2.22881
\(342\) 2.74710e10 0.108582
\(343\) −2.00844e11 −0.783492
\(344\) −2.80640e9 −0.0108053
\(345\) −9.48284e10 −0.360373
\(346\) 3.90379e11 1.46435
\(347\) 2.13747e11 0.791437 0.395719 0.918372i \(-0.370496\pi\)
0.395719 + 0.918372i \(0.370496\pi\)
\(348\) 1.91832e11 0.701155
\(349\) −1.11084e11 −0.400809 −0.200405 0.979713i \(-0.564226\pi\)
−0.200405 + 0.979713i \(0.564226\pi\)
\(350\) −9.15054e10 −0.325942
\(351\) −7.87729e10 −0.277010
\(352\) −6.67028e11 −2.31581
\(353\) 2.60767e11 0.893853 0.446926 0.894571i \(-0.352519\pi\)
0.446926 + 0.894571i \(0.352519\pi\)
\(354\) −1.61579e11 −0.546852
\(355\) −1.95071e11 −0.651875
\(356\) 1.88771e11 0.622887
\(357\) 2.38446e11 0.776933
\(358\) −8.47041e11 −2.72540
\(359\) 1.70320e11 0.541178 0.270589 0.962695i \(-0.412782\pi\)
0.270589 + 0.962695i \(0.412782\pi\)
\(360\) −1.08520e9 −0.00340526
\(361\) 1.69836e10 0.0526316
\(362\) −7.59538e11 −2.32467
\(363\) −3.17329e11 −0.959245
\(364\) 5.62238e11 1.67866
\(365\) −1.83363e11 −0.540745
\(366\) 1.36907e11 0.398804
\(367\) −1.28371e11 −0.369376 −0.184688 0.982797i \(-0.559127\pi\)
−0.184688 + 0.982797i \(0.559127\pi\)
\(368\) −4.83009e11 −1.37290
\(369\) 5.75013e10 0.161458
\(370\) −1.23195e11 −0.341732
\(371\) 5.63520e11 1.54428
\(372\) −2.96024e11 −0.801462
\(373\) 5.12085e11 1.36979 0.684893 0.728644i \(-0.259849\pi\)
0.684893 + 0.728644i \(0.259849\pi\)
\(374\) −1.02760e12 −2.71583
\(375\) −1.97754e10 −0.0516398
\(376\) 7.43832e9 0.0191924
\(377\) −6.74771e11 −1.72036
\(378\) 1.24492e11 0.313638
\(379\) −4.49463e11 −1.11897 −0.559484 0.828841i \(-0.689001\pi\)
−0.559484 + 0.828841i \(0.689001\pi\)
\(380\) −4.23736e10 −0.104248
\(381\) 3.11590e11 0.757568
\(382\) −3.83659e10 −0.0921849
\(383\) 5.56817e11 1.32226 0.661131 0.750270i \(-0.270077\pi\)
0.661131 + 0.750270i \(0.270077\pi\)
\(384\) −1.12373e10 −0.0263736
\(385\) −3.60997e11 −0.837395
\(386\) 4.47142e11 1.02518
\(387\) 6.95757e10 0.157673
\(388\) −1.76989e11 −0.396463
\(389\) 4.54747e11 1.00692 0.503462 0.864017i \(-0.332059\pi\)
0.503462 + 0.864017i \(0.332059\pi\)
\(390\) 2.41089e11 0.527699
\(391\) −7.56280e11 −1.63639
\(392\) −3.38941e9 −0.00724998
\(393\) 2.21423e11 0.468226
\(394\) 6.90500e11 1.44355
\(395\) 1.01987e11 0.210794
\(396\) −2.70395e11 −0.552548
\(397\) −3.54931e11 −0.717111 −0.358556 0.933508i \(-0.616731\pi\)
−0.358556 + 0.933508i \(0.616731\pi\)
\(398\) −3.49248e11 −0.697686
\(399\) 7.69655e10 0.152026
\(400\) −1.00726e11 −0.196731
\(401\) 1.16496e11 0.224990 0.112495 0.993652i \(-0.464116\pi\)
0.112495 + 0.993652i \(0.464116\pi\)
\(402\) 5.45589e11 1.04195
\(403\) 1.04127e12 1.96648
\(404\) 1.93788e11 0.361919
\(405\) 2.69042e10 0.0496904
\(406\) 1.06640e12 1.94784
\(407\) −4.86016e11 −0.877961
\(408\) −8.65477e9 −0.0154627
\(409\) 4.97357e11 0.878847 0.439423 0.898280i \(-0.355183\pi\)
0.439423 + 0.898280i \(0.355183\pi\)
\(410\) −1.75986e11 −0.307574
\(411\) −5.27205e11 −0.911362
\(412\) −9.67780e11 −1.65478
\(413\) −4.52696e11 −0.765651
\(414\) −3.94851e11 −0.660590
\(415\) 4.52208e11 0.748379
\(416\) 1.24807e12 2.04324
\(417\) 3.84109e11 0.622074
\(418\) −3.31689e11 −0.531420
\(419\) −5.96782e11 −0.945916 −0.472958 0.881085i \(-0.656814\pi\)
−0.472958 + 0.881085i \(0.656814\pi\)
\(420\) −1.92027e11 −0.301121
\(421\) −5.70647e11 −0.885315 −0.442658 0.896691i \(-0.645964\pi\)
−0.442658 + 0.896691i \(0.645964\pi\)
\(422\) −1.09782e12 −1.68510
\(423\) −1.84410e11 −0.280060
\(424\) −2.04538e10 −0.0307346
\(425\) −1.57713e11 −0.234487
\(426\) −8.12244e11 −1.19493
\(427\) 3.83572e11 0.558369
\(428\) −6.78704e11 −0.977650
\(429\) 9.51117e11 1.35574
\(430\) −2.12940e11 −0.300365
\(431\) −5.48853e11 −0.766141 −0.383070 0.923719i \(-0.625133\pi\)
−0.383070 + 0.923719i \(0.625133\pi\)
\(432\) 1.37037e11 0.189304
\(433\) −1.92999e11 −0.263852 −0.131926 0.991260i \(-0.542116\pi\)
−0.131926 + 0.991260i \(0.542116\pi\)
\(434\) −1.64561e12 −2.22650
\(435\) 2.30462e11 0.308601
\(436\) −1.07467e12 −1.42424
\(437\) −2.44111e11 −0.320200
\(438\) −7.63494e11 −0.991224
\(439\) −9.32239e11 −1.19794 −0.598972 0.800770i \(-0.704424\pi\)
−0.598972 + 0.800770i \(0.704424\pi\)
\(440\) 1.31029e10 0.0166660
\(441\) 8.40296e10 0.105793
\(442\) 1.92274e12 2.39618
\(443\) 5.24666e11 0.647241 0.323621 0.946187i \(-0.395100\pi\)
0.323621 + 0.946187i \(0.395100\pi\)
\(444\) −2.58529e11 −0.315708
\(445\) 2.26784e11 0.274153
\(446\) −1.06324e12 −1.27240
\(447\) 7.13060e11 0.844777
\(448\) −1.00983e12 −1.18440
\(449\) 5.78153e11 0.671327 0.335664 0.941982i \(-0.391039\pi\)
0.335664 + 0.941982i \(0.391039\pi\)
\(450\) −8.23417e10 −0.0946593
\(451\) −6.94280e11 −0.790206
\(452\) 1.30114e12 1.46623
\(453\) −9.59148e11 −1.07015
\(454\) 1.04965e12 1.15956
\(455\) 6.75458e11 0.738835
\(456\) −2.79358e9 −0.00302565
\(457\) 1.14602e12 1.22904 0.614522 0.788899i \(-0.289349\pi\)
0.614522 + 0.788899i \(0.289349\pi\)
\(458\) −7.62864e11 −0.810126
\(459\) 2.14567e11 0.225635
\(460\) 6.09053e11 0.634227
\(461\) −2.67687e11 −0.276040 −0.138020 0.990429i \(-0.544074\pi\)
−0.138020 + 0.990429i \(0.544074\pi\)
\(462\) −1.50314e12 −1.53500
\(463\) 1.54932e12 1.56685 0.783423 0.621489i \(-0.213472\pi\)
0.783423 + 0.621489i \(0.213472\pi\)
\(464\) 1.17386e12 1.17567
\(465\) −3.55636e11 −0.352750
\(466\) −1.33487e12 −1.31130
\(467\) 1.28980e12 1.25487 0.627433 0.778670i \(-0.284106\pi\)
0.627433 + 0.778670i \(0.284106\pi\)
\(468\) 5.05933e11 0.487514
\(469\) 1.52858e12 1.45885
\(470\) 5.64395e11 0.533510
\(471\) −2.54980e11 −0.238733
\(472\) 1.64313e10 0.0152381
\(473\) −8.40069e11 −0.771684
\(474\) 4.24658e11 0.386399
\(475\) −5.09066e10 −0.0458831
\(476\) −1.53146e12 −1.36734
\(477\) 5.07087e11 0.448487
\(478\) 7.32292e11 0.641592
\(479\) −1.16631e12 −1.01229 −0.506144 0.862449i \(-0.668930\pi\)
−0.506144 + 0.862449i \(0.668930\pi\)
\(480\) −4.26268e11 −0.366519
\(481\) 9.09379e11 0.774626
\(482\) 2.71223e11 0.228884
\(483\) −1.10626e12 −0.924897
\(484\) 2.03810e12 1.68819
\(485\) −2.12630e11 −0.174497
\(486\) 1.12025e11 0.0910860
\(487\) −1.43639e11 −0.115715 −0.0578577 0.998325i \(-0.518427\pi\)
−0.0578577 + 0.998325i \(0.518427\pi\)
\(488\) −1.39223e10 −0.0111128
\(489\) −2.71941e11 −0.215073
\(490\) −2.57177e11 −0.201535
\(491\) 5.03616e11 0.391050 0.195525 0.980699i \(-0.437359\pi\)
0.195525 + 0.980699i \(0.437359\pi\)
\(492\) −3.69312e11 −0.284152
\(493\) 1.83799e12 1.40130
\(494\) 6.20620e11 0.468872
\(495\) −3.24846e11 −0.243195
\(496\) −1.81143e12 −1.34386
\(497\) −2.27567e12 −1.67303
\(498\) 1.88292e12 1.37183
\(499\) 2.68964e12 1.94197 0.970984 0.239145i \(-0.0768672\pi\)
0.970984 + 0.239145i \(0.0768672\pi\)
\(500\) 1.27011e11 0.0908817
\(501\) −3.09667e11 −0.219596
\(502\) 7.09431e11 0.498590
\(503\) 1.57010e12 1.09363 0.546816 0.837253i \(-0.315840\pi\)
0.546816 + 0.837253i \(0.315840\pi\)
\(504\) −1.26598e10 −0.00873959
\(505\) 2.32812e11 0.159292
\(506\) 4.76750e12 3.23306
\(507\) −9.20662e11 −0.618820
\(508\) −2.00124e12 −1.33326
\(509\) 2.31469e12 1.52849 0.764245 0.644926i \(-0.223112\pi\)
0.764245 + 0.644926i \(0.223112\pi\)
\(510\) −6.56695e11 −0.429831
\(511\) −2.13908e12 −1.38782
\(512\) −2.20614e12 −1.41879
\(513\) 6.92579e10 0.0441511
\(514\) 1.80386e12 1.13990
\(515\) −1.16267e12 −0.728321
\(516\) −4.46863e11 −0.277492
\(517\) 2.22659e12 1.37067
\(518\) −1.43717e12 −0.877053
\(519\) 9.84197e11 0.595428
\(520\) −2.45168e10 −0.0147044
\(521\) 5.91477e11 0.351697 0.175848 0.984417i \(-0.443733\pi\)
0.175848 + 0.984417i \(0.443733\pi\)
\(522\) 9.59609e11 0.565688
\(523\) 6.33830e11 0.370438 0.185219 0.982697i \(-0.440701\pi\)
0.185219 + 0.982697i \(0.440701\pi\)
\(524\) −1.42213e12 −0.824039
\(525\) −2.30697e11 −0.132533
\(526\) 1.93160e12 1.10023
\(527\) −2.83628e12 −1.60177
\(528\) −1.65460e12 −0.926491
\(529\) 1.70756e12 0.948035
\(530\) −1.55197e12 −0.854359
\(531\) −4.07361e11 −0.222359
\(532\) −4.94325e11 −0.267553
\(533\) 1.29906e12 0.697200
\(534\) 9.44295e11 0.502542
\(535\) −8.15378e11 −0.430296
\(536\) −5.54821e10 −0.0290343
\(537\) −2.13550e12 −1.10819
\(538\) 3.82836e12 1.97012
\(539\) −1.01459e12 −0.517774
\(540\) −1.72797e11 −0.0874509
\(541\) 8.68493e11 0.435892 0.217946 0.975961i \(-0.430064\pi\)
0.217946 + 0.975961i \(0.430064\pi\)
\(542\) −3.60450e12 −1.79410
\(543\) −1.91490e12 −0.945248
\(544\) −3.39959e12 −1.66430
\(545\) −1.29108e12 −0.626857
\(546\) 2.81251e12 1.35434
\(547\) 8.04749e11 0.384341 0.192171 0.981362i \(-0.438447\pi\)
0.192171 + 0.981362i \(0.438447\pi\)
\(548\) 3.38607e12 1.60392
\(549\) 3.45160e11 0.162160
\(550\) 9.94207e11 0.463281
\(551\) 5.93265e11 0.274199
\(552\) 4.01532e10 0.0184075
\(553\) 1.18976e12 0.541001
\(554\) −4.29705e12 −1.93810
\(555\) −3.10590e11 −0.138954
\(556\) −2.46701e12 −1.09480
\(557\) 9.18654e11 0.404393 0.202197 0.979345i \(-0.435192\pi\)
0.202197 + 0.979345i \(0.435192\pi\)
\(558\) −1.48081e12 −0.646615
\(559\) 1.57184e12 0.680858
\(560\) −1.17506e12 −0.504908
\(561\) −2.59072e12 −1.10430
\(562\) 8.67579e11 0.366856
\(563\) 4.47734e12 1.87816 0.939080 0.343698i \(-0.111680\pi\)
0.939080 + 0.343698i \(0.111680\pi\)
\(564\) 1.18440e12 0.492883
\(565\) 1.56316e12 0.645336
\(566\) −3.70496e12 −1.51743
\(567\) 3.13861e11 0.127530
\(568\) 8.25987e10 0.0332971
\(569\) 4.39599e12 1.75813 0.879066 0.476699i \(-0.158167\pi\)
0.879066 + 0.476699i \(0.158167\pi\)
\(570\) −2.11967e11 −0.0841070
\(571\) 4.03732e12 1.58939 0.794696 0.607008i \(-0.207630\pi\)
0.794696 + 0.607008i \(0.207630\pi\)
\(572\) −6.10872e12 −2.38599
\(573\) −9.67253e10 −0.0374839
\(574\) −2.05302e12 −0.789388
\(575\) 7.31701e11 0.279144
\(576\) −9.08705e11 −0.343971
\(577\) −4.81971e11 −0.181021 −0.0905107 0.995895i \(-0.528850\pi\)
−0.0905107 + 0.995895i \(0.528850\pi\)
\(578\) −1.42725e12 −0.531895
\(579\) 1.12730e12 0.416857
\(580\) −1.48018e12 −0.543112
\(581\) 5.27539e12 1.92071
\(582\) −8.85359e11 −0.319864
\(583\) −6.12265e12 −2.19498
\(584\) 7.76412e10 0.0276207
\(585\) 6.07816e11 0.214571
\(586\) 5.24089e12 1.83597
\(587\) 1.72004e12 0.597954 0.298977 0.954260i \(-0.403355\pi\)
0.298977 + 0.954260i \(0.403355\pi\)
\(588\) −5.39695e11 −0.186188
\(589\) −9.15492e11 −0.313426
\(590\) 1.24675e12 0.423589
\(591\) 1.74084e12 0.586969
\(592\) −1.58199e12 −0.529368
\(593\) 2.08897e12 0.693723 0.346861 0.937916i \(-0.387247\pi\)
0.346861 + 0.937916i \(0.387247\pi\)
\(594\) −1.35261e12 −0.445793
\(595\) −1.83986e12 −0.601810
\(596\) −4.57976e12 −1.48674
\(597\) −8.80500e11 −0.283690
\(598\) −8.92042e12 −2.85253
\(599\) 5.70633e12 1.81107 0.905537 0.424266i \(-0.139468\pi\)
0.905537 + 0.424266i \(0.139468\pi\)
\(600\) 8.37349e9 0.00263770
\(601\) −5.16223e12 −1.61400 −0.806998 0.590554i \(-0.798909\pi\)
−0.806998 + 0.590554i \(0.798909\pi\)
\(602\) −2.48413e12 −0.770886
\(603\) 1.37550e12 0.423675
\(604\) 6.16030e12 1.88337
\(605\) 2.44852e12 0.743028
\(606\) 9.69394e11 0.291994
\(607\) −1.81411e12 −0.542393 −0.271196 0.962524i \(-0.587419\pi\)
−0.271196 + 0.962524i \(0.587419\pi\)
\(608\) −1.09732e12 −0.325661
\(609\) 2.68854e12 0.792024
\(610\) −1.05638e12 −0.308912
\(611\) −4.16615e12 −1.20934
\(612\) −1.37810e12 −0.397099
\(613\) 6.03843e12 1.72724 0.863618 0.504147i \(-0.168193\pi\)
0.863618 + 0.504147i \(0.168193\pi\)
\(614\) 1.56862e12 0.445409
\(615\) −4.43683e11 −0.125065
\(616\) 1.52857e11 0.0427733
\(617\) 1.72649e12 0.479601 0.239800 0.970822i \(-0.422918\pi\)
0.239800 + 0.970822i \(0.422918\pi\)
\(618\) −4.84117e12 −1.33506
\(619\) −4.44023e12 −1.21562 −0.607810 0.794083i \(-0.707952\pi\)
−0.607810 + 0.794083i \(0.707952\pi\)
\(620\) 2.28413e12 0.620810
\(621\) −9.95471e11 −0.268606
\(622\) 2.69426e12 0.721743
\(623\) 2.64563e12 0.703613
\(624\) 3.09591e12 0.817444
\(625\) 1.52588e11 0.0400000
\(626\) −4.18546e11 −0.108933
\(627\) −8.36232e11 −0.216084
\(628\) 1.63766e12 0.420150
\(629\) −2.47703e12 −0.630963
\(630\) −9.60587e11 −0.242943
\(631\) −2.22856e12 −0.559619 −0.279810 0.960055i \(-0.590271\pi\)
−0.279810 + 0.960055i \(0.590271\pi\)
\(632\) −4.31843e10 −0.0107671
\(633\) −2.76775e12 −0.685188
\(634\) 9.18245e11 0.225713
\(635\) −2.40425e12 −0.586810
\(636\) −3.25686e12 −0.789299
\(637\) 1.89839e12 0.456832
\(638\) −1.15865e13 −2.76859
\(639\) −2.04777e12 −0.485879
\(640\) 8.67072e10 0.0204289
\(641\) −3.78005e12 −0.884375 −0.442188 0.896923i \(-0.645798\pi\)
−0.442188 + 0.896923i \(0.645798\pi\)
\(642\) −3.39511e12 −0.788763
\(643\) 1.02799e12 0.237158 0.118579 0.992945i \(-0.462166\pi\)
0.118579 + 0.992945i \(0.462166\pi\)
\(644\) 7.10512e12 1.62774
\(645\) −5.36850e11 −0.122133
\(646\) −1.69049e12 −0.381915
\(647\) 2.67859e12 0.600949 0.300474 0.953790i \(-0.402855\pi\)
0.300474 + 0.953790i \(0.402855\pi\)
\(648\) −1.13920e10 −0.00253813
\(649\) 4.91854e12 1.08827
\(650\) −1.86025e12 −0.408754
\(651\) −4.14879e12 −0.905331
\(652\) 1.74659e12 0.378510
\(653\) 6.41202e12 1.38002 0.690011 0.723799i \(-0.257606\pi\)
0.690011 + 0.723799i \(0.257606\pi\)
\(654\) −5.37585e12 −1.14907
\(655\) −1.70851e12 −0.362686
\(656\) −2.25990e12 −0.476455
\(657\) −1.92487e12 −0.403048
\(658\) 6.58415e12 1.36925
\(659\) 1.90060e11 0.0392560 0.0196280 0.999807i \(-0.493752\pi\)
0.0196280 + 0.999807i \(0.493752\pi\)
\(660\) 2.08638e12 0.428002
\(661\) 2.25692e12 0.459843 0.229922 0.973209i \(-0.426153\pi\)
0.229922 + 0.973209i \(0.426153\pi\)
\(662\) −1.04276e13 −2.11021
\(663\) 4.84748e12 0.974327
\(664\) −1.91478e11 −0.0382264
\(665\) −5.93870e11 −0.117759
\(666\) −1.29325e12 −0.254712
\(667\) −8.52723e12 −1.66818
\(668\) 1.98889e12 0.386471
\(669\) −2.68056e12 −0.517378
\(670\) −4.20979e12 −0.807094
\(671\) −4.16751e12 −0.793644
\(672\) −4.97278e12 −0.940670
\(673\) −5.47515e12 −1.02879 −0.514396 0.857553i \(-0.671984\pi\)
−0.514396 + 0.857553i \(0.671984\pi\)
\(674\) 1.26937e13 2.36930
\(675\) −2.07594e11 −0.0384900
\(676\) 5.91311e12 1.08907
\(677\) 9.09947e12 1.66482 0.832409 0.554161i \(-0.186961\pi\)
0.832409 + 0.554161i \(0.186961\pi\)
\(678\) 6.50877e12 1.18295
\(679\) −2.48051e12 −0.447845
\(680\) 6.67806e10 0.0119773
\(681\) 2.64632e12 0.471498
\(682\) 1.78796e13 3.16466
\(683\) 5.38356e12 0.946622 0.473311 0.880895i \(-0.343059\pi\)
0.473311 + 0.880895i \(0.343059\pi\)
\(684\) −4.44821e11 −0.0777022
\(685\) 4.06794e12 0.705938
\(686\) 6.45279e12 1.11247
\(687\) −1.92328e12 −0.329410
\(688\) −2.73445e12 −0.465288
\(689\) 1.14560e13 1.93663
\(690\) 3.04669e12 0.511691
\(691\) 5.45592e12 0.910368 0.455184 0.890397i \(-0.349573\pi\)
0.455184 + 0.890397i \(0.349573\pi\)
\(692\) −6.32118e12 −1.04790
\(693\) −3.78960e12 −0.624158
\(694\) −6.86734e12 −1.12375
\(695\) −2.96380e12 −0.481856
\(696\) −9.75845e10 −0.0157630
\(697\) −3.53848e12 −0.567896
\(698\) 3.56896e12 0.569105
\(699\) −3.36538e12 −0.533197
\(700\) 1.48169e12 0.233247
\(701\) −6.20862e12 −0.971099 −0.485550 0.874209i \(-0.661381\pi\)
−0.485550 + 0.874209i \(0.661381\pi\)
\(702\) 2.53085e12 0.393323
\(703\) −7.99535e11 −0.123463
\(704\) 1.09719e13 1.68346
\(705\) 1.42291e12 0.216934
\(706\) −8.37803e12 −1.26917
\(707\) 2.71595e12 0.408823
\(708\) 2.61635e12 0.391333
\(709\) 4.28672e12 0.637114 0.318557 0.947904i \(-0.396802\pi\)
0.318557 + 0.947904i \(0.396802\pi\)
\(710\) 6.26731e12 0.925591
\(711\) 1.07062e12 0.157116
\(712\) −9.60273e10 −0.0140034
\(713\) 1.31587e13 1.90683
\(714\) −7.66091e12 −1.10316
\(715\) −7.33887e12 −1.05015
\(716\) 1.37156e13 1.95033
\(717\) 1.84620e12 0.260882
\(718\) −5.47211e12 −0.768414
\(719\) 7.85422e12 1.09603 0.548016 0.836468i \(-0.315383\pi\)
0.548016 + 0.836468i \(0.315383\pi\)
\(720\) −1.05738e12 −0.146634
\(721\) −1.35635e13 −1.86923
\(722\) −5.45655e11 −0.0747311
\(723\) 6.83788e11 0.0930678
\(724\) 1.22988e13 1.66356
\(725\) −1.77826e12 −0.239042
\(726\) 1.01953e13 1.36202
\(727\) 4.11305e12 0.546084 0.273042 0.962002i \(-0.411970\pi\)
0.273042 + 0.962002i \(0.411970\pi\)
\(728\) −2.86009e11 −0.0377389
\(729\) 2.82430e11 0.0370370
\(730\) 5.89116e12 0.767799
\(731\) −4.28150e12 −0.554585
\(732\) −2.21685e12 −0.285388
\(733\) 9.99915e11 0.127937 0.0639683 0.997952i \(-0.479624\pi\)
0.0639683 + 0.997952i \(0.479624\pi\)
\(734\) 4.12435e12 0.524473
\(735\) −6.48377e11 −0.0819473
\(736\) 1.57721e13 1.98126
\(737\) −1.66080e13 −2.07355
\(738\) −1.84743e12 −0.229252
\(739\) 1.22724e13 1.51366 0.756831 0.653610i \(-0.226746\pi\)
0.756831 + 0.653610i \(0.226746\pi\)
\(740\) 1.99482e12 0.244547
\(741\) 1.56466e12 0.190651
\(742\) −1.81050e13 −2.19271
\(743\) −4.36651e12 −0.525636 −0.262818 0.964845i \(-0.584652\pi\)
−0.262818 + 0.964845i \(0.584652\pi\)
\(744\) 1.50587e11 0.0180181
\(745\) −5.50201e12 −0.654362
\(746\) −1.64525e13 −1.94494
\(747\) 4.74710e12 0.557809
\(748\) 1.66394e13 1.94348
\(749\) −9.51209e12 −1.10435
\(750\) 6.35353e11 0.0733228
\(751\) 9.65504e12 1.10758 0.553789 0.832657i \(-0.313181\pi\)
0.553789 + 0.832657i \(0.313181\pi\)
\(752\) 7.24762e12 0.826447
\(753\) 1.78857e12 0.202735
\(754\) 2.16793e13 2.44273
\(755\) 7.40083e12 0.828933
\(756\) −2.01583e12 −0.224442
\(757\) 3.74109e12 0.414063 0.207032 0.978334i \(-0.433620\pi\)
0.207032 + 0.978334i \(0.433620\pi\)
\(758\) 1.44406e13 1.58881
\(759\) 1.20195e13 1.31461
\(760\) 2.15554e10 0.00234366
\(761\) 2.99119e12 0.323305 0.161652 0.986848i \(-0.448318\pi\)
0.161652 + 0.986848i \(0.448318\pi\)
\(762\) −1.00109e13 −1.07566
\(763\) −1.50615e13 −1.60883
\(764\) 6.21236e11 0.0659685
\(765\) −1.65561e12 −0.174776
\(766\) −1.78897e13 −1.87747
\(767\) −9.20304e12 −0.960179
\(768\) −5.38288e12 −0.558328
\(769\) −7.17150e12 −0.739505 −0.369753 0.929130i \(-0.620558\pi\)
−0.369753 + 0.929130i \(0.620558\pi\)
\(770\) 1.15983e13 1.18901
\(771\) 4.54776e12 0.463503
\(772\) −7.24030e12 −0.733633
\(773\) −1.17084e11 −0.0117948 −0.00589738 0.999983i \(-0.501877\pi\)
−0.00589738 + 0.999983i \(0.501877\pi\)
\(774\) −2.23536e12 −0.223879
\(775\) 2.74410e12 0.273239
\(776\) 9.00339e10 0.00891309
\(777\) −3.62330e12 −0.356624
\(778\) −1.46103e13 −1.42972
\(779\) −1.14215e12 −0.111123
\(780\) −3.90381e12 −0.377627
\(781\) 2.47251e13 2.37799
\(782\) 2.42981e13 2.32349
\(783\) 2.41930e12 0.230018
\(784\) −3.30251e12 −0.312192
\(785\) 1.96744e12 0.184922
\(786\) −7.11397e12 −0.664830
\(787\) −5.87418e12 −0.545834 −0.272917 0.962038i \(-0.587989\pi\)
−0.272917 + 0.962038i \(0.587989\pi\)
\(788\) −1.11809e13 −1.03302
\(789\) 4.86982e12 0.447370
\(790\) −3.27668e12 −0.299304
\(791\) 1.82356e13 1.65625
\(792\) 1.37549e11 0.0124221
\(793\) 7.79779e12 0.700233
\(794\) 1.14034e13 1.01822
\(795\) −3.91271e12 −0.347396
\(796\) 5.65517e12 0.499271
\(797\) −1.06044e13 −0.930945 −0.465472 0.885062i \(-0.654116\pi\)
−0.465472 + 0.885062i \(0.654116\pi\)
\(798\) −2.47278e12 −0.215860
\(799\) 1.13481e13 0.985058
\(800\) 3.28910e12 0.283905
\(801\) 2.38069e12 0.204342
\(802\) −3.74285e12 −0.319461
\(803\) 2.32412e13 1.97259
\(804\) −8.83440e12 −0.745633
\(805\) 8.53592e12 0.716422
\(806\) −3.34543e13 −2.79218
\(807\) 9.65179e12 0.801082
\(808\) −9.85797e10 −0.00813647
\(809\) −1.95948e13 −1.60832 −0.804160 0.594413i \(-0.797385\pi\)
−0.804160 + 0.594413i \(0.797385\pi\)
\(810\) −8.64390e11 −0.0705549
\(811\) −1.45321e13 −1.17960 −0.589800 0.807549i \(-0.700793\pi\)
−0.589800 + 0.807549i \(0.700793\pi\)
\(812\) −1.72676e13 −1.39390
\(813\) −9.08740e12 −0.729512
\(814\) 1.56149e13 1.24661
\(815\) 2.09831e12 0.166595
\(816\) −8.43288e12 −0.665840
\(817\) −1.38198e12 −0.108518
\(818\) −1.59793e13 −1.24787
\(819\) 7.09069e12 0.550695
\(820\) 2.84963e12 0.220103
\(821\) 1.16117e13 0.891973 0.445987 0.895040i \(-0.352853\pi\)
0.445987 + 0.895040i \(0.352853\pi\)
\(822\) 1.69383e13 1.29403
\(823\) 1.72550e13 1.31104 0.655520 0.755178i \(-0.272450\pi\)
0.655520 + 0.755178i \(0.272450\pi\)
\(824\) 4.92308e11 0.0372018
\(825\) 2.50653e12 0.188378
\(826\) 1.45444e13 1.08714
\(827\) −2.50781e13 −1.86432 −0.932159 0.362049i \(-0.882077\pi\)
−0.932159 + 0.362049i \(0.882077\pi\)
\(828\) 6.39359e12 0.472725
\(829\) −1.64035e13 −1.20626 −0.603129 0.797644i \(-0.706080\pi\)
−0.603129 + 0.797644i \(0.706080\pi\)
\(830\) −1.45287e13 −1.06262
\(831\) −1.08334e13 −0.788063
\(832\) −2.05293e13 −1.48532
\(833\) −5.17096e12 −0.372108
\(834\) −1.23408e13 −0.883276
\(835\) 2.38940e12 0.170098
\(836\) 5.37085e12 0.380290
\(837\) −3.73332e12 −0.262924
\(838\) 1.91737e13 1.34310
\(839\) −1.32313e12 −0.0921876 −0.0460938 0.998937i \(-0.514677\pi\)
−0.0460938 + 0.998937i \(0.514677\pi\)
\(840\) 9.76840e10 0.00676966
\(841\) 6.21662e12 0.428521
\(842\) 1.83340e13 1.25705
\(843\) 2.18728e12 0.149170
\(844\) 1.77763e13 1.20587
\(845\) 7.10387e12 0.479336
\(846\) 5.92479e12 0.397655
\(847\) 2.85641e13 1.90698
\(848\) −1.99294e13 −1.32347
\(849\) −9.34070e12 −0.617013
\(850\) 5.06709e12 0.332946
\(851\) 1.14920e13 0.751127
\(852\) 1.31522e13 0.855106
\(853\) −1.19507e12 −0.0772896 −0.0386448 0.999253i \(-0.512304\pi\)
−0.0386448 + 0.999253i \(0.512304\pi\)
\(854\) −1.23236e13 −0.792823
\(855\) −5.34398e11 −0.0341993
\(856\) 3.45256e11 0.0219790
\(857\) 7.41160e12 0.469351 0.234676 0.972074i \(-0.424597\pi\)
0.234676 + 0.972074i \(0.424597\pi\)
\(858\) −3.05579e13 −1.92500
\(859\) 2.45050e13 1.53563 0.767814 0.640673i \(-0.221344\pi\)
0.767814 + 0.640673i \(0.221344\pi\)
\(860\) 3.44801e12 0.214944
\(861\) −5.17594e12 −0.320978
\(862\) 1.76338e13 1.08784
\(863\) 1.16324e13 0.713875 0.356937 0.934128i \(-0.383821\pi\)
0.356937 + 0.934128i \(0.383821\pi\)
\(864\) −4.47479e12 −0.273187
\(865\) −7.59411e12 −0.461216
\(866\) 6.20076e12 0.374641
\(867\) −3.59829e12 −0.216277
\(868\) 2.66464e13 1.59331
\(869\) −1.29268e13 −0.768957
\(870\) −7.40439e12 −0.438180
\(871\) 3.10751e13 1.82949
\(872\) 5.46681e11 0.0320192
\(873\) −2.23210e12 −0.130062
\(874\) 7.84292e12 0.454649
\(875\) 1.78007e12 0.102660
\(876\) 1.23628e13 0.709330
\(877\) −8.79318e12 −0.501935 −0.250968 0.967995i \(-0.580749\pi\)
−0.250968 + 0.967995i \(0.580749\pi\)
\(878\) 2.99514e13 1.70095
\(879\) 1.32130e13 0.746536
\(880\) 1.27670e13 0.717657
\(881\) −2.69534e13 −1.50738 −0.753689 0.657231i \(-0.771728\pi\)
−0.753689 + 0.657231i \(0.771728\pi\)
\(882\) −2.69974e12 −0.150215
\(883\) −1.08823e13 −0.602419 −0.301210 0.953558i \(-0.597390\pi\)
−0.301210 + 0.953558i \(0.597390\pi\)
\(884\) −3.11338e13 −1.71473
\(885\) 3.14322e12 0.172238
\(886\) −1.68567e13 −0.919012
\(887\) −3.10625e13 −1.68493 −0.842463 0.538755i \(-0.818895\pi\)
−0.842463 + 0.538755i \(0.818895\pi\)
\(888\) 1.31513e11 0.00709760
\(889\) −2.80476e13 −1.50604
\(890\) −7.28623e12 −0.389267
\(891\) −3.41010e12 −0.181266
\(892\) 1.72164e13 0.910542
\(893\) 3.66292e12 0.192751
\(894\) −2.29095e13 −1.19949
\(895\) 1.64776e13 0.858403
\(896\) 1.01151e12 0.0524307
\(897\) −2.24895e13 −1.15988
\(898\) −1.85752e13 −0.953211
\(899\) −3.19797e13 −1.63289
\(900\) 1.33331e12 0.0677392
\(901\) −3.12048e13 −1.57746
\(902\) 2.23061e13 1.12201
\(903\) −6.26281e12 −0.313455
\(904\) −6.61890e11 −0.0329631
\(905\) 1.47754e13 0.732186
\(906\) 3.08159e13 1.51949
\(907\) −1.72933e13 −0.848489 −0.424244 0.905548i \(-0.639460\pi\)
−0.424244 + 0.905548i \(0.639460\pi\)
\(908\) −1.69964e13 −0.829796
\(909\) 2.44397e12 0.118729
\(910\) −2.17014e13 −1.04906
\(911\) −2.52104e13 −1.21268 −0.606341 0.795205i \(-0.707363\pi\)
−0.606341 + 0.795205i \(0.707363\pi\)
\(912\) −2.72196e12 −0.130288
\(913\) −5.73172e13 −2.73002
\(914\) −3.68197e13 −1.74511
\(915\) −2.66327e12 −0.125609
\(916\) 1.23526e13 0.579735
\(917\) −1.99312e13 −0.930833
\(918\) −6.89372e12 −0.320377
\(919\) −8.20069e12 −0.379255 −0.189627 0.981856i \(-0.560728\pi\)
−0.189627 + 0.981856i \(0.560728\pi\)
\(920\) −3.09824e11 −0.0142584
\(921\) 3.95469e12 0.181111
\(922\) 8.60036e12 0.391947
\(923\) −4.62630e13 −2.09810
\(924\) 2.43394e13 1.09847
\(925\) 2.39653e12 0.107633
\(926\) −4.97772e13 −2.22475
\(927\) −1.22052e13 −0.542858
\(928\) −3.83311e13 −1.69662
\(929\) 2.89615e12 0.127571 0.0637853 0.997964i \(-0.479683\pi\)
0.0637853 + 0.997964i \(0.479683\pi\)
\(930\) 1.14260e13 0.500866
\(931\) −1.66908e12 −0.0728121
\(932\) 2.16148e13 0.938381
\(933\) 6.79258e12 0.293473
\(934\) −4.14394e13 −1.78177
\(935\) 1.99901e13 0.855389
\(936\) −2.57367e11 −0.0109600
\(937\) 3.68236e13 1.56062 0.780311 0.625392i \(-0.215061\pi\)
0.780311 + 0.625392i \(0.215061\pi\)
\(938\) −4.91108e13 −2.07140
\(939\) −1.05521e12 −0.0442939
\(940\) −9.13892e12 −0.381785
\(941\) 4.57947e13 1.90398 0.951989 0.306133i \(-0.0990351\pi\)
0.951989 + 0.306133i \(0.0990351\pi\)
\(942\) 8.19211e12 0.338974
\(943\) 1.64165e13 0.676050
\(944\) 1.60100e13 0.656172
\(945\) −2.42176e12 −0.0987845
\(946\) 2.69901e13 1.09571
\(947\) 2.16342e13 0.874109 0.437054 0.899435i \(-0.356022\pi\)
0.437054 + 0.899435i \(0.356022\pi\)
\(948\) −6.87623e12 −0.276511
\(949\) −4.34863e13 −1.74042
\(950\) 1.63555e12 0.0651490
\(951\) 2.31501e12 0.0917786
\(952\) 7.79053e11 0.0307398
\(953\) 3.40827e13 1.33849 0.669246 0.743041i \(-0.266617\pi\)
0.669246 + 0.743041i \(0.266617\pi\)
\(954\) −1.62919e13 −0.636802
\(955\) 7.46337e11 0.0290349
\(956\) −1.18576e13 −0.459130
\(957\) −2.92110e13 −1.12575
\(958\) 3.74718e13 1.43734
\(959\) 4.74560e13 1.81179
\(960\) 7.01161e12 0.266439
\(961\) 2.29096e13 0.866487
\(962\) −2.92169e13 −1.09988
\(963\) −8.55952e12 −0.320724
\(964\) −4.39175e12 −0.163791
\(965\) −8.69832e12 −0.322896
\(966\) 3.55423e13 1.31325
\(967\) 5.85724e12 0.215414 0.107707 0.994183i \(-0.465649\pi\)
0.107707 + 0.994183i \(0.465649\pi\)
\(968\) −1.03678e12 −0.0379531
\(969\) −4.26195e12 −0.155293
\(970\) 6.83147e12 0.247766
\(971\) −4.23372e12 −0.152840 −0.0764198 0.997076i \(-0.524349\pi\)
−0.0764198 + 0.997076i \(0.524349\pi\)
\(972\) −1.81395e12 −0.0651821
\(973\) −3.45753e13 −1.23668
\(974\) 4.61489e12 0.164303
\(975\) −4.68994e12 −0.166206
\(976\) −1.35654e13 −0.478528
\(977\) 1.15007e13 0.403832 0.201916 0.979403i \(-0.435283\pi\)
0.201916 + 0.979403i \(0.435283\pi\)
\(978\) 8.73705e12 0.305380
\(979\) −2.87449e13 −1.00009
\(980\) 4.16432e12 0.144220
\(981\) −1.35532e13 −0.467231
\(982\) −1.61804e13 −0.555248
\(983\) 1.65487e13 0.565292 0.282646 0.959224i \(-0.408788\pi\)
0.282646 + 0.959224i \(0.408788\pi\)
\(984\) 1.87869e11 0.00638817
\(985\) −1.34324e13 −0.454664
\(986\) −5.90518e13 −1.98970
\(987\) 1.65995e13 0.556760
\(988\) −1.00493e13 −0.335530
\(989\) 1.98638e13 0.660204
\(990\) 1.04368e13 0.345309
\(991\) −1.49310e12 −0.0491765 −0.0245883 0.999698i \(-0.507827\pi\)
−0.0245883 + 0.999698i \(0.507827\pi\)
\(992\) 5.91504e13 1.93934
\(993\) −2.62894e13 −0.858044
\(994\) 7.31136e13 2.37552
\(995\) 6.79398e12 0.219746
\(996\) −3.04891e13 −0.981697
\(997\) 2.32477e13 0.745165 0.372582 0.927999i \(-0.378472\pi\)
0.372582 + 0.927999i \(0.378472\pi\)
\(998\) −8.64140e13 −2.75738
\(999\) −3.26045e12 −0.103570
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.4 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.4 15 1.1 even 1 trivial